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Tracking Skin-Colored Objects in Real-time 
 

Antonis A. Argyros & Manolis I.A. Lourakis 
 
 
 
1. Introduction 
 

Locating and tracking objects of interest in a temporal sequence of images constitutes an 
essential building block of many vision systems. In particular, techniques for effectively 
and efficiently tracking the human body, either in part or as a whole, have received 
considerable attention in the context of applications such as face, gesture and gait 
recognition, markerless human motion capture, behavior and action interpretation, 
perceptual user interfaces, intelligent surveillance, etc. In such settings, vision-based 
tracking needs to provide answers to the following fundamental questions. First, how is a 
human modeled and how are instances of the employed model detected in an image? 
Second, how are instances of the detected model associated temporally in sequences of 
images? 
Being a complex, non-rigid structure with many degrees of freedom, the human body is 
intricate to model. This is reflected on the models that have been employed in the 
literature for human tracking, whose type and complexity vary dramatically (Gavrila, 
1999; DeCarlo & Metaxas, 2000; Delamarre & Faugeras, 2001; Plänkers & Fua, 2001), 
depending heavily on the requirements of the application domain under consideration. 
For example, tracking people in an indoors environment in the context of a surveillance 
application has completely different modeling requirements compared to tracking the 
fingers of a hand for sign language interpretation.  
Many visual cues like color, shading, edges, texture, motion, depth and their combinations 
have been employed as the basis for modeling of human body parts. Among those, skin 
color is very effective towards detecting the presence of humans in a scene. Color offers 
significant advantages over geometric models, such as robustness under occlusions, 
resolution changes and geometric transformations. Additionally, color is a natural cue for 
focusing attention to salient regions in an image and the computational requirements for 
processing it are considerably lower compared to those associated with the processing of 
complex geometric models. In the remainder of this section, we briefly review existing 
approaches based on the answers they provide to the two fundamental questions stated 
above. 
 
1.1 Modeling and Detection of Color 
 

A recent survey (Yang et al, 2002) provides an interesting overview concerning the use of 
color for face (and, therefore, skin-color) detection. A major decision towards deriving a 
model of skin color relates to the selection of the color space to be employed. Several color 
spaces have been proposed including RGB (Jebara & Pentland, 1997), normalized RGB 
(Kim et al. 1998; Jones & Rehg, 1999), HSV (Saxe & Foulds, 1996), YCrCb (Chai & Ngan, 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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1998), YUV (Yang & Ahuja 1998), etc. Color spaces efficiently separating the chrominance 
from the luminance components of color are typically considered preferable. This is due to 
the fact that by employing the chrominance-dependent components of color only, some 
degree of robustness to illumination changes can be achieved. A review of different skin 
chrominance models and a comparative evaluation of their performance can be found in 
(Terrillon et al., 2000). 
Once a suitable color space has been selected, the simplest approach for defining what 
constitutes skin color is to employ bounds on the coordinates of the selected space (Chai & 
Ngan, 1998). These bounds are typically selected empirically, i.e. by examining the 
distribution of skin colors in a pre-selected set of images. A more elaborate approach is to 
assume that the probabilities of skin colors follow a distribution that can be learnt either 
off-line or by employing an on-line iterative method (Saxe & Foulds, 1996). Depending on 
whether this distribution is represented analytically or not, existing approaches can be 
classified as parametric or non-parametric.  
Non-parametric approaches represent the learnt distribution by means of a histogram of 
color probabilities. Parametric approaches are based either on a unimodal Gaussian 
probability density function (Kimet et al., 1998, Yang & Ahuja, 1998) or on multimodal 
Gaussian mixtures (Jebara et al., 1998; Raja et al., 1999) that model the probability 
distribution of skin color. The parameters of a unimodal Gaussian density function are 
estimated using maximum likelihood estimation techniques. Multi-modal Gaussian 
mixtures typically require the Expectation-Maximization (EM) algorithm (Dempster et al., 
1977) to be employed.  According to Yang et al (Yang & Ahuja, 2001), a mixture of 
Gaussians is preferable compared to a single Gaussian distribution. Still, Jones and Regh 
(Jones & Regh, 1999) argue that histogram models provide better accuracy and incur lower 
computational costs compared to mixture models for the detection of skin-colored areas in 
an image. A few of the proposed methods perform some sort of adaptation to become 
insensitive to changes in the illumination conditions. For instance, (Raja et al., 1999) 
suggest adapting a Gaussian mixture model that approximates the multi-modal 
distribution of the object's colors, based on a recent history of detected skin-colored 
regions. Vezhnevets et al (Vezhnevets et al., 2003) provide a survey of published pixel-
based skin detection methods. 
 
