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Abstract

The Planck system of units has been recognized as the most fundamental such
system in physics ever since Dr. Max Planck first derived it in 1899. The Planck
system of units in general, and especially the Planck power in particular, suggest
a simple and interesting cosmological model. Perhaps this model may at least to
some degree represent the real Universe; even if it does not, it seems interesting
conceptually. The Planck power equals the Planck energy divided by the Planck
time, or equivalently the Planck mass times c2 divided by the Planck time. We show
that the nongravitational mass-energy of our local region (L-region) of the Universe
is, at least approximately, to within a numerical factor on the order of 2, equal to the
Planck power times the elapsed cosmic time since the Big Bang. This result is shown
to be consistent, to within a numerical factor on the order of 2, with results obtained
via alternative derivations. We justify employing primarily L-regions within an
observer’s cosmological event horizon, rather than O-regions (observable regions)
within an observer’s cosmological particle horizon. Perhaps this might imply that as
nongravitational mass-energy leaves the cosmological event horizon of our L-region
via the Hubble flow, it is replaced at the rate of the Planck power and at the expense
of negative gravitational energy. Thus the total mass-energy of our L-region, and
likewise of all L-regions, is conserved at the value zero. Some questions concerning
the Second Law of Thermodynamics and possible thwarting of the heat death of
the Universe predicted thereby, whether via Planck-power input or via some other
agency, are discussed.

Keywords: Planck system of units, L-regions (local regions), O-regions (observable
regions), comoving frame, Second Law of Thermodynamics, heat death, Planck
power versus heat death, low-entropy boundary conditions versus heat death,
kinetic versus thermodynamic control, kinetic control versus heat death, minimal
Boltzmann brains, extraordinary observers.
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Abstract

The Planck system of units has been recognized as the most fundamental such
system in physics ever since Dr. Max Planck first derived it in 1899. The Planck
system of units in general, and especially the Planck power in particular, suggest
a simple and interesting cosmological model. Perhaps this model may at least to
some degree represent the real Universe; even if it does not, it seems interesting
conceptually. The Planck power equals the Planck energy divided by the Planck
time, or equivalently the Planck mass times c2 divided by the Planck time. We show
that the nongravitational mass-energy of our local region (L-region) of the Universe
is, at least approximately, to within a numerical factor on the order of 2, equal to
the Planck power times the elapsed cosmic time since the Big Bang. This result is
shown to be consistent, to within a numerical factor on the order of 2, with results
obtained via alternative derivations. [We justify employing primarily L-regions
within an observer’s cosmological event horizon, rather than O-regions (observable
regions) within an observer’s cosmological particle horizon.] Perhaps this might
imply that as nongravitational mass-energy leaves the cosmological event horizon
of our L-region via the Hubble flow, it is replaced at the rate of the Planck power
and at the expense of negative gravitational energy. Thus the total mass-energy
of our L-region, and likewise of all L-regions, is conserved at the value zero. Some
questions concerning the Second Law of Thermodynamics and possible thwarting of
the heat death of the Universe predicted thereby, whether via Planck-power input or
via some other agency, are discussed. We then give a brief review of the Multiverse,
and of some alternative viewpoints.

Keywords: Planck system of units, L-regions (local regions), O-regions (observable
regions), comoving frame, Second Law of Thermodynamics, heat death, Planck
power versus heat death, low-entropy boundary conditions versus heat death,
kinetic versus thermodynamic control, kinetic control versus heat death, minimal
Boltzmann brains, extraordinary observers.
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1. Introduction

