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Abstract

Matrix metalloproteinases (MMPs) are Zn2+-dependent endoproteases, which digest
extracellular  matrix  (ECM)  components  and  various  non-ECM  molecules.  Main
physiological role of MMPs concerns regulation of tissue remodeling and regenera‐
tion. The production and activity of MMPs are tightly supervised by multistage control
mechanisms. These mechanisms include regulation of gene expression, and various
post-transcriptional/post-translational modifications. However, without proper control
MMPs reveal dual nature, similarly to character from the novella by R.L. Stevenson,
“Strange Case of Dr Jekyll and Mr Hyde”. They become dangerous molecules, involved
in cancer metastasis, or cardiovascular diseases.

Recent studies revealed that MMPs are also engaged in asthma. Despite extensive
research, exact role of MMPs in this process remains unclear and there is no agree‐
ment among scientists, regarding two opposite concepts. The followers of “destruc‐
tive hypothesis” postulate detrimental effect of MMPs on mucosa. Accordingly, MMPs-
mediated  damage  stimulates  chaotic  regeneration,  and  progressive  remodeling.
Oppositely, enthusiasts of “protective hypothesis” postulate that MMPs actually do not
allow formation of  excessive  collagen deposits,  and thus  they  protect  from tissue
fibrosis.

The better understanding of “MMPs — Jekyll or Hyde ?” story may be clinically
relevant, especially while considering therapies focused on modulation of MMPs
activity. Therefore, this issue requires instant elucidation.

Keywords: airway remodeling, asthma, extracellular matrix, matrix metalloprotei‐
nase, destructive hypothesis and protective hypothesis
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1. Introduction

Matrix metalloproteinases (MMPs) represent group of 25 endoproteases, which require a
presence of zinc ions to reveal their proteolytic activity. According to worldwide accepted
nomenclature, MMPs have assigned numbers from 1 to 28. However, till now no respective
molecules have been ascribed for numbers 4, 5 and 6, whereas MMP-18 was identified only in
Xenopus frogs. [1, 2] Apart from regulation of extracellular matrix (ECM) turnover, MMPs are
also involved in controlling of numerous non-ECM molecules, including cytokines and growth
factors. Thus, MMPs are key molecules in embryo- and organogenesis, angiogenesis and tissue
regeneration. However, they are also main destructive factors, responsible for cancer progres‐
sion, aortic aneurysm rupture or delayed healing of chronic wounds. [3, 4] Recently, their
involvement was postulated also in some inflammatory diseases affecting respiratory tract,
among them chronic obstructive pulmonary disease and asthma. [5] In this chapter authors
will focus especially on possible role of MMPs in asthma and asthma-associated alterations in
architecture and function of respiratory tract mucosa, which are better known as airway
remodeling.

2. MMPs — portrait of the family

2.1. MMP structure

Based on molecular structure, substrate specificity and mechanism of activation, MMPs are
classified into four groups: gelatinases, matrilysins, archetypal MMPs and furin-activated
MMPs (Fig. 1.). Formerly, MMPs were divided into six types – collagenases, gelatinases,
stromelysins, matrilysins, membrane-type MMPs and others. However, nowadays this
classification possesses rather historical meaning. The overall structure of MMPs reveals some
common features, which are similar in all members of the family. [2, 3] One of these features
is the presence of signaling peptide, located on the N-terminus of newly synthesized proteins.
This leader sequence is necessary for the insertion of maturating MMP molecule into cistern
of endoplasmic reticulum, and then it is removed. Unlike to other family members, in MMP-23
the N-terminal signaling sequence is substituted by a type II transmembrane domain, which
allows anchorage of these molecules in cell membrane.

The next part common in MMP structure is approximately 80 amino acid-long prodomain. It
contains conserved “cysteine switch” motif, responsible for maintaining the latent form of
enzyme by the blockade of its catalytic site. The main constant segment present in all family
members is their catalytic domain. This sphere-like domain is composed of 160-170 amino
acids. It contains shallow slot with two zinc ions inside, which constitutes an active site of
MMP molecule. Exclusively, catalytic domains in both gelatinases, MMP-2 and -9, contain
unique fibronectin II-like inserts. Most MMPs (except for MMP-7, -23 and -26) have short hinge
segment of approximately 10-30 amino acids, which connects the catalytic domain with
hemopexin-like domain. Exceptionally, MMP-9 molecule has the longest hinge region,
composed of 64 strongly O-glycosylated amino acids. The C-terminal hemopexin-like domain,
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not present in MMP-7, -23 and -26, is composed of approximately 200 amino acids and is
considered as docking spot for tissue inhibitors of MMPs (TIMPs). In MMP-23 molecule the
hemopexin-like domain was replaced by a cysteine-rich immunoglobulin-like domain.

The representatives of membrane-type (MT) subgroup of MMPs (except of already mentioned
MMP-23) have hemopexin-like domain connected to a type I transmembrane domain with a
short intracellular tail (MMP-14, -15, -16 and -24, also known as MT1, -2, -3 and -5-MMP,
respectively), or a cell membrane-anchoring glycosylphosphatidylinositol (GPI) moiety
(MMP-17 and -25, known as MT4- and MT6-MMP) (Fig. 1).

Finally, three of secreted MMPs (MMP-11, -21 and -28), all the membrane-type MMPs and
MMP-23 have a specific sequence between their prodomain and the catalytic domain, which
is recognized by furin. This subtilisin-like serine proteinase from trans-Golgi apparatus and
the endoplasmic reticulum removes the prodomain from the catalytic domain and thus may
lead to intracellular activation of MMP molecule. [1–6]

2.2. Substrate specificity

MMPs are able to digest main components of extracellular matrix (ECM), including high
molecular weight polymers of native and denatured collagens and elastin, as well as small
ECM molecules, like fibronectin, laminin and aggrecan. Moreover, MMPs may process
numerous non-ECM molecules, among them various adhesion molecules, dystroglycan,
syndecans, growth factors, pro-cytokines, and their receptors. MMPs were shown to activate
via proteolysis pro-forms of interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF), Fas ligand,
transforming growth factor (TGF)-β, but also other members of MMPs family (Table 1). [1, 3,
7–9] Noteworthy, some of these cytokines, including vascular endothelial growth factor
(VEGF) and TGF-β, may be further entrapped in three-dimensional net of extracellular matrix

Fig. 1. Schematic representation of MMPs family. (A). Main groups of the family and their structure. (B). An example
of schematic structure of MMP. Detailed description in text.
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components or by their binding proteins. Therefore, MMPs may be necessary to reveal
biological activity of these factors, through their enzymatic discharge from ECM.