1.2 Tracking  
 

Assuming that skin-colored regions have been appropriately modeled and can be reliably 
detected in an image, another major issue relates to the temporal association of these 
observations in an image sequence. The traditional approach to solving this problem has 
been based on the original work of Kalman (Kalman, 1960) and its extensions. If the 
observations and object dynamics are of a Gaussian nature, Kalman filtering suffices to 
optimally solve the tracking problem. However, in many practical cases the involved 
distributions are non-Gaussian and, therefore, the underlying assumptions of Kalman 
filtering are violated.  
As suggested in (Spengler & Schiele, 2003), recent research efforts that deal with object 
tracking can be classified into two categories, namely those that solve the tracking 
problem in a non-Bayesian framework (e.g. Javed & Shah 2002; Siebel & Maybank, 2002; 
Triesch & von de Malsburg, 2001) and those that tackle it in a Bayesian one (e.g. Isard & 
Blake 1998; Koller-Meier & Ade, 2001; Hue et al., 2002). In most of the cases (Isard & Blake, 
1998), the problem of single-object tracking is investigated. These single-object approaches 
usually rely upon sophisticated, powerful object models. Other studies such as (Koller-
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Meier & Ade, 2001; Hue et al., 2002) address the more general problem of tracking several 
objects in parallel. Some of these methods employ configurations of several individual 
objects, thus reducing the multi-object tracking problem to a set of instances of the less 
difficult single-object tracking problem. Other methods employ algorithms making use of 
particle filtering (Arulampalam et al., 2002), i.e. sequential Monte-Carlo generalizations of 
Kalman filtering that are based on sampled representations of probability densities. 
Despite the considerable amount of research that has been devoted to tracking, an efficient 
and robust solution to the general formulation of the problem is still lacking, especially for 
the case of simultaneous tracking of multiple objects. 
The rest of the paper is organized as follows. Section 2 provides an overview of the 
proposed skin color tracker. Sections 3 and 4 present the operation of the proposed tracker 
in more detail. Section 5 provides sample results from the application of the tracker to long 
image sequences and discusses issues related to its computational performance. Finally, 
section 6 provides the main conclusions of this work along with an outline of possible 
extensions to it.  
 

2. Overview of the Proposed Approach 
 

With respect to the two fundamental questions that have been posed in the introductory 
section, the proposed approach relies on a non-parametric method for skin-color detection 
and performs tracking in a non-Bayesian framework. A high level description of the 
operation of the proposed method for tracking multiple skin-colored objects is as follows. 
At each time instant, the camera acquires an image on which skin-colored blobs (i.e. 
connected sets of skin-colored pixels) are detected. The method also maintains a set of 
object hypotheses that have been tracked up to the current instant in time. The detected 
blobs, together with the object hypotheses are then associated in time. The goal of this 
association is twofold, namely (a) to assign a new, unique label to each new object that 
enters the camera's field of view for the first time, and (b) to propagate in time the labels of 
already detected objects that continue to be visible. 
Compared to existing approaches, the proposed method has a number of attractive 
properties. Specifically, the employed skin-color representation does not make use of 
prohibitively complex physics-based models and is learned through an off-line procedure. 
Moreover, a technique is proposed that permits the avoidance of much of the burden 
involved in the process of manually generating training data. Being non-parametric, the 
proposed approach is independent of the shape of skin color distribution. Also, it adapts 
the employed skin-color model based on the recent history of tracked skin-colored objects. 
Thus, without relying on complex models, it is able to robustly and efficiently detect skin-
colored objects even in the case of changing illumination conditions. Tracking over time is 
performed by employing a novel technique that can cope with multiple skin-colored 
objects, moving in complex patterns in the field of view of a possibly moving camera. 
Furthermore, the employed method is very efficient computationally. A prototype 
implementation of the proposed tracker operates on live video at a rate of 28 Hz on a 
Pentium IV processor running under MS Windows, without resorting to assembly 
optimizations or special hardware instructions such as MMX or SSE. 
A more detailed description of the approach adopted by the proposed method for solving 
the two fundamental sub-problems identified in the introduction is supplied in the 
subsequent sections. An earlier description of the proposed method appears in (Argyros & 
Lourakis, 2004). 
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3. Detecting Skin Colored Blobs 
 