In Sect. 2 we define and distinguish between local regions (L-regions) within an observer’s
cosmological event horizon and observable regions (O-regions) within an observer’s
cosmological particle horizon, of the Universe, and justify primarily employing L-regions. In
Sect. 3 we discuss the importance of the Planck system of units, which has been recognized
as the most fundamental such system in physics ever since Dr. Max Planck first derived it in
1899. We then consider a possibly important role of the Planck system of units, especially
of the Planck power, in cosmology. Perhaps the ensuing cosmological model may at least to
some degree represent the real Universe; even if it does not, it seems interesting conceptually.
The Planck power equals the Planck energy divided by the Planck time, or equivalently the
Planck mass times c2 divided by the Planck time. In Sect. 3 we show that the nongravitational
mass-energy of our local region (L-region) of the Universe is, at least approximately, to within
a numerical factor on the order of 2, equal to the Planck power times the elapsed cosmic time
since the Big Bang. This result is shown to be consistent, to within a numerical factor on
the order of 2, with results obtained via alternative derivations. We consider the possible
inference that as nongravitational mass-energy leaves the cosmological event horizon of our
L-region via the Hubble flow, it is replaced at the rate of the Planck power and at the
expense of negative gravitational energy. The problem of consistency with astronomical
and astrophysical observations is discussed in Sect. 4. In Sects. 3 and 4 we consider only
nonoscillating cosmologies (except for brief parenthetical mentions of oscillating ones in
the second-to-last paragraph of Sect. 4). In Sects. 5–8 we consider both nonoscillating and
oscillating cosmologies. Some questions concerning the Second Law of Thermodynamics
and possible thwarting of the heat death predicted thereby are discussed with respect to the
Planck power in Sect. 4, with respect to cosmology in general and minimal Boltzmann brains
in particular in Sect. 5, with respect inflation to in Sect. 6, and with respect to kinetic versus
thermodynamic control in Sects. 4 and 7. (We discuss possible thwarting of the heat death
with respect to kinetic versus thermodynamic control mainly as regards the Planck power in
particular in Sect. 4 but more generally in Sect. 7.) A brief review concerning the Multiverse,
and some alternative viewpoints, are given in Sect. 8.

2. L-regions and O-regions

In this chapter we will consider primarily local regions or L-regions of the Universe rather
than observable regions or O-regions [1] thereof, although we will also consider O-regions as
necessary [1].1 We now define and distinguish between L-regions and O-regions, and justify
primarily employing L-regions, as opposed to O-regions only occasionally, as necessary [1].
Let R be the radial ruler distance or proper distance [2] to the boundary of our L-region, that
is to our cosmological event horizon [3], where the Hubble flow is at c, the speed of light in
vacuum; beyond this horizon it exceeds c. Thus if the Hubble constant H (τ) does not vary
with cosmic time [4,5] τ and is always equal to its present value H0, then light emitted at
the present cosmic time [4,5] τ0 by sources beyond our cosmological event horizon [2,3] and
hence beyond our L-region can never reach us. Likewise, light emitted at the present cosmic
time [4,5] τ0 by us can never reach them. Also, if the Hubble constant H (τ) does not vary
with cosmic time [4,5] τ and is always equal to its present value H0, then our cosmological
event horizon [2,3] is always at fixed ruler distance R0 = c/H0 away and hence our L-region

1 (Re: Entry [1], Ref. [1]) In Ref. [1] observable regions of the Universe are referred to as O-regions for short. We have
followed this notation with respect to both O-regions and local regions (L-regions) in this chapter, with L-regions
being of primary interest to us.
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of the Universe is always of fixed size. [We denote the value of a given quantity Q today (at
the present cosmic time τ0) by Q0 and its value at general cosmic time τ by Q (τ).]

Light emitted at past cosmic times τ < τ0 (but not too far in the past) by sources now
beyond (but not too far beyond) our cosmological event horizon [R0 = c/H0 always if
H (τ) = H0 always] and hence beyond our L-region but still within our O-region [1–3] can
reach us, because when this light was emitted these sources were still within our L-region.
Likewise, light emitted in the past τ < τ0 (but not too far in the past) by us can reach them.
The boundary of our O-region of the Universe is our cosmological particle horizon [1–3].
The boundary of our O-region (our cosmological particle horizon) is further away than the
boundary of our L-region (our cosmological particle horizon) [1–3]. If H (τ) = H0 always,
not only is the boundary of our O-region currently at ruler distance R0 > R0 = c/H0
but R (τ) gets further away with increasing cosmic time τ [4,5], while the boundary of our
L-region R (τ) always remains fixed at R0 = c/H0. The fixed size of our (or any) L-region
given constant H (τ) = H0 simplifies our discussions. More importantly, all parts of our (or
any) L-region are always in casual contact, while outer parts of our (or any) O-region beyond
the limit of the corresponding L-region were but no longer are in causal contact. Hence we
will primarily employ L-regions rather than O-regions.