Group Representatives Main ECM substrates Non-ECM substrates

ARCHETYPAL MMPs Collagenases
MMP-1, -8- 13

collagens, gelatin,
fibronectin, aggrecan…

pro-IL-1β, pro-IL-8, pro-TNF,
other MMPs, PAI, IGFBM

Stromelysins
MMP-3, -10

collagens, gelatin,
elastin, fibronectin,
laminin, aggrecan

pro-IL-1β, other MMPs,
IGFBP, MMP/TIMP complex,
fibrinogen, plasminogen,
antitrombin III

Others
MMP-12, -19, -20, -27

collagen IV, gelatin,
elastin, fibronectin,
laminin

fibrin, plasminogen,
myelin basic protein

MATRILYSINS
MMP-7, -26

collagen IV, gelatin,
elastin, fibronectin,
laminin, integrins…

other MMPs, MMP/TIMP
complex, fibrinogen,
plasminogen

GELATINASES
MMP-2, -9

collagens, gelatin,
elastin, fibronectin…

pro-IL-1β, plasminogen,
other MMPs

FURIN-ACTIVATED MMPs Secreted
MMP-11,-21,-28

collagen IV, gelatin,
laminin, fibronectin

casein, IGFBP

Type 1 transmembrane
MMP-14,-15,-16,-24

collagens, gelatin,
elastin, laminin,
vitronectin

other MMPs

GPI-anchored
MMP-17,-25

UNK

Type II transmembrane
MMP-23A,-23B

UNK

Table. 1. Representatives of MMPs family with their main substrates (detailed description in text). ECM – extracellular
matrix, Non-ECM- other substrates, PAI – plasminogen activator inhibitor, IGFBP – insulin-like growth factor-binding
protein, TIMP – tissue inhibitor of MMPs, UNK – unknown.

2.3. MMP expression

Due to a high proteolytic activity and broad substrate specificity, MMPs are recognized as key
molecules, engaged in cell proliferation and migration, tissue growth, remodeling, and
regeneration. For this reason their expression and activation has to be maintained under
precise multistage control. These controlling mechanisms include regulation of gene expres‐
sion, post-transcriptional and post-translational modifications, but also several ways of pro-
enzyme activation or inhibition of active MMP. [3, 4] Nevertheless, if these mechanisms fail,
similarly to the well known character from the famous novella by R.L. Stevenson, “Strange
Case of Dr. Jekyll and Mr. Hyde”, MMPs may also reveal their dual nature. Without sufficient
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supervision, these endoproteases may become highly dangerous effector molecules, engaged
in various pathologies. These conditions include cancer metastasis, formation and rupture of
aortic aneurysm, delayed healing of chronic wounds and many others. [1, 3, 10, 11] Recent
studies have provided evidence that MMPs may also be involved in pathogenesis of asthma,
mainly asthma-associated airway remodeling. [5]

Among all MMPs, only MMP-2 and MMP-9 are produced constitutively, whereas the expres‐
sion of majority of MMP genes requires some trigger, e.g. tissue damage, or inflammatory
reaction. It was found that the promoter region of genes encoding for MMPs comprises
sequences recognized by two main specific transcription factors, AP-1 and NF-κB. Both
transcription factors merge expression of many inflammatory response-engaged molecules,
including MMPs with several intracellular signaling pathways, induced by cytokines and
growth factors. Indeed, it was proved that MMPs expression may be controlled by variety of
growth factors, including TGF-β, platelet-derived growth factor (PDGF), epidermal growth
factor (EGF), and pro-inflammatory cytokines (e.g. IL-1β, IL-6, TNF, etc.). Moreover, the
promoter activity of MMPs may also be supervised by family of Ets transcription factors. Since
their conserved binding site is located close to target sequence for AP-1, they may interact each
other and thus modulate promoter response to various stimuli. [3, 4, 10, 12–14]

The rigid control of MMP genes expression may also be granted by their epigenetic modifica‐
tion. This mechanism is based on alteration in chromatin conformation, which is mediated by
differential acetylation-deacetylation of nucleosomal units, due to activity of an enzyme –
histone deacetylase (HDAC). Noteworthy, it has been shown that such regulation may result
in various responses of particular MMP genes. In vitro stimulation with TNF or IL-1β, with
simultaneous suppression of HDAC activity resulted in decreased expression of MMP-1 and
MMP-9, but increased production of MMP-3. [14, 15] Finally, the expression of MMPs may
also be modified on the post-transcriptional level, by the influence on stability or degradation
of their transcripts. Recently, it has been proven that the expression of several MMPs may be
negatively regulated by the small molecules of non-coding RNA, known as microRNAs (miRs),
in mechanism of RNA interference. It has been demonstrated that miR-9, miR-24 and miR-133a
may bind to the 3’-UTR of mRNA for MMP-14 (MT1-MMP) and they directly block its
translation. On the other hand, down-regulation of miR-199a-5p in murine model induced
MMP-1, possibly via Ets-1 derepression. [16–19]

2.4. MMP activity

All members of MMPs family are expressed as inactive pro-enzymes. This condition is assured
by previously mentioned “cysteine switch”, a specific interaction between zinc cations from
the active site of the catalytic domain, and a cysteine thiol group from the prodomain. The
renouncement of inhibitory influence of the prodomain on the catalytic domain is critical for
activation of pro-enzyme and may take place in two concurrent ways (Fig. 2). [3, 14, 20]
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Fig. 2. MMPs activation. (A) Two pathways of MMPs activation. (B) Schematic representation of substrate cleavage.
Detailed description in text.