Skin color detection in the framework of the proposed method consists of four steps: (a) 
estimation of the probability of a pixel being skin-colored, (b) hysteresis thresholding on 
the derived probabilities map, (c) connected components labeling to yield skin-colored 
blobs and, (d) computation of statistical information for each blob. Skin color detection 
adopts a Bayesian approach, involving an iterative training phase and an adaptive 
detection phase. Section 3.1 describes the employed skin color detection mechanisms and 
sections 3.2 and 3.3 deal, respectively, with simplifying the process of off-line training and 
introducing adaptiveness to the skin detection procedure. 
 
3.1 Basic Training and Skin Detection Schemes 
 

During an off-line phase, a small set of training input images is selected on which a human 
operator manually delineates skin-colored regions. The color representation used in this 
process is YUV 4:2:2 (Jack, 2004). However, the Y-component of this representation is not 
employed for two reasons. First, the Y-component corresponds to the illumination of an 
image pixel and therefore, by omitting it, the developed classifier becomes less sensitive to 
illumination changes. Second, compared to a 3D color representation (i.e. YUV), a 2D one 
(i.e. UV) is of lower dimensionality and is, therefore, less demanding in terms of memory 
storage and processing costs. 

Assuming that image pixels with coordinates ( , )x y  have color values ( , )c c x y= , training 

data are used to compute (a) the prior probability ( )P s  of skin color, (b) the prior 

probability ( )P c  of the occurrence of each color c  and (c) the prior probability ( | )P c s  of a 

color c  being a skin color. Based on this information, the probability ( | )P s c  of a color c  
being a skin color can be computed by employing the Bayes rule: 

 
 

( | ) ( )
( | ) .

( )

P c s P s
P s c

P c
=  

(1) 

 
 
Equation (1) permits the determination of the probability of a certain image pixel being 
skin-colored using a lookup table indexed with the pixel’s color. All pixels with 

probability max( | )P s c T>  are considered as being skin-colored. These pixels constitute 

seeds of potential skin-colored blobs. More specifically, image pixels with probabilities 

min( | )P s c T>  where min maxT T<  that are immediate neighbors of skin-colored image pixels 

are recursively added to each blob. The rationale behind this region growing operation is 
that an image pixel with relatively low probability of being skin-colored should be 
considered as such in the case that it is a neighbor of an image pixel with high probability 
of being skin-colored. A similar type of hysteresis thresholding operation has been proven 

extremely useful to edge detection (Canny, 1986). Indicative values for the thresholds maxT  

and minT  are 0.5 and 0.15, respectively. A standard connected components labeling 

algorithm is then responsible for assigning different labels to the image pixels of different 
blobs. Size filtering on the derived connected components is also performed to eliminate 
small, isolated blobs that are attributed to noise and do not correspond to interesting skin-
colored regions.  Each of the remaining connected components corresponds to a skin-
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colored blob. The final step in skin color detection involves the computation of central 
moments up to second order for each blob that, as will be explained shortly, will be 
needed during the tracking process. 
 
3.2 Simplifying Off-Line Training 
 

Training is an off-line procedure that does not affect the on-line performance of the 
tracker. Nevertheless, the compilation of a sufficiently representative training set is a time-
consuming and labor-intensive process. To cope with this problem, an adaptive training 
procedure has been developed. Training is performed on a small set of seed images for 
which a human provides ground truth by defining skin-colored regions. Alternatively, 
already existing, publicly available training sets such as the “Compaq” skin database of 
(Jones & Rehg, 1999) can be employed. Following this, detection together with hysteresis 

thresholding is used to continuously update the prior probabilities ( )P s , ( )P c  and ( | )P c s  
based on a larger image data set. The updated prior probabilities are used to classify pixels 
of these images into skin-colored and non-skin-colored ones. In cases where the classifier 
produces wrong results (false positives / false negatives), manual user intervention for 
correcting these errors is necessary; still, up to this point, the classifier has automatically 
completed much of the required work. The final training of the classifier is then performed 
based on the training set resulting from user editing. This process for adapting the prior 

probabilities ( )P s , ( )P c  and ( | )P c s  can either be disabled as soon as the achieved 

training is deemed sufficient for the purposes of the tracker, or continue as more input 
images are fed to the system. 
 