Hubble flow exceeding c may seem to violate Special Relativity. But General Relativity —
not Special Relativity — is applicable in cosmology [6]. Special Relativity is applicable only
within local inertial frames, and any given observer is not — indeed cannot be — in the same
local inertial frame as this observer’s cosmological event horizon [1–6] (and even less so as
this observer’s cosmological particle horizon [1–6]). Thus Hubble flow exceeding c does not
violate General Relativity [6]. It should also be noted that the Hubble flow is motion with
space rather than through space — every object in the Hubble flow is at rest in the comoving
frame [7]. An object’s motion, if any, relative to the comoving frame [7] is its peculiar motion.2

At the 27th Texas Symposium on Relativistic Astrophysics [8], values of the Hubble
constant today H0 from the upper 60s to the low 70s (km / s) / Mpc were given [8], so
H0 ≈ 70 (km / s) / Mpc splits the difference [8]. These values were essentially unchanged
from those obtained shortly preceding this Symposium [9,10]. The Planck 2015 results [11]
state a value of H0 = 68 (km / s) / Mpc [11], but this Planck 2015 work [11] also cites other
recent results that range from the low 60s (km / s) / Mpc to the low 70s (km / s) / Mpc.
Thus the value H0 = 68 (km / s) / Mpc [11] not only is the most reliable and most recent
one as of this writing, but it also splits the difference of the range of other recent results
cited in this Planck 2015 work [11]. Hence we take the Hubble constant today to be
H0 ≈ 68 (km / s) / Mpc ≈ 2.2 × 10−18 (km / s) / km = 2.2 × 10−18 s−1 [11].3

2 (Re: Entry [7], Ref. [2]) An observer in the comoving frame (ideally in intergalactic space as far removed as possible
from local gravitational fields such as those of galaxies, stars, etc.) sees the 2.7 K cosmic background radiation as
isotropic (apart from fluctuations of fractional magnitude F ≈ 10−5, which can be “smoothed out” via, say, computer
processing to yield a uniform background). But even Earth is a fairly good approximation to the comoving frame:
Earth’s peculiar motion ≈ 380 km / s ≪ c (see p. 352 of Ref. [2]) with respect to the cosmic background radiation is
fairly slow, and local gravitational fields are fairly weak (vescape ≪ c).

3 (Re: Entries [8]–[11], Refs. [2], [8], [10], and [11]) As per Entries [8]–[11], results for the Hubble constant have
improved with time, asymptotically converging onto those provided by Ref. [11]. The results for the Hubble constant
as per Ref. [8] are in essential agreement with Entry [9]. The history of values of the Hubble constant also is briefly
discussed in Entry [9] and Ref. [10]. Reference [10] surveys the history of values of the Hubble constant determined
via work done through 2012. Reference [10] was for sale at the 27th Texas Symposium on Relativistic Astrophysics,
held at the Fairmont Hotel in Dallas, Texas, December 8–13, 2013.
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3. The Planck power in cosmology

The Planck system of units has been recognized as the most fundamental such system in
physics ever since Dr. Max Planck first derived it in 1899 [12–15]. It is based on Planck’s
reduced constant h̄ ≡ h/2π (or Planck’s original constant h), the speed of light in vacuum
c, and the universal gravitational constant G, with Boltzmann’s constant k usually also
included. These four fundamental physical constants are seen by everything, corresponding
to the Planck system of units encompassing universal domain. By contrast, for example, the
fundamental electric charge is seen only by electrically-charged particles.4

The Planck system of units in general, and especially the Planck power in particular, suggest
a simple and interesting cosmological model. Perhaps this model may at least to some degree
represent the real Universe; even if it does not, it seems interesting conceptually.