2.4.1. Activation

The first pathway of MMPs activation is based on direct cleavage of their prodomain. It may
be carried by several extracellular proteolytic enzymes, including other MMPs, as well as
cysteine, serine and aspartate proteases. This pathway also involves already mentioned
intracellular processing and activation by furin. Due to removal of prodomain, molecular
weight of pro-enzyme activated in this pathway is significantly reduced, as compared to its
initial size. Thus, in zymograms of substrate-specific zymography with SDS-polyacrylamide
gel electrophoresis (PAGE) the activated MMP appears as the lower band, below that,
corresponding to latent form of enzyme. [21–23]

The second pathway depends on interaction of cysteine thiol groups from prodomain with
various compounds, including free radical, disulfides, some detergents with sodium dodecyl
sulphate (SDS), alkylating agents, heavy metal ions and organomercurials, with 4-aminophe‐
nylmercuric acetate (APMA). This interaction may induce allosteric conversion in MMP
structure, which leads to an exposure of the active site in the catalytic domain. Therefore,
although the prodomain still remains attached to the entire molecule, such MMP may reveal
its proteolytic activity. On the other hand, that MMP, despite being activated, has the same
molecular weight, as its inactive pro-form. That explains, why such full length-MMP may be
visualized in zymograms on the same level as latent pro-MMP. Noteworthy, the prodomain
may be further removed by auto-cleavage, that results in decrease of MMP molecular size and,
similarly to the first pathway, an appearance of the lower band in zymograms. [3]

Results of recent studies suggest that in vitro proteolysis requires only a substrate and respec‐
tive MMP, whereas in vivo systems usually involve some additional component. These
accessory factors may include membrane-, or ECM-associated peptides and glycosaminogly‐
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cans, which may determine specificity, as possibly, catalytic rate of MMPs. Accordingly, such
accessory molecules may work as a kind of adapters, which bind a substrate and MMP and
thus enable their close interaction with an effective concentration. [21–23]

2.4.2. Inhibition

As was already noticed, the precise control of MMPs expression and activity is essential for
homeostasis of the entire body. Therefore, to counterbalance the mentioned stimulators and
activators of MMPs, some agents revealing inhibitory properties are also required. Apart from
best known family of specific tissue inhibitors of metalloproteinases (TIMPs), there are also
less specific endogenous inhibitors, among them α2-macroglobulin, family of serine proteinase
inhibitors (serpins), thrombospondin-1 (TSP-1), tissue factor-pathway inhibitor (TFPI)-2,
reversion-inducing cysteine-rich protein with Kazal motifs (RECK), etc. [3, 10, 21, 24]

Members of TIMPs family (numbered from 1 to 4) are the best identified specific endogenous
inhibitors of MMPs. They are expressed and released by various cell populations, including
macrophages, platelets, smooth muscle cells, etc. The mechanism of their action depends on
reversible chelating of Zn2+ cations from active center of MMP’s catalytic domain and, thus,
abolishes its proteolytic properties. Since MMP – TIMP interaction occurs in a stoichiometric
ratio 1:1, the MMP/TIMP ratio seems to better reflect presumable biological impact of both
agents, instead of absolute amount of each of both proteins. Moreover, it is noteworthy that
studies concerning in vivo interactions between MMPs and TIMPs are also interfered by the
highly effective serum antiprotease – α2-macroglobulin. [3, 6, 14]

Although all TIMPs may interact with various MMPs, they differ in their specificity, e.g.
TIMP-1 preferentially binds to membrane type-MMPs, whereas TIMP-2 is considered as
important regulator of MMP-2 activity. Interestingly, the latter regulation actually involves
TIMP-2-dependent activation of MMP-2. In this unique mechanism TIMP-2 works as bridging
molecule between hemopexin domain of MMP-2 and MT1-MMP (MMP-14), which mediates
cleavage of prodomain in “immobilized” MMP-2.

Apart from mentioned above endogenous MMPs inhibitors, there is also an increasing number
of exogenous compounds, which reveal direct and/or indirect modulatory properties towards
the activity of MMPs. [3, 4] Since they have potential clinical relevance in a treatment of asthma
and asthma-associated remodeling, they will be further described in next paragraph (see 2.7).

2.5. Methods of MMP measurement

Increasing interest in the role of MMPs in asthma and, especially, asthma-associated remod‐
eling encouraged scientists to develop more specific and sensitive methods to detect MMPs in
analyzed samples. However, main obstacle in MMPs research is that most commonly used
methods, i.e. enzyme-linked immunosorbent assay (ELISA) and zymography, do not allow
simultaneous assessment of amount and activity of MMPs. [3]
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2.5.1. ELISA

Standard ELISA is a routine laboratory technique, which allows a quantitative detection of
minute amounts of MMPs in solution (picograms per ml) using specific antibodies, usually
conjugated with peroxidase-based detection system. Noteworthy, standard method provides
data concerning specific protein concentration, without any information regarding actual
activity of MMPs. Nevertheelss, such activity could be roughly estimated using specially
designed ELISA sets, which enable differentiation between truncated forms of activated MMPs
and prodomain-containing latent MMPs. However, as mentioned above, allosteric activation
not necessarily leads to prodomain removal. Therefore, data provided by ELISA alone are not
fully conclusive, and should be verified by some activity assay. [3]