3.3 Adaptive Skin Detection 
 

The success of the skin-color detection process presented in section 3.1 depends critically 
on whether illumination conditions during the on-line operation of the detector are similar 
to those during the acquisition of the training data set.  
Despite the fact that the UV color representation model used has certain illumination 
independent characteristics, the skin-color detector may produce poor results if the 
illumination conditions during on-line operation are considerably different compared to 
the ones represented in the training set. Hence, a means for adapting the representation of 
skin-colored image pixels according to the recent history of detected skin-colored pixels is 
required. To solve this problem, skin color detection maintains two sets of prior 
probabilities.  

The fist set consists of ( )P s , ( )P c , ( | )P c s  that have been computed off-line from the 

training set while the second is made up of ( )WP s , ( )WP c , ( | )WP c s , corresponding to the 

evidence that the system gathers during the w  most recent frames. Clearly, the second set 
better reflects the “recent” appearance of skin-colored objects and is therefore better 
adapted to the current illumination conditions. Skin color detection is then performed 
based on the following weighted moving average formula: 
 

( | ) ( | ) (1 ) ( | ),WP s c P s c P s cγ γ= + −  (2) 

 
 
where ( | )P s c  and ( | )WP s c  are both given by eq. (1) but involve prior probabilities that 

have been computed from the whole training set and from the detection results in the last 
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W  frames, respectively. In eq. (2), γ  is a sensitivity parameter that controls the influence 

of the training set in the detection process.  Setting 5W =  and 0.8γ =  gave rise to very 

good results in a series of experiments involving gradual variations of illumination.  
 

4. Tracking Multiple Objects over Time 
 

Let us assume that at time t , M  blobs have been detected as described in section 3. Each 

blob jb , 1 j M≤ ≤ , corresponds to a set of connected skin-colored image pixels.  It should 

be noted that the correspondence among blobs and objects is not necessarily one-to-one. 
As an example, two crossing hands are two different skin-colored objects that appear as 
one blob at the time one hand occludes the other. In this work, we assume that an object 
may correspond to either one blob or part of a blob.  Conversely, one blob may correspond 
to one or many objects.   
We also assume that the spatial distribution of pixels depicting a skin-colored object can be 
coarsely approximated by an ellipse. This assumption is valid for skin-colored objects like 
hand palms and faces. Extensive experimentation has demonstrated that the tracker still 
performs very well even in cases where the shape of skin-colored objects deviates 
significantly from the shape of an ellipse.  

Let N  be the number of skin-colored objects present in the viewed scene at time t  and io , 

1 i N≤ ≤ , be the set of skin pixels that image the i -th object. We also denote with 
( , , , , )

i ii i x y i i ih h c c α β θ=  the ellipse model of this object where ( , )
i ix yc c  is its centroid, iα  and 

iβ  are, respectively, the lengths of its major and minor axis, and iθ  is its orientation on the 

image plane.  Finally, we use capital letters
1

M

jj
B b

=
=U , 

1

N

ii
O o

=
=U , and 

1

N

ii
H h

=
=U  to 

denote the union of all skin-colored pixels, object pixels and ellipses, respectively. 

Tracking amounts to determining the relation between object models ih and observations 

jb  over time. 

 

 
 
Figure 1. Various possible configurations of skin-colored blobs and object hypotheses. See text for details 
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Figure 1 exemplifies the problem. In this particular example there are three blobs ( 1b , 2b  

and 3b ) while there are four object hypotheses ( 1h , 2h , 3h  and 4h ) carried from the 

previous frame.  
What follows is an algorithm that can cope effectively with the temporal data association 
problem.  
 
The proposed algorithm needs to address three different sub-problems: 
 
(a) Object hypothesis generation (i.e. an object appears in the field of view for the first 

time). 