Multiply the Planck mass mPlanck = (h̄c/G)1/2 by c2 to obtain the Planck energy EPlanck =
(

h̄c5/G
)1/2

[12–15]. Divide the Planck energy by the Planck time tPlanck =
(

h̄G/c5)1/2
to

obtain the Planck power PPlanck = c5/G
.
= 3.64 × 1052 W ⇐⇒ PPlanck/c2 = c3/G

.
=

4.05 × 1035 kg / s [12–15]. [The dot-equal sign (
.
=) means “very nearly equal to.”] Note that

— unlike the Planck length, mass, energy, time, and temperature TPlanck = EPlanck/k =
(

h̄c5/G
)1/2

/k, indeed unlike most if not all other Planck units (at least most if not all other
useful ones except the Planck speed lPlanck/tPlanck = c) — the Planck power (whether or not
divided by c2) does not contain h̄, but only G and c. Thus — unlike the Planck length lPlanck,
Planck mass, Planck energy, Planck time, and Planck temperature, indeed unlike most if
not all other Planck units (at least most if not all other useful ones except the Planck speed
lPlanck/tPlanck = c) — is the Planck power a classical quantity independent of quantum effects,
if not absolutely then at least via opposing quantum effects canceling out, as h̄ cancels out
in the division PPlanck = EPlanck/tPlanck? With respect to the Planck speed lPlanck/tPlanck = c
note that c is the fundamental speed in the classical (nonquantum) theories of Special and
General Relativity.

Now multiply PPlanck/c2 by the age of the Universe, the elapsed cosmic time [4,5] since the
Big Bang, τ0 ≈ 4.5 × 1017 s ≈ 1.4 × 1010 y [11]. This yields an estimate of

M0 ≈
PPlanckτ0

c2 ≈ 1.8 × 1053 kg (1)

for the mass of our L-region (not considering the negative gravitational energy). But
M0 ≈ 1.8 × 1053 kg is of order-of-magnitude agreement with an estimate of M0 assuming
that the mass-energy density of of our L-region of the Universe [1,3] equals the critical
density ρcrit [16], as seems to be the case if not exactly then at least to within a very
close approximation. The density critical density ρcrit corresponds to the borderline between
ever-expanding and oscillating Universes given vanishing cosmological constant, i.e., Λ = 0,

4 (Re: Entries [12] and [15], Refs. [12] and [15]) A concise listing of Planck units and other useful data, entitled “Some
Useful Numbers in Conventional and Geometrized Units,” is provided in the back endcover of Ref. [12]. In this back
endcover of Ref. [12] the Planck length is referred to as the Planck distance (elsewhere in Ref. [12] it is referred to
as the Planck length) and the Planck power is referred to as the emission factor. Reference [12] cites Ref. [13] as the
most important work in the derivation of the Planck system of units. Reference [15], like Ref. [12], cites Ref. [13].
Additionally, in Sect. 31.1, Ref. [15] gives a brief historical survey of works deriving the Planck system of units.
Reference [15] extends the Planck system of units to also include Boltzmann’s constant k.
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and to spacetime being flat, and hence space Euclidean, on the largest scales, i.e., to the

spatial curvature index being 0 rather than +1 or −1, given any value of Λ [16–20].5 The
critical density is

ρcrit =
3H2

0

8πG
≈ 8.65 × 10−27 kg

m3
. (2)

Applying the most recent and best result for H0, namely H0 ≈ 68 (km / s) / Mpc ≈ 2.2 ×

10−18 (km / s) / km = 2.2 × 10−18 s−1 [11], yields as an estimate of M0

M0 ≈

4π

3
ρcritR

3
0 =

4π

3

3H2
0

8πG

(

c

H0

)3

=
c3

2GH0
≈ 9.2 × 1052 kg . (3)

In Eq. (3) we assume that the volume of our L-region is given by the Euclidean value

4πR3
0/3. But since astronomical observations indicate that spacetime is flat, and hence space

is Euclidean, on the largest scales, i.e., that the spatial curvature index is 0 rather than +1 or
−1, this assumption seems justified [11,16–20]. Is the order-of-magnitude agreement between
Eqs. (1) and (3) merely a numerical coincidence? Or does it suggest that the Planck power
plays a fundamental role in cosmology — entailing a link between the smallest (Planck-length
and Planck-time) and largest (cosmological) scales?