2.5.2. Zymography

The substrate-specific zymography is the most commonly used method to evaluate MMPs
activity in tested samples. This assay is based on initial separation of samples using electro‐
phoresis in modified polyacrylamide gel, followed by its incubation in reaction buffer and
subsequent staining. The key component of such modified gel is substrate, specific for enzyme
being analyzed (e.g. collagen for MMP-1 and -13, gelatin for MMP-2 and -9, casein for MMP-1,
-3, -7, -10, -12, -13), which is homogenously distributed in whole gel volume. Since polyacry‐
lamide gel contains sodium dodecyl sulphate (SDS), the speed of migration in electrophoresis
is determined by molecular weight of separated proteins, resulting in shifted local condensa‐
tion of full length pro-enzyme and truncated forms of MMPs. During incubation in calcium-
and zinc-rich reaction buffer, MMP molecules become reactivated and digest own specific
substrate only in place of their condensation. After wash in the staining solution, e.g. Coo‐
massie Brilliant Blue, the entire gel becomes stained, with except of unstained area corre‐
sponding to digested substrate. Noteworthy, when compared to respective molecular weight
standard, the localization of unstained area enables better identification of analyzed MMP,
whereas the size of digested / unstained bands well correlates with amounts of detected
enzyme. This amounts may be further determined by comparison to reference sample, e.g.
known amounts of recombinant MMP. [3, 25]

Although substrate-specific zymography is sensitive (picograms per sample), and relatively
cheap method, it has some weak points. The first issue is long and time-consuming protocol.
The next, more important concern, is uncontrolled allosteric activation of MMP mediated by
SDS. Since it may strongly affect results of assessment, in current research standard zymog‐
raphy is often replaced by other, faster and more reliable activity assays.

2.5.3. Fluorescent activity assay

The unintended interaction with SDS may be avoided, when instead of polyacrylamide gel,
MMPs activity is assessed in SDS-free reaction mixture. The measurement of substrate
proteolysis in solution implements technology of fluorescence resonance energy transfer
(FRET) using substrate (e.g. casein or gelatin) tagged with fluorochrome and quencher. Until
labeled substrate stays untouched, the entire energy from fluorochrome is absorbed by
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quencher, with no fluorescence detectable. When the substrate is cleaved, the fluorochrome-
quencher interaction becomes disrupted, that is associated with increased emission of
fluorescence under UV light. Since the increase of fluorescence is proportional to enzyme
activity, with known quantities of MMP as reference, and with fluorescence reader, this
method allows very fast (within few minutes) measurement of proteolytic activity revealed by
small amounts (nanograms per ml) of MMP in tested samples. [3, 26]

Noteworthy, in contrast to standard zymography, the fluorescence assay enables studies on
proteolytic activity of MMPs, and analysis of modulation of this activity by various agents,
e.g. natural and synthetic inhibitors. However, the method is very sensitive to reaction
conditions, which may vary depending on protocol of sample preparation. The key factors are
concentration of non-ionic detergents, and presence of exogenous protease inhibitors (fre‐
quently used to prevent proteolysis in biological material) or metal ion chelators (e.g. EDTA).
On the other hand, the tissue sample preparation itself may lead to artificial activation of MMPs
or release of their natural inhibitors. [3]

The main disadvantage of the basic variant of mentioned fluorescent method is its non-
specificity. Therefore, when analyzing biological samples, to determine, which MMP contrib‐
utes to the degradation of labeled substrate, it is necessary to use a panel of MMP-specific
antibodies, to inhibit proteolytic activity of selected enzyme. Although a such approach
enables precise identification of all contributors of observed proteolytic activity, it also
significantly increases the cost of that analysis.

2.5.4. Immunozymography assay

Recently, a modification of mentioned above fluorescent method was introduced into market.
The method combines specificity of standard ELISA and functionality of fluorescent activity
assay. In a first step the sample is applied onto test plate, coated by antibody specific for MMP
of interest. Then MMP molecules, which are captured by antibody, convert a latent detection
reagent into its active form. The activated detection reagent catalyzes enzymatic conversion
of colorless substrate into color product. Since the amount of product directly correlates with
number of active MMPs, the use of standard calibration curve allows precise measurement of
active MMP molecules concentration in tested samples. Furthermore, when using organo‐
mercurials (e.g. APMA) to activate pro-MMPs in tested material, it also allows an assessment
of latent form of MMPs. Thus, the assay incorporates advantages of standard zymography (the
assessment of MMP activity and discrimination between pro- and active forms of these
enzymes), specificity of ELISA and exceptional sensitivity, reaching 0.1 pg/ml. Therefore, it
may be the best choice for research concerning MMPs activity in samples, where the minute
amounts of MMPs are expected, e.g. condensates of exhaled air. [27]

2.5.5. In situ zymography

The distribution of MMPs in tissue specimens may be studied using immunohistochemistry.
However, to assess the local activity of these enzymes, directly on the place of their production,
the in situ zymography may be used. Similarly to mentioned above fluorescent activity assay,
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this method also utilizes FRET technology. The tested specimen is incubated with substrate
labeled with fluorochrome-quencher complex and then analyzed using fluorescent micro‐
scope, or confocal laser scanning microscope. Similarly to fluorescent activity assay, in situ
zymography does not identify particular MMPs, unless used with specific neutralizing
antibodies. Furthermore, it does not provide information concerning quantities of active MMP.
Nevertheless, it is still valuable supplement to other methods in MMPs research. [3]

2.5.6. Reverse zymography

As previously mentioned, various factors which affect MMPs activity, may be analyzed using
fluorescent activity assay, western blot or respective ELISA. However, to detect natural tissue
inhibitors of MMP (TIMPs) some functional assay, better known as reverse zymography, has
been developed. The method is based on specific interaction between TIMPs from analyzed
sample and MMP of interest. Similarly to standard zymography, samples are separated in
polyacrylamide gel, which is supplemented with homogenously distributed substrate (e.g.
gelatin), but also selected MMP. After electrophoresis the gel is incubated in reaction buffer.
Since both, MMP and substrate, are present in the entire gel volume, MMP cleaves the whole
substrate, except of places corresponding to the TIMPs condensation after electrophoresis. In
these places TIMPs protect substrate from digestion, therefore, after Coomassie staining they
appear as blue bands, whereas the remaining gel volume stays unstained. [3]