(b) Object hypothesis tracking in the presence of multiple, potential occluding objects (i.e. 
previously detected objects that continue to move arbitrarily in the field of view). 

(c) Object model hypothesis removal (i.e. a tracked object disappears from the field of 
view). 

Each of the aforementioned problems is dealt with in the manner explained below. 
 
4.1 Object Hypothesis Generation 
 

We define the distance ( , )D p h  of a pixel ( , )p p x y=  from an ellipse ( , , , , )x yh c c α β θ  as 

follows: 
 
 

( , ) || ||,D p h v=
r

 (3) 

  
 

where || . ||  denotes the 
2l  norm of a vector and v

r
 is defined by 

 
 

cos( ) sin( )
.

sin( ) cos( )

c

c

x x

v
y y

θ θ α
θ θ

β

−⎡ ⎤
⎢ ⎥−⎡ ⎤
⎢ ⎥= ⎢ ⎥ −⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

r
 

 
 

(4) 

 
 
The distance ( , )D p h  is defined so that its value is less than, equal to or greater than 1 

depending on whether pixel p  is inside, on, or outside ellipse h , respectively. Consider 

now a model ellipse h  and a pixel p  belonging to a blob b . In the case where ( , ) 1D p h < , 

we conclude that pixel p  and blob b  support the existence of the object hypothesis h  and 

that object hypothesis h  predicts blob b . Consider now a blob b  such that: 
 
 

{ }, min ( , ) 1.h Hp b D p h∈∀ ∈ >  
(5)
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Equation (5) describes a blob whose intersection with all ellipses of the existing object 

hypotheses is empty. Blob 1b  in Fig. 1 corresponds to such a case. This implies that none of 

the existing object hypotheses accounts for the existence of this blob. For each such blob, a 
new object hypothesis is generated. The parameters of the generated object hypothesis can 
be derived directly from the statistics of the distribution of pixels belonging to the blob. 
The center of the ellipse of the object hypothesis becomes equal to the centroid of the blob 
and the remaining ellipse parameters can be computed from the covariance matrix of the 
bivariate distribution of the blob pixels location. More specifically, it can be shown that if 
the covariance matrix Σ  corresponding to the distribution of the blob's pixels coordinates   
 

is xx xy

xy yy

σ σ
σ σ
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

, 

 
then an ellipse can be defined with parameters: 
 

1
1 2

1

, , tan ,
xy

yy

σ
α λ β λ θ

λ σ
−
⎛ ⎞

= = = ⎜ ⎟⎜ ⎟−⎝ ⎠
 

(6)

 
where 
 

( )2
2

1 2, , 4
2 2

xx yy xx yy
xx yy xy

σ σ σ σ
λ λ σ σ σ

+ + Λ + − Λ
= = Λ = − +  (7)

 
Algorithmically, all blobs that are detected in each frame are tested against the criterion of 
eq. (5). For all qualifying blobs, a new object hypothesis is formed and the corresponding 
ellipse parameters are determined based on eqs. (6) and (7). Moreover, all such blobs are 
excluded from further consideration in the subsequent steps of object tracking. 
 
4.2 Object Hypothesis Tracking 
 

After new object hypotheses have been formed as described in the previous section, all the 
remaining blobs must support the existence of past object hypotheses. The main task of the 
tracking algorithm amounts to associating blob pixels to object hypotheses. There are two 
rules governing this association: 
 

• Rule 1: If a skin-colored pixel of a blob is located within the ellipse of a particular 
object hypothesis (i.e. supports the existence of this hypothesis), then this pixel is 
considered as belonging to this hypothesis. 

• Rule 2: If a skin-colored pixel is outside all ellipses corresponding to the object 
hypotheses, then it is assigned to the object hypothesis that is closest to it in terms of 
the distance metric of eq. (3). 

 
Formally, the set o  of skin-colored pixels that are associated with an object hypothesis h  
is given by the union of two disjoint sets, specifically 1 2o R R= U  with    
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{ }1 | ( , ) 1R p B D p h= ∈ < and { }{ }2 | ( , ) | ( , ) 1arg min
n H

R p B h D p n D p n
∈

= ∈ = ≥ . 