While there is order–of magnitude agreement between Eqs. (1) and (3), there is a discrepancy
between them by a factor of ≈ 2. That is, Planck-power input as per Eq. (1) seems to imply
ρ ≈ 2ρcrit. Since in this era of precision cosmology all quantities in Eqs. (1)–(3) are known
far more accurately than to within a factor of 2, it seems that this factor of ≈ 2 cannot
simply be dismissed. But we admit that we have no explanation for this factor of ≈ 2.
Furthermore, we will see that Eqs. (5)–(7) seem to imply a discrepancy with Eq. (1) by a
factor of ≈ 3/2 in the opposite direction, i.e., that Planck-power input as per Eq. (1) seems
to imply ρ ≈ 2ρcrit/3. Such discrepancies by numerical factors on the order of 2 may prove
our Planck-power hypothesis to be wrong. At the very least they prove that even if it is right
in general it is only an introductory hypothesis whose details still need to be understood. Then
again, perhaps because there is consistency to within a small numerical factors of O ∼ 2,
our Planck-power hypothesis may be correct in general as an introductory hypothesis, even
though, even if correct in general, its details still need to be understood.

Do our considerations so far in this Sect. 3 suggest that, even though the Universe certainly
began with the Big Bang, there has been since the Big Bang mass-energy input, at least on the
average, at the Planck power, into our L-region of the Universe? We list several alternative
proposals for such input (this list probably is not exhaustive): (a) steady-state-theory
mass-energy input ex nihilo [21–23], (b) mass-energy input ex nihilo via other means [24,25],
(c) mass-energy input at the expense of negative gravitational energy [26–32] rather than
ex nihilo, or (d) mass-energy input at the expense of nongravitational negative energy, for
example, at the expense of the negative-energy C field in some versions of the steady-state
theory [33–35]. If at the expense of negative gravitational energy as per proposal (c),
then forever the total (mass plus gravitational) energy of our L-region, and likewise of any
L-region, of the Universe, and hence of the Universe as a whole, is conserved at the value

5 (Re: Entry [20], Ref. [14]) The critical density and density parameter are employed on various occasions throughout
Chap. 29 on cosmology in Ref. [14].
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zero [26–32]. (There are “certain ‘positivity’ theorems ... which tell us that the total energy
of a system, including the ‘negative gravitational potential energy contributions’ ..., cannot
be negative [32].” But positivity theorems do seem to allow the total energy of a system,
including the negative gravitational energy, to be strictly zero. Also, perhaps positivity
theorems need necessarily apply only for isolated sources in asymptotically-flat spacetime.)
In this chapter we will mainly presume proposal (c) from the immediately preceding list, for
the following reasons: (i) Unlike proposals (a) and (b), proposal (c) entails no violation of
the First Law of Thermodynamics (conservation of mass-energy). (ii) Negative gravitational
energy is known to exist, unlike the negative-energy C field of proposal (d), which was
perhaps introduced at least partially ad hoc to render the steady-state theory consistent with
the First Law of Thermodynamics (conservation of mass-energy). Moreover, unlike gravity,
the C field not only has never been observed, but also entails difficulties of its own [34,35].
(iii) We will show that proposal (c) need not be inconsistent with the observed features of the
Universe.

The Universe clearly shows evolutionary rather than steady-state [21–23,33–35] behavior
since the Big Bang. But it could stabilize to a steady state in the future. It could already
now be thus stabilizing or even thus stabilized in the very recent past with as yet no or
at most very limited observational evidence that might be suggestive of such stabilization.
Thus even if there is steady-state-type creation of mass-energy since the Big Bang at the rate
of the Planck power (we presume, in light of the immediately preceding paragraph, most
likely at the expense of the Universe’s negative gravitational energy), perhaps this might be
compatible with the observed evolutionary behavior of the Universe since the Big Bang. (This
point and related ones will be discussed in more detail in Sect. 4.)