2.6. MMPs in patients with asthma

2.6.1. Mr. Hyde…?

Extensive studies, focused on asthma and asthma-associated airway remodeling, have
revealed clear involvement of MMPs in pathogenesis of that disease. [5] However, the exact
role of MMPs in this process remains vague. The postulated link between metalloproteinases
and asthma was based mainly on observations concerning increased amounts and/or activities
of various MMPs in samples collected in patients with asthma. The samples were obtained
using various methods of collection and/or various material, among them serum or plasma,
mucosal biopsies, induced sputum, broncho-alveolar lavage (BAL) fluid and, most recently,
exhaled breath condensates (EBC). [27–31] Majority of studies concerned MMP-9, however,
other MMPs, including MMP-1, -2, -3, or -12 were also studied. It is noteworthy that substrate
specificity of mentioned MMPs entirely enables their self-sufficient work with full repertoire
of ECM components. Collagen IV, and laminin, two main components of basement mem‐
branes, are cleaved by MMP-9 and MMP-12. Native molecules of collagen I, main fibrillar ECM
component of mucosal connective tissue, are initially digested by MMP-1, whereas their
further degradation may be continued by all mentioned MMPs (MMP-2, -3, -9, and -12). Elastin
molecules are degraded mainly by MMP-12, but also MMP-2 and -9. [3] Although nominal
values of MMPs (especially MMP-9) concentrations differed between various studies, in vast
majority of mentioned reports similar regularity was observed. MMPs levels and /or activity
in individuals with asthma were several fold higher than in control subjects. [28, 29, 32] The
number of MMPs-positive cells in sputum or BAL inversely correlated with values of forced
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expiratory volume in 1 second (FEV1), whereas MMPs amounts in sputum, BAL and EBC
positively correlated with severity of disease. They were significantly higher in severe asthma
or in asthma exacerbation, and lower in mild asthma or in remission. [31, 33] Also bronchial
smooth myocytes/myofibroblasts (BSM) from mucosal biopsies of patients with fatal asthma
produced increased levels of MMP-9 and -12, whereas BSM from non-asthmatics expressed
only small quantities of MMP-2,-3 and -9. [34]

These observations could support concept of “destructive hypothesis”, which emphasizes
detrimental effect of metalloproteinases on disease progression. In this scenario, similarly to
Mr. Hyde from previously mentioned novella by R.L. Stevenson, MMPs reveal their dark
nature. The overexpression and hyperactivation of these enzymes may result in progressive
damage of epithelium, basement membrane and subepithelial connective tissue. These events
may endorse local inflammatory reaction, and thus further increase the damage zone. [5, 35]
On the other hand, they may induce excessive and poorly controlled tissue repair, with
increased deposition of ECM components, proliferation and hypertrophy of myofibroblasts,
as well as goblet cells hyperplasia with mucus hypersecretion. These changes result in
structural and functional changes in bronchial tree mucosa, which is known as airway
remodeling (Fig. 3). [5, 34] In fact, in animal model of asthma it was found that an increase in
MMP-9 activity in the airway mucosa was associated with epithelial damage, alteration of
subepithelial basement membrane, but also increased levels of TGF-β and subepithelial
collagen deposition. [36, 37] In patients with asthma Vignola and coauthors have observed
positive correlation between sputum levels of MMP-9 and the intensity of functional and
structural abnormalities, which may be easily visualized using air flow measurement and high
resolution computed tomography, respectively. [38, 39]

Fig. 3. Schematic representation of the “destructive hypothesis”. Detailed description in text.

Interestingly, some authors did not confirm direct correlation of MMPs levels with symptoms
severity, especially when using serum or plasma samples for the analysis. [30] The last finding
may suggest that a main source of MMPs overproduction in asthma is located in airway
system, with limited systemic influence. This assumption may be supported by association
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between MMP-9 level measured in breath condensates and predominant population of
inflammatory cells in induced sputum or BAL. Barbaro and coauthors have shown that
patients with neutrophilic airway inflammation revealed MMP-9 concentrations significantly
higher than individuals with severe eosinophilic asthma. [40] Thus, one could conclude that,
essentially, neutrophils and, to a lesser extent, eosinophils would be main sources of MMPs in
mild and severe asthma. Nevertheless, there is strong evidence that functional and structural
changes in bronchial wall are also contributed by other producers of MMPs – epithelial cells,
bronchial smooth myocytes, fibroblasts and mast cells. [5, 27] In fact, recent studies have shown
that epithelium- and myocytes-derived metalloproteinases may be involved in pathogenesis
of asthma and asthma-associated remodeling much earlier, even before clinical manifestation
of first symptoms. That hypothesis emerged as an ancillary result of embryological studies,
focused on development of bronchial tree. It has been proposed that pouches of epithelium,
submerged in mesenchyma, work together during organogenesis as an functional entity,
which was named the epithelial-mesenchymal trophic unit (EMTU). [41] Apart from large
variety of cytokines and growth factors, produced by EMTU during embryogenesis, the
important role in regulation of bronchial growth play metalloproteinases. Their list is still
expanding and includes several soluble MMPs, mainly MMP-3, -9 and -12 [34, 42], as well as
membrane-type 1 MMP (MT1-MMP/MMP-14). [43] The latter is involved in regulation of cell
proliferation, migration and differentiation, since all these events are in some extent associated
with pericellular proteolytic activity of this membrane-bound MMP.