 

In the example of Fig. 1, two different object hypotheses ( 2h  and 3h ) are “competing” for 

the skin-colored region corresponding to blob 2b .  According to the rule 1 above, all skin 

pixels within the ellipse of 2h  will be assigned to it. According to the same rule, the same 

will happen for skin pixels under the ellipse of 3h . Note that pixels in the intersection of 

these ellipses will be assigned to both hypotheses 2h  and 3h . According to rule 2, pixels of 

blob 2b  that are not within any of the ellipses, will be assigned to their closest ellipse, as 

this is determined by eq. (3). 
Another interesting case is that of a hypothesis that is supported by more than one blobs 

(such as hypothesis 4h  in Fig. 1).   

Such cases may arise when, for example, two objects are connected at the time they first 
appear in the scene (e.g. two crossed hands) and later split. To cope with situations where 
a hypothesis h  receives support from several blobs, the following strategy is adopted.  If 
there exists only one blob b  that is predicted by h  and, at the same time, is not predicted 

by any other hypothesis, then h  is assigned to b . Otherwise, h  is assigned to the blob 
with which it shares the largest number of skin-colored pixels. In the example of Fig. 1, 

hypothesis 4h  gets support from blobs 2b  and 3b .  Based on the above rule, it will be 

finally assigned to blob 3b . 

After having assigned skin pixels to object hypotheses, the parameters of the object 

hypotheses ih  are re-estimated based on the statistics of the set of pixels io  that have been 

assigned to them, according to eq, (6). 
 
4.3 Object Hypothesis Removal 
 

An object hypothesis should be removed either when the corresponding object moves out 
of the camera's field of view, or when the object is completely occluded by some other non 
skin-colored object in the scene.  Thus, an object hypothesis h  should be removed from 
further consideration whenever 
 
 

, ( , ) 1.p B D p h∀ ∈ >  (8) 

 
 
Equation (8) essentially describes hypotheses that are not supported by any skin-colored 

image pixels. Hypothesis 1h  in Fig. 1 illustrates such a case.  In practice, and in order to 

account for the case of possibly poor skin-color detection, we allow an object hypothesis to 
“survive” for a certain amount of time, even in the absence of any support from skin-
colored pixels.  In our implementation, this time interval has been set to half a second. 
Thus, a hypothesis will be removed only after fourteen consecutive frames have been 
elapsed during which it has not received support from any skin-colored pixel. During 
these frames, the hypothesis parameters do not change but remain equal to the ones 
computed during the last frame in which it received support from some skin-colored 
pixels. 
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4.4 Prediction of Hypotheses Temporal Dynamics 
 

In the processes of object hypothesis generation, tracking and removal that have been 
described so far, data association is based on object hypotheses that have been formed or 
updated during the previous time step. Therefore, there is a time lag between the 
definition of models and the acquisition of data these models are intended to represent. 
Assuming that the immediate past is a good prediction for the immediate future, a simple 

linear rule can be used to predict the location of object hypotheses at time t , based on their 

locations at time 2t −  and 1t − .  
Therefore, instead of employing ( , , , , )

i ii i x y i i ih h c c α β θ= as the ellipses describing the object 

hypothesis i , we actually employ ˆ ˆ ˆ( , , , , )
i ii i x y i i ih h c c α β θ=  where 

 

( )ˆ ˆ( ), ( ) ( 1) ( )
i ix y i ic t c t C t C t= − + ∆ . 

 

In the last equation, ( )iC t  denotes ( )( ), ( )
i ix yc t c t  and ( ) ( 1) ( 2)i i iC t C t C t∆ = − − − . 

The above definition exploits temporal continuity, i.e. it postulates that an object 
hypothesis will maintain the same direction and magnitude of translation on the image 
plane, without changing any of its other parameters. Experimental evaluation has 
indicated that this simple mechanism for predicting the evolution of hypotheses with time 
performs surprisingly well even for complex object motions, provided that processing is 
performed fast enough to keep up with real-time video acquisition. 
 

