
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

9

Finite Element Mesh Decomposition Using
Evolving Ant Colony Optimization

Ardeshir Bahreininejad
Tarbiat Modares University

Iran

1. Introduction

Combinatorial optimization problems arise in many areas of science and engineering.
Unfortunately, due to the NP (non-polynomial) nature of these problems, the computations
increase with the size of the problem (Bahreininejad & Topping, 1996; Topping &
Bahreininejad, 1997).
Finite Elements (FE) mesh decomposition (partitioning) is a well known NP-hard
optimization problem and is used to split a computationally expensive FE mesh into smaller
subdomains (parts) for parallel FE analysis. Partitioning must be performed to ensure:

• Load balancing: for a mesh idealized using a single element type, then the number of
elements in each partition must be the same, and

• Inter-processor communication: the partitions must be performed so that the number of
nodes or edges shared between the subdomains is minimized to ensure that the
minimum inter-processor communication during the subsequent parallel FE analysis is
achieved (Topping & Bahreininejad, 1997; Topping & Khan, 1996).

Numerous methods have been used to decompose FE meshes (Farhat, 1988; Simon, 1991;
Toping & Khan, 1996; Topping & Bahreininejad, 1997).
For automatic partitioning of FE meshes, Farhat (1988) proposed a domain decomposition
method which is based on a greedy algorithm. The method provides FE mesh partitions in
relatively short duration of time. The division of a mesh with respect to assigning a certain
number of mesh elements to a mesh partition may be accomplished with simple arithmetic.
In this method, the partitions are created sequentially from an overall FE mesh until the
number of partitions become equal to the desired number.
Each FE element node is assigned a weight factor which is equal to the number of elements
connecting to that particular node. The inner boundary of a partition is defined as the
common boundary between two partitions. Two elements are considered to be adjacent if
they share a vertex (node). The number of elements per partitions is determined by the total
number of elements in the mesh, the number of different type of elements used in the mesh
(triangular, quadrilateral, etc.), and the number of required partitions. In the case of a single
type of elements, it is equal to the ratio between the total number of elements within the
mesh and the number of required partitions (Farhat, 1988).
Although Farhat’s method provides quick partitioning of FE meshes, the optimality of the
mesh partitions with respect to the number of interfaces between adjacent partitions is not

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 146

guaranteed. In addition, the resulting partitions by this method are sensitive to the elements
and node numbering of the FE mesh. Hence, for a given mesh topology, different solutions
may be found if different node/element numbering of mesh elements are used.
Simon’s method (1991) performs recursive bisection of FE mesh and uses eigenvector
information to determine the partitions which have an equal number of elements on each
side of the bisected mesh and have a minimum inner boundary. The rationale behind using
recursive bisection instead of dividing the mesh into N number of partitions in a single step
is based upon the following considerations:

• It is easier to bisect a graph rather than dividing it into more than two parts. The graph
is bisected such that the requirements of load balancing and the minimization of the
inner boundary nodes/edges between parts are effectively met for the two partitions.

• There is an aspect of parallelism within the recursive bisection. Initially a mesh may be
divided into two parts and then each of these parts may be worked upon in parallel to
form four partitions of the total mesh under consideration. Hence, the extent of
parallelism that may be employed increase exponentially with the increase in the
number of recursions.

The Simon’s method provides efficient partitions, however the main drawback is the
computational cost to reach a desired solution which increases nonlinearly with the increase
in the size of the mesh.
The Subdomain Generation Methods (SGM) proposed by Topping and Khan (1996) and
followed on by Topping and Bahreininejad (1997) presented a technique which incorporates
an optimization algorithm (genetic algorithms or Hopfield-type neural network) and a
trained multi-layered feedforward neural network based on the backpropagation algorithm
(Rumelhart et al., 1986; Pao, 1989; Topping & Bahreininejad, 1997) to decompose FE meshes.
The trained backpropagation neural network is used to estimate (predict) the number of
elements which will be generated inside every individual element of the (initial) coarse
mesh after mesh generation procedure is carried out. The estimated number of elements is
incorporated into the optimization algorithm (module) to decompose a coarse FE domain
rather than decomposing the fine mesh generated from the refinement of the initial mesh.
Ant Colony Optimization (ACO) is a type of algorithm that seeks to model the emergent
behaviour observed in ant colonies and utilize this behaviour to solve combinatorial
problems (Colorni, et al., 1991; Dorigo & Gambardella, 1997; Bonabeau, et al., 2000;
Maniezzo & Carbonaro, 2001). This technique has been applied to several problems, most of
which are graph related because the ant colony metaphor can be most easily applied to such
types of problems.
A hybrid optimization approach is presented here to solve the FE mesh bisection problem.
The algorithm incorporates several ACO features as well as local optimization techniques
using a recursive bisection procedure. The algorithm was tested on a FE mesh with refined
mesh sizes of 27155 triangular elements.
The chapter consists of an introduction to the ACO technique in Section 2. Section 3
describes how the ACO concept can be applied to FE mesh bisection. Local optimization
techniques have been presented to improve the solution quality of the ACO for FE mesh
bisection problem.
The predictive ACO bisection approach is described in Section 4 which uses a trained multi-
layered feedforward neural network based on the backpropagation algorithm. The trained
neural network is used to estimate the number of triangular elements that will be generated