Recently, another membrane-bound metallopeptidase, member of distinct class of disintegrin
and metalloproteinases (ADAM), denoted as ADAM33, has been added to this list. [44]
Similarly to MT-MMPs, function of these metalloproteinases relies on degradation of ECM
components located in the close proximity to the cell, that enables further growth and
branching of respiratory tree. However, this involvement also comprises processing of
cytokines and their receptors. Therefore, although they remain under strict control, including
methylation-dependent epigenetic regulation of promoter activity [45], even small abnormal‐
ity in that system may be responsible for aberrant function of EMTU. This may lead to
enhanced response to some stimuli, e.g. oxidative stress or viral infection. [46] Such triggers
may result in reactivation of EMTU in adulthood, excessive stimulation of epithelial cells and
bronchial myofibroblasts. They start again to express large quantities of metalloproteinases
and cytokines, among them TGF-β. Both mentioned enzymes, ADAM33 and MT1-MMP/
MMP-14, are supposed to trigger TGF-β-dependent stimulation of BSM and subepithelial
fibroblasts, which, in response, start with excessive production and deposition of ECM
components. Hereby EMTU reactivation may be associated with an increased risk of airway
malfunction. Interestingly, in some individuals the initial ultrastructural changes in basement
membrane, a characteristic feature of asthma-associated remodeling, were observed long
before the onset of clinical symptoms of disease. [47, 48] Accordingly, one could expect, that
EMTU hypothesis should be supported by some genetic background. Indeed, analysis of
genome-wide association has indicated the possible role of nucleotide polymorphisms of
metalloproteinases in increased susceptibility to asthma. [49] Among them, a significant
association with early onset of bronchial hyperresponsiveness and asthma was noted in case
of several polymorphic variants of ADAM33. [50] However, due to ethnic variability, the
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significance level of this association differs between analyzed populations. Noteworthy,
among analyzed polymorphisms of ADAM33, only T1, V4, T+1 and F+1 variants were found
to correlate with asthma in the general population [51], whereas other, including ST+7 or
haplotype H4, were characteristic solely for certain populations. [52, 53]

Furthermore, several groups have suggested correlation between increased risk of asthma
development and occurrence of some nucleotide polymorphisms in genes encoding for
“classic” matrix metalloproteinases, mainly MMP-9. The postulated associations concerned
single nucleotide polymorphisms (SNPs) of MMP-9 gene, located in promoter region (-1562C/
T), the substrate binding site in catalytic domain (279Q/R) and TIMP docking region of
hemopexin domain (574P/R and 668R/Q). [5, 54] However, majority of mentioned studies were
conducted in rather small groups, with various ethnic origins. Therefore, results of these
studies, although relevant, should be considered with some caution. Till now, based on studies
involving group of 4,000 children, only allele R of 279 SNP was confirmed as being associated
with significant increase of asthma risk. [54] On the other hand, some SNPs in MMP genes
may also be associated with eventual benefit for a patient. Recently, the mutant T allele of
MMP-2 promoter (-1306C/T) SNP, supposed to decrease MMP-2 production, has been
described as conferring significant protection against asthma in North Indian population. [55]

2.6.2. … or Dr. Jekyll ?

As already mentioned, research involving asthma patients, animal models and in vitro studies
provide strong support for “destructive hypothesis”. [56] MMPs are abundantly produced and
activated during acute and chronic asthma, and their level negatively correlates with lung
function. However, those observations should be interpreted with some caution, especially
since recent studies yielded some contradicting data. [57, 58] Based on these data an opposite,
or “protective hypothesis” has been formulated. According to this concept, MMPs are
responsible for cleavage of excessive amounts of ECM components, which are secreted in
response to inflammation-mediated damage of mucosa. [59] Therefore, MMPs are supposed
to protect mucosa from uncontrolled fibrosis, whereas their natural inhibitors – TIMPs
(especially TIMP-1), since they prevent cleavage of abnormal ECM deposits, would, paradox‐
ically, appear as key detrimental molecules in that system (Fig. 4). In fact, increased TIMP-1
concentrations in BAL were related to persistent wheezing in preschool children. [31] How‐
ever, an attribution of altered ECM turnover solely to MMPs activity or TIMPs concentration
seems to be unfounded simplification. Presumably, enhanced accumulation of matrix com‐
ponents results rather from imbalance between proteolytic activity of MMPs and anti-
proteolytic properties of TIMPs. Consequently, instead of absolute levels of MMPs or TIMPs,
their relative amounts, expressed as respective MMP/TIMP ratios, may be more relevant for
course of disease. Indeed, in several studies decreased MMP-9/TIMP-1 ratio was observed in
sputum, BAL and mucosal biopsies of adults and children with asthma. [60, 61] Moreover, it
was associated with the airflow aggravation and reduced airway lumen, observed in computed
tomography of asthmatic patients. [62] The low MMP-9/TIMP-1 ratio was also reported in
asthmatic smokers with persisted airflow obstruction and thickening of bronchial mucosa. [63]
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When considering protective role of MMPs in asthma and asthma-associated remodeling, their
main function concerns normalization of ECM turnover. However, one has to mention MMP-
mediated regulation of cell-to-cell and cell-to-ECM interactions, as well as their involvement
in cytokines/growth factors network. [56] As previously described, MMPs have been shown
to process some cytokines, including TGF-β and VEGF, but also cleave several cell surface
receptors, among them fibroblast growth factor (FGF) receptor 1 (FGFR1), CD44, or alpha
subunits of receptors for IL-2, -5 and -13. [56, 64–67] Possibly, MMPs could also reveal their
protective effect on asthma progression by interference with trafficking of immune cells and/
or shedding key receptors engaged in Th2 signaling, thus attenuating allergic inflammation.
This hypothesis was confirmed in murine models with MMP-deficient animals. Indeed, in mice
lacking MMP-2, -8, -9 or -19 an allergen challenge resulted in increased allergic inflammation
and airway hyperresponsiveness with augmented release of Th2 cytokines – IL-4, -5 and -13.
[65, 68–74] Interestingly, MMPs deficiency was also associated with delayed clearance of
immune cells from the airway. [68, 69, 71] This finding could be explained by involvement of
MMPs in conditioning of leukocytes. [71] The possible mechanism of that phenomenon may
exploit MMP-9-mediated cleavage of IL-2Rα subunit on the surface of T lymphocytes, which
results in down-regulation of their proliferative capacity and subsequent apoptosis. [75] Apart
from mentioned Th2 cytokines, MMPs may modulate inflammatory and immune response via
processing of CC and CXC chemokines. Metalloproteinases have been shown to cleave
macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant proteins (MCPs) –
MCP-2, -3, and -4. [76, 77]