5. Experiments 
 

In this section, representative results from an experiment conducted using a prototype 
implementation of the proposed tracker are provided. The reported experiment is based 
on a long (3825 frames in total) sequence that has been acquired and processed on-line and 
in real-time on a Pentium IV laptop computer running MS Windows at 2.56 GHz. A web 
camera with an IEEE 1394 (Firewire) interface has been used for video capture. In this 
experiment, the initial, “seed” training set consisted of 20 images and was later refined in a 
semi-automatic manner using 80 additional images. The training set contains images of 
four different persons that have been acquired under various lighting conditions. 
Figure 2 provides a few characteristic snapshots of the experiment. For visualization 
purposes, the contour of each tracked object hypothesis is shown. Different contour colors 
correspond to different object hypotheses.  
When the experiment starts, the camera is still and the tracker correctly asserts that there 
are no skin-colored objects in the scene (Fig. 2(a)). Later, the hand of a person enters the 
field of view of the camera and starts moving at various depths, directions and speeds in 
front of it. At some point in time, the camera also starts moving in a very jerky way; the 
camera is mounted on the laptop's monitor, which is being moved back and forth. The 
person's second hand enters the field of view; hands now move in overlapping trajectories. 
Then, the person's face enters the field of view.  
Hands disappear and then reappear in the scene. All three objects move independently in 
disjoint trajectories and in varying speeds ((b)-(d)), ranging from slow to fast; at a later 
point in time, the person starts dancing, jumping and moving his hands very fast. The 
experiment proceeds with hands moving in crossing trajectories. Initially hands cross each 
other slowly and then very fast ((e)-(g)).  
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Later on, the person starts applauding which results in his hands touching but not 
crossing each other ((h)-(j)). Right after, the person starts crossing his hands like tying in 
knots ((k)-(o)). Next, the hands cross each other and stay like this for a considerable 
amount of time; then the person starts moving, still keeping his hands crossed ((p)-(r)). 
Then, the person waves and crosses his hands in front of his face ((s)-(u)). The experiment 
concludes with the person turning the light on and off ((v)-(x)), while greeting towards the 
camera (Fig. 2(x)). 
 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) (n) (o) (p) 

(q) (r) (s) (t) 

(u) (v) (w) (x) 
 

Figure 2. Characteristic snapshots from the on-line tracking experiment 
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As it can be verified from the snapshots, the labeling of the object hypotheses is consistent 
throughout the whole sequence, which indicates that they are correctly tracked. Indeed, 
the proposed tracker performs very well in all the above cases, some of which are 
challenging. It should also be mentioned that no images of the person depicted in this 
experiment were contained in the training set.  
With respect to computational performance, the 3825 frames sequence presented 
previously has been acquired and processed at an average frame rate of 28.45 fps with 
each frame being of dimensions 320x240. It is stressed that the reported frame rate is 
determined by the maximum acquisition frame rate supported by the employed camera, 
since the acquisition delay for a single frame dominates the tracker's cycle time. When 
employing prerecorded image sequences that are loaded from disk, considerably higher 
tracking frame rates can be achieved. Performance can be further improved by running the 
tracker on lower resolution images that result from subsampling original images by a 
factor of two. 
Apart from the reported example, the proposed tracker has also been extensively tested 
with different cameras and in different settings involving different background scenes and 
human subjects.  
Demonstration videos including the reported experiment can be found online at 
http://www.ics.forth.gr/~argyros/research/colortracking.htm. 
 

6. Conclusion 
 

In this paper, a method for tracking multiple skin-colored objects has been presented. The 
proposed method can cope successfully with multiple objects moving in complex patterns 
as they dynamically enter and exit the field of view of a camera.  Since the tracker is not 
based on explicit background modeling and subtraction, it may operate even on image 
sequences acquired by a moving camera.  
Moreover, the color modeling and detection modules facilitate robust performance in the 
case of varying illumination conditions. Owing to the fact that the proposed approach 
treats the problem of tracking under very loose assumptions and in a computationally 
efficient manner, it can serve as a building block of larger vision systems employed in 
diverse application areas. 
Further research efforts have focused on (1) combining the proposed method with 
binocular stereo processing in order to derive 3D information regarding the tracked 
objects, (2) providing means for discriminating various types of skin-colored areas (e.g. 
hands, faces, etc), (3) developing methods that build upon the proposed tracker in order to 
be able to track interesting parts of skin-colored areas (e.g. eyes for faces, fingertips for 
hands, etc) and (4) employing the proposed tracker for supporting human gesture 
interpretation in the context of applications such as effective human computer interaction. 
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