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 147

after FE mesh generation (refinement) is carried out. Section 5 presents a recursive mesh
bisection case study using the proposed hybrid ACO and neural networks mesh recursive
bisection procedure. This FE mesh is also partitioned using a greedy FE mesh decomposing
algorithm proposed by Farhat (Farhat, 1988). The comparison between the obtained results
from the proposed hybrid ACO method and Farhat’s greedy algorithm is presented. Finally
conclusions are given in Section 6.

2. The Ant Colony Optimization Method

The ACO is a heuristic technique that seeks to imitate the behaviour of a colony of ants and
their ability to collectively solve a problem. It has been observed (Colorni, et al., 1991;
Dorigo & Gambardella, 1997; Bonabeau, et al., 2000; Maniezzo & Carbonaro, 2001) that a
colony of ants is able to find the shortest path to a food source. As an ant moves and
searches for food, it lays down a chemical substance called pheromone along its path. As the
ant travels, it looks for pheromone trails on its path and prefers to follow trails with higher
levels of pheromone deposits.
If there are two possible paths to reach a food source, as shown in Fig 1, an ant will lay the
same amount of pheromone at each step regardless of the path chosen (minor evaporation
of pheromone occurs during time). However, it will return to its starting point quicker when
it takes the shorter path which contains more pheromone. It is then able to return to the food
source to collect more food.
Thus, in an equal amount of time, the ant would lay a higher concentration of pheromone
over its path if it takes the shorter path, since it would complete more trips in the given time.
The pheromone is then used by other ants to determine the shortest path to find food as
described in (Dorigo & Gambardella, 1997; Bonabeau, et al., 2000).

Figure 1. The pheromone deposition of ants (shown as dots) and their pursuing of the
shortest path

The ACO technique has been successfully applied to the graph bisection problem by Bui
and Strite (2002). They utilized the idea of finding shortest paths and the idea of territorial
colonization and swarm intelligence in the ACO algorithms. Kuntz and Snyers (1994) and
Kuntz, et al. (1997) applied these concepts to a graph clustering problem. Their algorithm
combines the features of the ACO technique with swarm intelligence to form a model which
is an artificial system designed to perform a certain task. Their model referred to the

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 148

organisms as animats, (ant agents), reflecting the fact that the system draws ideas from
several sources and not just ant colonies. These ideas are important in the graph partitioning
problem because the graph can be viewed as territory to be colonized (Bui & Strite, 2002;
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).
The combination of these two ideas of animats following paths and forming colonies is used
to solve the FE mesh bisection problem using triangular elements. However, the proposed
ACO method can be used for the decomposition any graph based problem.

3. ACO for FE Mesh Bisection

The basic foundation of the ACO algorithm is to consider each (triangular) element in the FE
mesh as a location that can hold any number of animats. The animats can move around the
FE mesh by moving across (triangular) edges shared between two elements to reach a new
element. Each animat belongs to one of two species (e.g. species A and B). However, animats
of both species follow the same rules.
To start the algorithm, an initial number of animats are placed on the FE mesh. Their species
and location are chosen randomly. At any point throughout the algorithm, the configuration
of animats on the FE mesh constitutes a bisection of the mesh in the following way
(Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).
Each element is considered to be colonized by one species. At a given time, it is said to be
colonized by whichever species that has the greater number of animats on it. Any ties are
recorded and after the colonies of all other elements are calculated, the ties are broken in a
random order by assigning the element to the species which results in a lower cut-size
(inner boundary between bisections). The set of all elements colonized by species A
constitutes A’s colony and likewise the elements colonized by species B form B’s colony.
In addition, each element can hold a quantity of pheromone. The two species produce
separate types of pheromone, so an amount of A pheromone and/or B pheromone is left on
each element. The idea of the algorithm is for each species of animats to form a colony
consisting of a set of elements that are highly connected to each other while highly
disconnected from the other colony. The result should be two sets of elements that are
highly connected amongst themselves, but have few edges going between the two sets.
For an individual animat, the goal will be to lay down pheromone when the current element
is a good position for animats of its own species and to move to new elements that it wants
to add to its species’ colony. If each animat follows these goals, the result will be a
partitioning of the elements into two sets of similar size with few edges going between the
two sets. A greedy algorithm is also formulated which fine tunes the bisection obtained
from the ACO procedure.