The data mentioned above imply, that allergic inflammation and airway remodeling seem to
be intricately related to MMPs activity, since MMPs may represent key mediators, or rather
modulators, involved in vigorous crosstalk between airway constituent cells, invading
inflammatory cells, and the extracellular matrix. [78] From that point of view the idea con‐
cerning protective role of MMPs in asthma and asthma-associated remodeling seems to be
convincing. However, the issue becomes more complicated, when analyzing involvement of
MMPs in processing of ECM components and their direct input in airway destruction and
remodeling. Noteworthy, both concepts, “destructive” and “protective”, may be supported
by some clinical data. In fact, there is still reasonable doubt, whether MMPs reveal some

Fig. 4. Schematic representation of the “protective hypothesis”. Detailed description in text.
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similarity to Dr. Jekyll, or they are recognized rather unfriendly, like Mr. Hyde. However, in
addition to some philosophical background, this issue has also an outstanding practical
meaning, especially in context of possible pharmacological interventions in asthma-associated
remodeling, which may be addressed to modulate MMPs activity. Obviously, when favoring
“protective” role of MMPs, they would require some support to increase MMP/TIMP ratio. In
contrast, if considering the “destructive hypothesis” as more likely, an opposite action should
be undertaken. According to that concept, actually the inhibition of MMPs should provide
some benefit for patient. Therefore, univocal clarification of that issue is of great clinical
relevance.

2.7. MMP modulation — pharmacological interventions

Apart from previously mentioned (see chapter 2.4.2) endogenous or “physiological” inhibi‐
tors, several exogenous MMP modulators are also available. Noteworthy, in addition to few
agents originally designed as MMP inhibitors (e.g. batimastat or marimatsat), nowadays in
clinical practice are used many drugs, originally not intended to modulate MMPs activity. [3,
4, 10] The list of these agents is still expanding and includes tetracyclines, inhibitors of
angiotensin converting enzyme (ACE), inhibitors of cholesterol synthesis (better known as
statins), corticosteroids, etc. Some of them display direct inhibitory influence on MMPs activity
(tetracyclines, ACE inhibitors), whereas in others mechanism of their action is indirect and
more complex. Moreover, modulation of MMPs expression has been related to the use of
clarithromycin, imatinib, inhibitors of Rho-kinase, antagonists of VEGF receptors, as well as
inhibitors of some signaling pathways, including NF-κB, MAPK, and others (Fig. 5). [79–81]

Fig. 5. Schematic representation of main strategies for MMPs modulation. Detailed description in text.
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2.7.1. MMP inhibitors

The first group of broad-spectrum MMP inhibitors (batimastat, marimastat, ilomastat, etc.) is
based on hydroxamate derivatives. These small zinc ion chelators were originally developed
as anti-cancer drugs, and were expected to protect from cancer metastasis and tumor-related
angiogenesis. [82] In murine asthma model a treatment with these compounds (marimastat,
neovastat, GM6001, and others) was associated with reduced development of allergic inflam‐
mation, whereas in patients with atopic asthma these agents decreased bronchial hyperres‐
ponsiveness after allergen challenge. [68, 83, 84] However, due to low specificity, nearly all
first generation synthetic MMP inhibitors may reveal inhibitory activity against various zinc-
containing metalloproteins, including numerous non-MMP enzymes and transcription factors.
Therefore, due to reported severe adverse effects, including so-called musculo-skeletal
syndrome, mentioned compounds are currently withdrawn from the clinical practice.
Regrettably, also novel MMP inhibitors, designed to specifically target particular MMPs,
although encouraging in animal studies, did not ensure better safety and, most importantly,
satisfactory clinical efficacy in humans. [85–90] The possible explanation of unexpectedly low
clinical effectiveness of specific MMP inhibitors concerned compensatory induction of other
MMPs after specific down-regulation of the target one.

Noteworthy, some other strategies of MMPs inhibition include use of monoclonal antibodies
or anti-sense technologies. [3, 91] However, relatively high cost due to sophisticated techno‐
logical process, and parenteral route for administration are enumerated as main limitations
for development and broad use of these solutions.

2.7.2. Tetracyclines

Tetracyclines are natural antibiotics discovered in Streptomyces, which, apart from well defined
anti-microbial properties, may also reveal some other, non-antibiotic activities. Tetracyclines
may stabilize ECM turnover, presumably by direct inhibition of catalytic site of MMPs, but
also indirectly, by suppression of inflammatory cascade and modulation of MMPs expression.
[92] Indeed, anti-MMP properties of semi-synthetic tetracycline — doxycycline have been
reported in various clinical conditions, including adult periodontitis, abdominal aortic
aneurysm, atherosclerosis, autoimmune diseases and in cancer research. [93–96] Thus,
doxycycline has received a Food and Drug Administration approval as potent MMP inhibitor,
nevertheless its effect on asthma and asthma-associated remodeling still requires extensive
studies. Data available from animal studies are promising in terms of attenuated airway
hyperresponsiveness after allergen challenge and decreased airway inflammation. [97–99]
Moreover, it was observed that long-term administration of doxycycline together with
standard therapy was associated with significant improvement in lung function parameters
and possible reversal of remodeling in patients with chronic asthma. [100]

2.7.3. Statins

The inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, better
know as statins, are potent inhibitors of cholesterol biosynthesis. Due to their mechanism of
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action statins are currently used as standard constituent of primary and secondary prevention
of atherosclerosis and arterial insufficiency. In addition to decreasing serum cholesterol levels,
statins are know to exert various pleiotropic, cholesterol-independent effects. [3, 101] The latter
are mediated by inhibition of isoprenoids, which modulate the function of intracellular
signaling molecules. Thus, statins, among them lovastatin, cerivastatin, simvastatin, rosuvas‐
tatin, or pitavastatin, may reveal some anti-inflammatory activities, including inhibition of
MMPs. Therefore, they have been extensively studied mainly in cancer and cardiovascular
diseases. [102, 103] Recently, in a randomized controlled study atorvastatin has been shown
to significantly reduce sputum concentrations of acute inflammatory mediators, including
MMP-8 and -9, in smoking asthmatic patients. [104] Thus, statins, especially when combined
with standard therapy, may offer some protection from exacerbation and, possibly, airway
remodeling. Noteworthy, simvastatin was found to modulate TGF-β-induced mesenchymal-
epithelial transition of alveolar epithelial cells in vitro. Interestingly, simvastatin sufficiently
suppressed TGF-β to induce expression of connective tissue growth factor (CTGF) and MMP-2
and -9, but it failed to reverse TGF-β-induced morphological changes in epithelial cells. [105]
Therefore, although that observation could be a rationale behind the use of statins in preven‐
tion of subepithelial fibrosis and airway remodeling, this issue still requires further research.