Although General Relativity is required for an accurate consideration of the Universe’s
gravity, the following Newtonian approximation may be valid as an order-of-magnitude
estimate [26–32]. Such an estimate is suggestive in favor of Planck-power input at the
expense of negative gravitational energy [26–32], which does not require a violation of
the First Law of Thermodynamics (conservation of mass-energy) [26–32], as opposed to
Planck-power input ex nihilo [21–25], which would require such a violation, or via C-field
input, the C field never having been observed and also entailing its own difficulties [34,35].
In accordance with the last paragraph of Sect. 2, we take the Hubble constant today to

be H0 ≈ 68 (km / s) / Mpc ≈ 2.2 × 10−18 (km / s) / km = 2.2 × 10−18 s−1 [8–11]. Thus

neglecting any variation of H (τ) with τ, τ0 = 1/H0 ≈ 4.5 × 1017 s consistently with
the previously given value, and the ruler radius of our L-region of the Universe is R0 =
cτ0 = c/H0 ≈ 1.4 × 1023 km = 1.4 × 1026 m. The positive mass-energy of our L-region
of the Universe within our cosmological event horizon is M0c2 and the negative Newtonian
gravitational energy of our L-region is ≈ −GM2

0/R0. Hence in the Newtonian approximation
setting the total energy equal to zero yields [26–32]

Etotal = Emass + Egavitational = 0

=⇒ M0c2
−

GM2
0

R0
= 0

=⇒
M0

R0
=

c2

G
. (4)
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Applying our previously derived values of M0 and R0 yields M0/R0 ≈ 1.8 × 1053 kg /1.36 ×
1026 m ≈ 1.32 × 1027 kg / m. We have c2/G

.
= 1.35 × 1027 kg / m. Thus Eq. (4) is fulfilled

as closely as we can expect, especially given that our Newtonian approximation should be
expected to provide only order-of-magnitude estimates, and also perhaps because (even after
an initial fast inflationary stage) H (τ) may not be strictly constant.

There is yet another order-of-magnitude result that is consistent with our Planck-power
hypothesis. Applying Eq. (1), rate of Planck-power mass input into our L-region is

(

dM

dτ

)

in
≈

M0

τ0
≈

PPlanck

c2 =
c5

G

c2 =
c3

G
. (5)

Letting ρ be the average density of our L-region, the rate of Hubble-flow mass-export from
our L-region is

(

dM

dτ

)

out
= 4πR2

0ρc = 4π

(

c

H0

)2

ρc =
4πρc3

H2
0

. (6)

In Eq. (6) we assume that the surface area bounding our L-region is given by the Euclidean
value 4πR2

0. But since astronomical observations indicate that spacetime is flat, and hence
space is Euclidean, on the largest scales, i.e., that the spatial curvature index is 0 rather than
+1 or −1, this assumption seems justified [11,16–20]. For steady-state to obtain we must
have

(

dM

dτ

)

net
=

(

dM

dτ

)

in
−

(

dM

dτ

)

out
= 0

=⇒
c3

G
− 4πR2

0ρc =
c3

G
−

4πρc3

H2
0

= 0

=⇒
1
G

−
4πρ

H2
0

= 0

=⇒ ρ =
c2

4πGR2
0
=

H2
0

4πG
≈ 5.8 × 10−27 kg

m3 . (7)

The numerical value for ρ obtained in the last line of Eq. (7) is in order-of-magnitude
agreement with ρcrit as per Eq. (2), as well as in order-of-magnitude agreement with
observations.

Recalling the second paragraph following that containing Eqs. (1)–(3), note that Eqs. (5)–(7)
seem to imply a discrepancy with Eq. (1) by a factor of ≈ 3/2 in the opposite direction from
the discrepancy with Eq. (1) by a factor of ≈ 2 implied by Eq. (3). Planck-power input as
per Eq. (1) seems to imply ρ ≈ 2ρcrit, while Eqs. (5)–(7) seem to imply ρ ≈ 2ρcrit/3. Since in
this era of precision cosmology all quantities in Eqs. (1)–(3) and (5)–(7) are known far more
accurately than to within a factor of 2, such discrepancies by numerical factors of O ∼ 2 may
prove our Planck-power hypothesis to be wrong. At the very least they prove that even if it is



Recent Advances in Thermo and Fluid Dynamics230

right in general it is only an introductory hypothesis whose details still need to be understood.
Then again, perhaps because there is consistency to within small numerical factors of O ∼ 2,
our Planck-power hypothesis may be correct in general as an introductory hypothesis, even
though, even if correct in general, its details still need to be understood.