3.1 ACO implementation

The ACO algorithm is an iterative procedure in which a percentage of animats are activated
in each of the iterations. When an animat is activated, it adds an amount of pheromone to
the element it is currently residing. It then may die with a certain probability or it may
reproduce with a certain probability and it will move to a new element.
These operations involve only local information known by the animat. The animat is
assumed to know the current time (i.e. iteration number), information about the element it is
located at (such as the number and species of other animats on that element), and

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 149

information about the elements adjacent to its location. The mesh is updated with the new
information after the completion every iteration.
The algorithm is divided up into S number of sets, each comprised of I number of iterations.
After each set is carried out, the configuration of the mesh is forced into a bisection using a
greedy algorithm (Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). During each set,
the parameters corresponding to the probabilities for activation, death and reproduction are
modified. The parameters are changed in such a way that at the beginning of a set, colonial
changes are high and by the end of the set the colonies should converged to a stable
configuration.
The next set begins at the state where the previous set ended. However, if the animats
follow their usual rules too soon, they may not be able to move away from the local
optimum that has been reached.
Therefore, for all, but the initial set, a shake is performed for a certain number of the first
iterations to help move the configuration, or distribution, of animats on the elements away
from the solution to which it had prematurely converged as described in (Bui & Strite, 2002;
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006). The shake allows animats to select
moves randomly instead of following the normal rules for movement. The length of the shake is
changed during the algorithm. The first shake lasts for a fixed number of iterations and for the
subsequent shakes, the length decreases linearly until the last set where no shaking occurs.
The bisection should come closer to the optimal bisection as the number of iterations
increases and consequently shorter and shorter shakes are needed. The length of the shake is
given by the following equation:

max
max

2

)2(
L

S

SL
L

total

i
shake +

−

−
= (1)

where Lmax is the maximum shake length, Si is the ith set and Stotal is the total number of sets.

3.1.1 Iteration and activation of animats

An iteration of the algorithm consists of a percentage of the animats being activated and
then performing the necessary operations in parallel. The probability of an animat being
activated changes during the set.
During the early iterations of a set, more animats are activated. By the end of a set, only a
small percentage of the animats are activated in all iterations. The more animats that are
activated in a single iteration, the larger the possible change in the configuration will be. The
actual probability of activation is a sigmoid-like function given as:

()
1

)1(2)4ln()(

1

1

−

+−

+

=

total

totaliI

I

III

e

a (2)

where Ii is the iteration number, Itotal is the total number of iterations. To prove the Equation
2, consider the sigmoid function for the backpropagation algorithm activation function (Pao,
1989) given as:

θ

bII
iI

e

a
−

+

=

1

1
)((3)

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 150

where b corresponds to the bias of the neural network and is the shape factor.
Considering the maximum (0.8) and minimum (0.2) values of the activation probability for

the first and the Itotal iterations respectively, chosen by the user and replacing them for)(iIa

in Equation 3, therefore:

)4ln(
1

=
−

θ

b
 (4)

)4ln(=
−

θ

bItotal (5)

Using Equations 4 and 5, b and are given by:

2

1+
= totalI

b (6)

())4ln(2

1−
= totalI

θ (7)

Replacing Equations 6 and 7 in Equation 3, hence Equation 2 will be obtained. The function
starts at a maximum and ends at a minimum. The maximum and minimum values are
defined values set by the user in an ACO configuration file.
After the activations of animats have been completed, a percentage of the pheromone on
each element is evaporated. Bui and Strite (2002) explain that the evaporation prevents
pheromone from building up too much and highly populated elements from being
overemphasized which in turn prevents the algorithm from converging prematurely. When
an animat is activated:

• It deposits pheromone on its current element,

• It dies or reproduces with a certain probability,

• It moves to another element.
These operations are performed by the animat using local information to make decisions.

3.1.2 Pheromone

The purpose of pheromone is to allow the algorithm to retain a memory of good
configurations that have been found in the past. Members of each species deposit their
pheromone on an element to indicate that this is a good configuration and more animats of
their species should come to this element.
The effect of pheromone on the overall performance of the algorithm is to control the
animats’ movements prohibiting them to set astray over the optimization domain, In other
words, pheromone is used a means to control animats’ movements throughout the
algorithm, thus enabling the optimization process to move towards a solution.
When an animat is activated, it determines the colonization percentage of its adjacent
elements. If the FE mesh element is highly connected to elements colonized by the animat’s
species, then the animat knows that this element is a good candidate for being colonized by
its own species. The animat then attempts to reinforce this element by depositing a larger
amount of its pheromone.
However, if the animat determines that the element is not highly connected to elements
colonized by its own species, it will lay down less pheromone to discourage more of its

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 151

species to come to this element. In addition, the animats place lesser amounts of pheromone
in the early iterations and more pheromone in later iterations.
The reason for this is that, in early iterations more change is needed. This allows the animats
to explore more of the search space in the beginning and to exploit more of their current
configuration near the end.
There is also a limit to the amount of pheromone of each species that can be stored on an
element. The limit for the amount of pheromone for an element is the product of the
connectivity degree of that element to its adjacent elements and the pheromone limit
parameter. This allows densely connected elements to accumulate more pheromone. The
formula for the amount of pheromone to be deposited is given as:

total

i

total

col
i

I

I

a

a
Iaph =),((8)

where a is the animat, acol is the number of elements adjacent to the animat’s current location
which are colonized by the animat’s species, and atotal is the total number of elements
adjacent to the animat’s current location.