2.7.4. Renin-Angiotensin System modulators

Another group of potential MMP modulators comprises several compounds designed to
control the function of the renin-angiotensin system (RAS). These agents, although originally
designed to manage arterial hypertension through the inhibition of angiotensin-converting
enzyme, appeared to be effective also against MMPs. The mechanism of their action is based
on dose-dependent, direct blockage of active site in catalytic domain of the enzyme. [3]
Interestingly, also antagonists of angiotensin II receptor were found to modulate MMPs
expression, possibly by inhibition of NF-κB pathway. [106] Since early clinical experience with
modulators of RAS may suggest their great potential in novel therapy of respiratory diseases,
these compounds are recently in focus of interest of several groups. [5, 107, 108]

2.7.5. Inhaled corticosteroids

Inhaled corticosteroids (ICS) are currently used as a standard treatment to control asthma
symptoms. However, it has to be determined, whether they can block or even reverse epithe‐
lial–mesenchymal transition and subepithelial fibrosis in the respiratory tract of asthmatic
patients. Noteworthy, decreased amounts of MMP-9 in reticular lamina of basement mem‐
brane have been recently shown to contribute to the beneficial effect of ICSs on epithelial–
mesenchymal transition in chronic obstructive pulmonary disease. [109] Unexpectedly, data
from clinical studies in asthmatic patients are limited and disappointing. [27, 110] In particular,
no significant decrease in levels and/or activity of MMP-9 was observed after prolonged
therapy with ICS in patients with asthma. [27, 111] This finding may suggest that inhaled
corticosteroids alone could not be as effective in preventing asthma-associated airway
remodeling, as postulated previously. [27, 110]
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In contrast to ICS alone, the improved control of asthma severity, possibly due to better
modulation of MMPs system, may be achieved by introducing a combination therapy, which
comprises ICS and long acting β-agonists (LABA). Although both, in vitro and in vivo studies,
confirmed superiority of combination therapy over ICS or LABA alone in this regard, they did
not determine exactly, how this combination may affect MMP levels. [112–114] Possibly, the
augmented effect of ICS-LABA combination can be, at least partially, explained by LABA
ability to modulate NF-κB signaling pathway. Thus, inhibition of NF-κB will result in de‐
creased expression of MMP-9 gene, as has been recently shown for ultra-LABA – indacaterol.
[115] Indeed, combination of ICS with LABA as both, maintenance and reliever therapy,
significantly reduced MMP-9 levels in induced sputum of asthmatic patients. [116, 117]
Remarkably, MMP-9 levels, observed in patients with asthma before and after combined
treatment with ICS and LABA, seem to reflect the intensity of airways remodeling, as they
revealed good correlation with bronchial wall thickening, visualized using high-resolution
computed tomography. [116]

2.7.6. Leukotriene-receptor antagonists

Leukotriene-receptor antagonists (LTRA) may be considered as an alternative to ICS as “first-
line asthma-controller therapy” or as “add-on therapy” in patients already receiving ICS.
Montelukast, most commonly used LTRA, was found to decrease the expression of MMP-9 in
activated eosinophils in vitro. [118] In children with asthma a treatment with LTRA resulted
in clinical improvement –reduction of symptoms and increase of peak expiratory flow, which
were associated with significant decrease of MMP-9 levels in plasma. [119] In experimental
asthma model in mice LTRA treatment was shown to reverse airway remodeling and de‐
creased airway hyperresponsiveness after allergen challenge. Again, mentioned improvement
correlated with decrease of MMP-2 and -9 levels in BAL fluid. [120]

3. Conclusions

Despite extensive studies focused on role of MMPs in asthma and asthma-associated remod‐
eling, our knowledge regarding this issue is still far from a satisfactory level. Since there is no
agreement among scientists regarding superiority of “destructive” or “protective” concept,
the clarification of “Dr. Jekyll or Mr. Hyde ?” issue seems to have outstanding clinical rele‐
vance, especially when considering possible pharmacological interventions. Regrettably, the
interpretation of results concerning exact place of MMPs in asthma pathogenesis may be
impeded by different methodology and various populations analyzed in these studies. Such
differences may certainly affect result of MMPs assessment across the studies. [57, 121] On the
other hand, these discrepancies can be ascribed to real differences in MMPs amount and/or
activity, depending on sample type and disease severity. Furthermore, local expression and
activity of individual MMPs may vary in different airway compartments, thus adding
complexity to the network of allergic inflammatory response. [61, 78, 122] Accordingly, the
distribution of MMP-2, MMP-9 and MMP-12 in bronchial wall was shown to differ between
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large and small airways. Moreover, it varied between healthy controls and patients with
asthma, and further changed depending on severity of disease. [61, 78]

Noteworthy, mentioned compartmental differences may be easily averaged for the entire
bronchial tree, especially when using site-unspecific samples, like induced sputum, BAL,
breath condensate and, obviously, serum or plasma. On the other hand, due to such averaging,
small local changes, although clinically relevant, may be disregarded. Therefore, further
research should focus on more precise assessment of distribution and activity of MMPs, the
balance between MMPs and their natural inhibitors, as well as association of those findings
with alterations in architecture and function of respiratory tract mucosa.
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