While, even accepting discrepancies by a factor of O ∼ 2, the fulfillment of Eqs. (1)–(7) does
not constitute proof of Planck-power input, it at least seems suggestive. Could Planck-power
input, if it exists, be a classical process independent of quantum effects, if not absolutely
then at least via opposing quantum effects canceling out, as h̄ cancels out in the division
PPlanck = EPlanck/tPlanck? Note that perhaps similar canceling out obtains with respect to the
Planck speed lPlanck/tPlanck = c: c is the fundamental speed in the classical (nonquantum)
theories of Special and General Relativity.

According to most current cosmological models, there probably have been one-time initial
mass-energy inputs, for example associated with phase transitions ending fast-inflationary
stages during the very early history of the Universe [36–40]. We should note that while
the majority opinion is certainly in favor of inflation [36–50], there is some dissent [36–50].
(The difficulty in squaring inflation with the Second Law of Thermodynamics, and a
possible resolution of this difficulty, will be discussed in Sect. 6.) Observational evidence
that in early 2014 initially seemed convincing for inflation in general [41,42], albeit
possibly ruling out a few specific types of inflation [41,42,47], has been questioned [43–50],
but not disproved [43–50].6 Moreover, even if an inflationary model is correct, recent
observational findings disfavor simple models of inflation, such as quadratic and natural
inflation [47]. Even if such one-time initial mass-energy inputs [36–40] occurred, could
sustained mass-energy input then continue indefinitely such that the Planck power is at least
a floor below which the average rate of mass-energy input into our L-region of the Universe
cannot fall? It at least appears not to have fallen below this floor [16]. By the cosmological
principle [51], if this is true of our L-region of the Universe then it must be true of any
L-region thereof.

Thus our Planck-power hypothesis at least appears to entail a link between the smallest
(Planck mass and Planck time) and largest (cosmological) scales, rather than being merely a
numerical coincidence.

4. Planck power and kinetic control versus heat death: Big-Bang-initiated

evolution merging into steady state?

In the simplest ever-expanding cosmologies, the Universe begins with a Big Bang and
expands forever, with flat geometry on the largest scales, and with the Hubble constant
H (τ) not varying with cosmic time [4,5] τ and always equal to its present value H0. As the
Universe expands the Hubble flow carries mass-energy past the cosmological event horizon
of our L-region of the Universe. But this “loss” is replaced by new positive mass-energy
continually created within our L-region of the Universe forever at the rate of the Planck
power and at the expense of our L-region’s negative gravitational energy. This compensates

6 (Re: Entry [48], Ref. [48]) Reference [48] shows that previous measurements of the acceleration of the Universe’s
expansion may require reconsideration, owing to discrepancies between visible-light and UV observations of type 1a
supernovae.
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for “losses” streaming past the cosmological event horizon of our L-region of the Universe
via the Hubble flow — and does so consistently with the First Law of Thermodynamics

(conservation of mass-energy) [26–32]. Because by the cosmological principle [51] our

L-region is nothing special, the same is true of any L-region [3] of the Universe. Thus forever

the total (mass plus gravitational) energy of our L-region, and likewise of any L-region, of

the Universe, and hence of the Universe as a whole, is conserved at the value zero [26–32].