3.1.3 Death

The animat will die with a death probability which is fixed throughout the algorithm. The
main purpose of death is to avoid overpopulation of animats. Overpopulation may
influence the speed of computations. In addition, death can manipulate the algorithm’s
configurations by adding changes to animat’s species.
The activation probability changes throughout the set so that early in a set, more animats are
activated and therefore more animats die early in the set. The purpose of this is to have
shorter life spans in the beginning, which allows more changes in the configuration. Later in
the set, the animats are allowed to live longer and thus, there is less change and the solution
is able to converge. An animat is removed from the list if it is selected to die.

3.1.4 Reproduction

If an animat is not selected for death, the algorithm proceeds to the reproduction step. An
animat is selected for reproduction with fixed reproduction probability. However, the
number of new animats that are produced depends on time (iterations).
In the first iteration of a set, the average number of animats born is init and it decreases
linearly over time to final in the last iteration of a set. The changing birth rate serves to allow
more change in earlier iterations, in which animats live for shorter lengths of time. The
number of animats born is defined by:

init
total

iinitfinal

I

I
β

ββ
β +

−

−−−
=

)1(

)1)((
 (9)

The actual number of animats born is selected uniformly at random over a range, centered
on the average birth rate for the iteration. The number of animats born can be up to range

more or less than the specified average. The range is usually taken as 50 percent (Pao, 1989,
Bahreininejad, 2004; Bahreininejad & Hesamfar, 2006).
New animats are the same species as their parents. If the element on which the parent is
located is colonized by its own species, the newly born animats are all placed on that

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 152

element. However, if the element is colonized by the opposite species, only stay percent of
the offspring animats are placed there. The remaining new animats will be placed on the
element to which the parent animat moves in the next step.
The justification for this is that, if the parent animat is already at an element populated by its
own colony and moves to another element, it should leave its offspring behind to help
maintain the majority on that element. If the parent’s species is not in majority, it should
take most of its children to the new element in which it is trying to create a colony.
However, the parent leaves some of its offspring behind so that some of its species remain at
that element (in case that element really should be part of their colony).
There are two other constraints on reproduction. First, there is a limit of limit to how many
offspring an animat can produce during its lifetime. This value is fixed throughout the
algorithm and is the same for each animat. Once the limit is reached, the animat can no
longer reproduce. This serves to prevent one species from taking over the entire FE mesh
and forcing the other species into extinction.
Another problem arises when an animat reproduces and places all of its children on its
current element. Once one of the children is activated, it will in turn reproduce and deposit
more children on the same element before moving.
This overemphasizes that element and does not allow the colonies to change much from
their original starting configuration. Because of this, animats are not able to reproduce until
they have made a fixed minimum number of moves. This ensures that the mesh is explored
and that new configurations are created by the reproduction and movement rather than
being inhibited by these operations.
Therefore, the main aim of reproduction is to encourage the species of animats which have
colonized an element. This can influence the rate of convergence of the overall algorithm.

3.1.5 Movement

Movement is by far the most important operation the animats perform. The animats’
movement is the main mechanism by which the solution is produced. The animat can move
to any element which is connected to its current location by an edge. There are two factors
used to select a move from the set of possible moves. For each element to which the animat
could move, the connectivity to other elements is examined. The animat should move to an
element that is highly connected to other elements colonized by its own species. In addition,
the animat should learn from the past and take into account the pheromone that other
animats have deposited.
Throughout the course of a set, these two factors are weighted differently. Initially, the
pheromone is weighted at pmin with the weight increasing linearly to pmax. Conversely, the
connectivity is weighted at cmax to begin and decreases linearly to cmin. In this way, the
configuration of the colonies changes greatly in early iterations and over time, learning is
incorporated into the algorithm.
These basic factors drive the animats to create colonies of highly connected elements which
are highly disconnected from the elements colonized by the opposing species. These factors
are the basis of move selection.
The probability of moving to an adjacent element is proportional to the two combined
factors. Specifically, the factors are combined according to Equation 10 to create a
probability of moving to a specific element e.

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 153

ε++= pc peceepr)((10)

where ec is the number of elements adjacent to e that are colonized by the animat’s own

species, c is the connectivity weight where maxmin cc c ωω ≤≤ , ep is the amount of pheromone

of the animat’s species on element e, p is the pheromone weight where maxmin pp p ωω ≤≤ ,

and is a fixed amount added to prevent any probabilities from being zero. The values of c
and p are given by the following equations:

max
minmax

1

)1)((
c

total

icc

I

I
c ω

ωω
+

−

−−
= (11)

max
minmax

1

)1)((
p

total

ipp

I

I
p ω

ωω
+

−

−−
= (12)

In order to encourage animats to explore more of the FE mesh, the probability of selecting
the move which would result in the animat returning to its previous location is reduced. A
factor is used and initialized by a defined value and decreases linearly after the completion
of each set until it reaches zero in the final set.
Therefore, animats move in order to find suitable locations to colonize their species. The
movement is aimed to find locations (elements) for colonization so that such locations are
highly connected while highly disconnected from the locations of the colonization of other
animat’s species. This is the main purpose of the ACO algorithm for partitioning graphs.

3.1.6 Between the sets

After each set of iterations, several other operations are performed based on the history of
animates activities.
First, the algorithm looks for mistakes the animats have made. The algorithm looks for
individual elements with a high percentage of their adjacent elements colonized by the
opposite species. Therefore an element colonized by spices A having a high percentage of it
adjacent elements colonized by species B is swapped to the B colony.
Next the algorithm looks for any discontinuities which may be generated during each set. In
each set the program swaps the smallest discontinuous colonization of each species. This is
carried out using a recursive greedy optimization procedure (Bahreininejad, 2004;
Bahreininejad & Hesamfar, 2006) which will be discussed further. As was discussed earlier,
any given configuration of animats on the FE mesh does not necessarily induce bisection.
Therefore, if one species is colonizing more elements than the other, some elements will be
swapped to the other species. The elements to be swapped are selected from the set of border
elements, that is, elements that are adjacent to an element of the opposite colony. By
changing the colony of only border elements, the algorithm continues in the direction the
animats were heading, rather than selecting elements in a region that is completely
dominated by one species and creating an irregularity. Elements are selected to be swapped
by making the greedy choice from amongst the border elements. This is carried out, for
triangular elements, according to the pseudo code procedure shown in Table 1.
After each element is selected, the swap is performed and the subsequent choices are made
based on the new configuration of the colonies. At this point, the two colonies form
bisection and this information is recorded.

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 154

WHILE
Number of elements in colony A is not equal to number of elements in colony B

DO
BEGIN

Swap border elements of colony with greater number of elements based on
priority rules
Priority Rules

First, randomly swap elements with two edges in boundary and will result in
one edge in boundary after swapping
Second, randomly swap elements with one edge in boundary and will result
in one edge in boundary after swapping
Third, randomly swap elements with one edge in boundary and will result in
two edges in boundary after swapping

END

Table 1. The pseudo rules for the element swap procedure

Now, if this was not the final set, the mesh and population is prepared to start a new set by
performing two more manipulations. The number of animats on the mesh may differ from
the initial number of animats of both species. Usually after a set, the number of animats is
higher than the initial number. The problem with this is that, if it continues, the number of
animats grows so large that the computations become prohibitively expensive (since a
percentage of animats are activated in each of the iterations). To correct this, the number of
animats is reduced to the initial number. This is carried out by randomly removing animats
until the correct population size is reached. This disruption of the colonies is negligible since
each new set begins with a shake anyway.
Finally, the number of animats in the two species is equalized. Normally the number of
animats in each species is quite close, since the colonies have been forced into bisection.
However, this may not always be the case. The bisection may not guarantee that the two
species have the same number of animats. To improve this possible problem, animats are
added to equalize the number of animats in each species. Usually this is a very small
number and thus is not problematic in consideration of the previous operation (reducing the
number of animats to the initial number). The new animats are added only to elements
where their own species is already in majority. Thus, this operation does not significantly
alter the configuration of the colonies; it merely gives added strength to the colonies in
which animats are added.
Following this operation, a new set is begun. Again, the time (iteration) is initialized and all
probabilities relating to time are reset. Therefore, as the animats have converged on a
possible solution, starting a new set allows the animats to move away from that solution in
expectation of finding a better solution in case this solution was a local optimum. After a
total of specified sets have been completed, the solution should represent partitioning with
minimum cut-size.

3.2 Greedy algorithm for partition enhancement

The ACO algorithm should ensure the minimum cut-size and balanced partitions. However,
sometimes discontinuous partitions may be developed where islands of partitions are
generated (e.g. a domain is bisected and three partitions are generated where one of the

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 155

partitions is composed of two separate partitions). A recursive greedy algorithm is used to
improve the partition solutions given by the ACO and will swap the smallest generated
discontinuity in each set.
 The algorithm consists of two major parts. Initially, it searches and identifies each
discontinuity. This is carried out by means of a recursive procedure which calls itself in
order to give an index to an element and all its adjacent elements with similar spices.
Therefore, when an element colonized by one of the spices has been given an index, all its
adjacent elements with the same species will also get the same index. This scheme is
illustrated according to the pseudo code procedure shown in Table 2. The procedure in
Table 2 is used by another procedure to index all the mesh elements using different index
for each partition. This scheme is shown in Table 3.
After that the algorithm will swap the colonization of the smallest generated discontinuity
with the colonization of other species in each set. This is carried out according to the pseudo
code procedure shown in Table 3. Table 4 presents the pseudo code procedure for the
proposed ACO-based algorithm for FE mesh recursive bisection.

3.3 Flying ants

Another approach to deal with cases where discontinuous partitions may occur was to
assume that ants (animats) are able to fly which agrees with flying ants present in nature.
This is especially true when a colony of ants may become localized and surrounded by ants
of other colony and ants in the localized colony will find it impossible to search for better
places to colonize.

Procedure GiveIndex(i)
BEGIN

index of element i = index
FOR k = 1 to Number of adjacent
 elements of element i
IF colonization of adjacent element k = colonization of element i
THEN
 GiveIndex(adjacent element k)

END

Table 2. The pseudo code for indexing an element of a discontinuity and all its adjacent
elements with the same colonization

FOR I = 1 to NumElements do
 IF index of Element i = 0
 THEN
 BEGIN
 index = index + 1
 GiveIndex(i)
 END
Determine the index which refers to a discontinuity with smallest number of elements
in each species.
Swap the colonization of elements correspond to that index.

Table 3. The pseudo rule for indexing all the mesh elements using different indexing scheme
and swapping process of the smallest discontinuity

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 156

This brings the idea of using flying ants approach to prevent ants getting stuck in
localizations. In this approach, all the animats are capable of flying from the beginning of
the optimization. The moving probability is determined using Equation (3) except that all
the elements in the mesh are considered.
The animats can fly to the element with the highest moving probability in the mesh.
However, the animats which already exist in the element with the highest moving
probability prior to the arrival of new animats will have to move to the element with the
second highest moving probability. This process is carried out by both spices of animats.
The animats continue searching for better elements to colonize.

4. Neural Network Predictor

The Subdomain Generation Methods (SGM) proposed by Topping and Khan (1996) and
followed on by Topping and Bahreininejad (1997) presented a technique which incorporates
an optimization algorithm (genetic algorithms or Hopfield-type neural network) and a
trained multi-layered feedforward neural network based on backpropagation algorithm.
The trained backpropagation neural network is used to estimate the number of elements
which will be generated inside every individual element of the coarse mesh after mesh
generation procedure is carried out.
The estimated number of elements is incorporated into the optimization algorithm to
decompose a coarse FE domain rather than decomposing the fine mesh generated from the
refinement of the initial mesh.
A backpropagation-based multi-layered network with 5-12-8-6-1 (five units in intput layer,
12 units in the first hidden layer, 8 units in the second hidden layer, 6 units in the third
hidden layer and finally one unit in the output layer) topology was adopted and trained
which is capable of estimating a number up to 1760 triangular elements corresponding to
the generated elements after mesh refinement is carried out.
The inputs to this network are the three scaled side lengths of each triangular element and
the two scaled mesh parameters of each element. The scaling was made using one of the
three mesh parameters (Topping & Bahreininejad, 1997).
The predicted number of elements generated in each element of the coarse mesh after mesh
refinement, is used after the last set is completed. This information is used in a greedy
algorithm which forces the solution to a bisection considering the same priority rules
presented in Section 3.2.
The original SGM method partitions a FE mesh based on the coarse mesh using genetic
algorithms (Topping & Khan, 1996). The generated subdomains are then refined
individually using adaptive mesh refinement procedure.
In most cases, it has been observed that the total number of elements generated by the
refinement of individual subdomains may not be the same as the total number of elements
generated after the mesh refinement of the initial coarse mesh.
The presented method partitions the coarse mesh based on ACO and the SGM neural
predictor approach and the resulting subdomains are mapped onto the final refined mesh.

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 157

BEGIN
 Randomly add animats to the mesh
 FOR Set = 1 to S
 BEGIN
 FOR iteration = 1 to I
 BEGIN
 FOR animat = 1to N
 BEGIN
 Activate e(iteration)% of animats
 Determine degree of species in each element
 IF animat activated
 BEGIN
 Add ph(animat, iteration) pheromone to animat’s location
 Kill rd% of animats of elements
 IF animat is not chosen for death
 BEGIN
 IF animat meets reproduction criteria
 BEGIN
 rr% of animats reproduce
 ENDIF
 IF iteration is in shake length
 BEGIN
 Move animats randomly
 ELSE
 Move based on pheromone and connectivity
 ENDIF
 ENDIF
 ENDIF
 ENDFOR
 Evaporate Y% of pheromone
 ENDFOR
 Look for mistakes and swap elements
 Run the greedy algorithm to reduce discontinuities
 Record the bisection solution
 Reduce total number of animats to the initial value
 Equalize the number of animats in each species
 ENDFOR
 Return the best solution
END

Table 4. The pseudo rules for the proposed ACO algorithm for FE mesh decomposition

5. ACO Partitioning Case Study

A case study is presented to illustrate the ACO-based optimization approach for recursive
FE mesh bisection. The optimization procedure is based on flying ants ACO using the neural

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 158

network predictor. This method was compared with a greedy algorithm for partitioning FE
meshes by Farhat.
The case study was carried out on a PC with Intel Pentium III 500 MHz processor. Twenty
simulation runs were conducted and Table 5 represents the ACO parameters adopted for
the final solutions. The computation times were less than 20 seconds for the proposed
method and 38 seconds for the Farhat’s method.
In this case study, an inverted U-shaped domain shown in Fig 2 was used for partitioning
the domain into eight subdomains.
Fig 3 represents the resulting partitioned mesh by recursively bisecting the coarse mesh into
eight subdomains using the proposed method. Fig 4 represents the partitioning of the
refined mesh into eight subdomains using Farhat’s method.
Table 6 shows the cut-size and the number of elements in each partition after recursive
bisection using the proposed approach.
Table 7 shows the result obtained from the mesh decomposition into eight subdomains
using Farhat’s method.
The imbalance between the actual and the desired number of elements in each generated
subdomain using the ACO method is shown in Table 6.

Parameter Value

Number of iterations per set 100

Number of sets 10

Maximum shake length 5

Initial number of animats 100

Number of moves needed before an animat can reproduce 2

Maximum number of offspring per animat 10

Average number of animats born in first iteration 4

Expected number of animats born in final iteration 2

Minimum pheromone weight 0

Maximum pheromone weight 1

Minimum connection weight 250

Maximum connection weight 500

Pheromone limit 1000

Percentage range from average number of animats born 0.5

Maximum activation probability 0.8

Minimum activation probability 0.2

Death probability 0.035

Reproduction probability 0.011

Minimum probability for moving to an element 0.1

Reduction factor for returning to previous location 0.9

Percentage of offspring that stay on old location when not colonized 0.2

Percentage of adjacent elements needed for swap 0.75

Percentage of animats needed for majority 0.9

Evaporation rate 0.2

Table 5. Ant colony optimization run-time parameters

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 159

The load imbalance problem may have occurred from the inaccuracy of the predictive
neural network to closely estimate the number of elements which will be generated in a
single element of the coarse mesh after mesh refinement is carried out. A better trained
neural network may improve the quality of the solutions.

Figure 2. The initial mesh with 75 elements and the final refined mesh with 27155 elements

Figure 3. The initial coarse mesh and the final mesh devided into 8 subdomains using the
proposed method

The imbalance of elements shown in Table 6 may not pose a serious threat. In fact, this may
be used advantageously on coarse grained parallel networked computers where system

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 160

architecture and the computational load among machines may differ (heterogeneous
environment).

Figure 4. The the final mesh devided into 8 subdomains using the Farhat’s method where
the disjointed subdomains are shown with the arrows

On the other hand, Farhat’s method offers the best load balancing results while producing a
large number of interfacing edges. In parallel FE computations, the number of interfacing
edges imposes a great deal of inter-processor communications. Thus the efficiency of
parallel computations can greatly depend of lower cut-size (interfacing edges/nodes)
between the subdomains. The proposed ACO method can produce much more appealing
cut-sizes which reduces the inter-processor communications during parallel FE
computations while producing satisfactory load balancing between partitions.

Subd. Number Num. of elements Desired num. of elements Diff.

1 3266 3394.375 -128.375

2 3907 3394.375 512.625

3 3604 3394.375 209.625

4 3243 3394.375 -151.375

5 3881 3394.375 486.625

6 3400 3394.375 5.625

7 3153 3394.375 -241.375

8 2701 3394.375 -693.375

Total number of interfacing edges 370

Table 6. Comparison between the desired and the obtained number of elements in each
subdomain and the number of interfacing edges using the proposed method

Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization 161

Subd. Number Num. of elements Desired num. of elements Diff.

1 3395 3394.375 0.625

2 3395 3394.375 0.625

3 3395 3394.375 0.625

4 3395 3394.375 0.625

5 3395 3394.375 0.625

6 3395 3394.375 0.625

7 3395 3394.375 0.6255

8 3390 3394.375 -4.375

Total number of interfacing edges 1234

Table 7. Comparison between the desired and the obtained number of elements in each
subdomain and the number of interfacing edges using Farhat’s method

6. Conclusions

The application of ant colony optimization using swarm intelligence concepts, in
combination with a trained feedforward neural network predictor which estimates the
number of elements which will be generated within each element of the (initial) coarse mesh
after mesh refinement is carried out, to the recursive bisection of finite elements meshes was
described. This algorithm combines the features of the classical ant colony optimization
technique with swarm intelligence to form a model which is an artificial system designed to
perform a certain task. This model is used to solve the finite elements mesh recursive
bisection problem which should ensure the minimum cut-size between bisections while
maintaining balanced bisections.
A recursive greedy algorithm is also presented to improve the partition solutions given by
the ant colony optimization algorithm and will swap the smallest generated discontinuity in
each set of partitions.
A trained feedforward neural network predictor is used to estimate the number of elements
which will be generated within each element of the coarse mesh after mesh refinement is
carried out. This information is used to partition a coarse mesh using the proposed method
based on the estimated number of elements after mesh refinement is conducted (i.e.
partitioning is not carried out on the final refined mesh. The optimization method uses the
estimated number of elements which will be generated after mesh generation is carried out
and partitions the coarse mesh.)
The presented case study demonstrates the efficiency of the proposed method in
comparison with a well known mesh decomposing algorithm. The predictive ant colony
optimization technique produced good-quality solutions in short period of time.

7. References

Bahreininejad, A. & Topping, BHV. (1996). Finite element mesh partitioning using neural
networks. Advances in Engineering Software, 27, 103-115

Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 162

Bahreininejad, A. (2004). A hybrid ant colony optimization approach for finite elements
mesh decomposition. Structural and Multidisciplinary Optimization, 28, 5, 307-316

Bahreininejad, A. & Hesamfar, P. (2006). Subdomain generation using emergent ant colony
optimization. Computers & Structures, 84, 1719-1728

Bonabeau, E.; Dorigo, M. & Theraulaz, G. (2000). Inspiration for optimization from social
insect behavior. Nature, 406, 39–42

Bui, TN. & Strite, LC. (2002). An ant system algorithm for graph bisection. GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference, USA, Morgan
Kaufmann, 43-51

Colorni, A.; Dorigo, M. & Maniezzo, V. (1991). Distributed optimization by ant colonies.
Proceedings of the first European Conference on Artificial Life, USA, 134–142

Dorigo, M. & Gambardella, L. (1997). Ant colony system: a cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation. 1, 1,
53–66

Farhat, C. (1988). A simple and efficient automatic FEM domain decomposer. Computers and
Structures, 28, 5, 579-602

Kuntz, P. & Snyers, D. (1994). Emergent colonization and graph partitioning. Proceedings of
the Third International Conference on Simulation of Adaptive Behavior: From Animals to
Animats, 494–500

Kuntz, P.; Layzell, P. & Snyers, D. (1997). A colony of ant-like agents for partitioning in VLSI
technology. In: Proceedings of the Fourth European Conference on Artificial Life, 417-424

Maniezzo, V. & Carbonaro, A. (2001). Ant colony optimization: an overview. Essays and
surveys in metaheuristics, Kluwer Academic Publishers, 21–44

Pao, YH. (1989). Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, USA
Rumelhart, DE.; Hinton, GE. & Williams, RJ. (1986). Learning internal representation by

error propagation. Parallel distributed processing: explorations in the microstructure of
cognition, Rumelhart, DE. & McClelland, JL. (Eds.), MIT Press, USA, 1, 318-362

Simon, H.D. (1991). Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2, 2-3, 135-138

Topping, BHV. & Bahreininejad, A. (1997). Neural Computing for Structural Mechanics, Saxe-
Coburg, UK

Topping, BHV. & Khan, AI. (1996). Parallel Finite Element Computations, Saxe-Coburg, UK

Swarm Intelligence, Focus on Ant and Particle Swarm Optimization

Edited by FelixT.S.Chan and Manoj KumarTiwari

ISBN 978-3-902613-09-7

Hard cover, 532 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In the era globalisation the emerging technologies are governing engineering industries to a multifaceted state.

The escalating complexity has demanded researchers to find the possible ways of easing the solution of the

problems. This has motivated the researchers to grasp ideas from the nature and implant it in the engineering

sciences. This way of thinking led to emergence of many biologically inspired algorithms that have proven to

be efficient in handling the computationally complex problems with competence such as Genetic Algorithm

(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), etc. Motivated by the capability of

the biologically inspired algorithms the present book on "Swarm Intelligence: Focus on Ant and Particle Swarm

Optimization" aims to present recent developments and applications concerning optimization with swarm

intelligence techniques. The papers selected for this book comprise a cross-section of topics that reflect a

variety of perspectives and disciplinary backgrounds. In addition to the introduction of new concepts of swarm

intelligence, this book also presented some selected representative case studies covering power plant

maintenance scheduling; geotechnical engineering; design and machining tolerances; layout problems;

manufacturing process plan; job-shop scheduling; structural design; environmental dispatching problems;

wireless communication; water distribution systems; multi-plant supply chain; fault diagnosis of airplane

engines; and process scheduling. I believe these 27 chapters presented in this book adequately reflect these

topics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ardeshir Bahreininejad (2007). Finite Element Mesh Decomposition Using Evolving Ant Colony Optimization,

Swarm Intelligence, Focus on Ant and Particle Swarm Optimization, FelixT.S.Chan and Manoj KumarTiwari

(Ed.), ISBN: 978-3-902613-09-7, InTech, Available from:

http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/finite_

element_mesh_decomposition_using_evolving_ant_colony_optimization

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