There is needed a mechanism whereby a sufficiently large fraction f of the Planck-power

mass-energy input within the cosmological event horizon of our L-region, and of any

L-region, of the Universe is produced in the form of hydrogen [52–57] (as in the original

steady-state theory [21–23,33–35]), so that there will be fuel for stars [52–57]. Then

there will always be stars [52–57], planets, and life — not only at the periphery but

even at the center [58] of our island Universe [1] and likewise of every other island

Universe [1] in the Multiverse [52–58]. Then the heat death predicted by the Second Law of

Thermodynamics [59–63] will be thwarted not only at the periphery but even at the center [58]

of our island Universe and likewise of every other island Universe in the Multiverse.7 The

required sufficiently large fraction f is actually quite small. An order-of-magnitude estimate

of the total number of stars within the cosmological event horizon [3] of our L-region of the

Universe is ∼ 1022 [64]. By the cosmological principle [51] our L-region of the Universe is

nothing special, so there is no reason to suspect a substantially different total number of stars

in other L-regions. The Sun’s luminosity is LSun = 3.828 × 1026 W ≈ 10−26PPlanck [56,57].

Thus if the average star were as luminous as the Sun then the total luminosity of ∼ 1022

stars would be Ltotal ∼ 10−26PPlanck × 1022
∼ 10−4PPlanck, implying that we require

f ∼ Ltotal/PPlanck ∼ 10−4 [56,57,64]. But the average star is considerably less luminous

than the Sun [56,57], so the best order-of-magnitude estimate is perhaps Ltotal ∼ 10−5PPlanck,

implying that we require only f ∼ 10−5 [56,57,64]. (Properties of the Sun, including its

luminosity, are given in both conventional and geometrized units in the inside back cover

of Ref. [12], and in conventional units in Appendix A in the inside front cover of Ref. [14]

and in Table 8.1 on p. 219 of Ref. [10].) This small value f ∼ 10−5 is sufficient to sustain star

formation forever not only at the periphery but even at the center [58] of our island Universe [1]

and likewise of every other island Universe [1] in the Multiverse [52–58]. The remainder of

the Planck-power input would be in forms other than hydrogen (perhaps traces of heavier

elements, elementary particles of normal and/or dark matter, dark energy, etc.?).

But perhaps the simplest mode of Planck-power input is initially in the form of the simplest

possible type of dark energy, corresponding to positive constant Λ — a positive cosmological

constant. Constancy of Λ is required for constancy of Planck-power input initially in the

form of Λ. Positivity of Λ seems to be required for positivity of Planck-power input being

initially in the form of Λ, because negative Λ corresponds to contraction of space and

hence to diminution of Λ-mass-energy. Thus the simplest possible type of dark energy,

corresponding to positive constant Λ — a positive cosmological constant — is perhaps the type

of dark energy that is most easily reconcilable with Planck-power input, in particular with

7 (Re: Entry [63], Ref. [63]) Reference [63] considers various aspects of the Second Law of Thermodynamics and
its relation to the arrow of time and to cosmology. Reference [63] was for sale at the 27th Texas Symposium on
Relativistic Astrophysics, held at the Fairmont Hotel in Dallas, Texas, December 8–13, 2013.
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constancy of Planck-power input. Moreover, constant Λ — a cosmological constant — is the
only, unique, choice for Λ that can be put on the left-hand (geometry) side of Einstein’s field
equations without altering their symmetric and divergence-free form [65–67], “belonging to
the field equations much as an additive constant belongs to an indefinite integral [65–67].8

Nevertheless the current trend is to put Λ on the right-hand (mass-energy-stress) side
of Einstein’s field equations, which allows more freedom [66]. But if Λ is put on the
right-hand side “the rationale for its uniqueness then disappears: it no longer needs to be
a divergence-free ‘geometric’ tensor, built solely from the gµν ... the geometric view of Λ ...
is undoubtedly the simplest [66]”. Thus we might speculate about a link between constancy
of Λ as a (positive) cosmological constant [65–67] and constancy of (positive) Planck-power
input: Perhaps Planck-power input occurs initially as (positive) cosmological-constant Λ,
with f ∼ 10−5 thereof, then hopefully, somehow, via an as-yet-unknown mechanism,
being transformed into hydrogen. It is important to note that — unlike equilibrium
blackbody radiation — (positive) cosmological-constant-Λ dark energy seems to be at less
than, indeed at far less than, maximum entropy. Thus there seems to be more than enough
entropic “room” for f ∼ 10−5 of positive-cosmological-constant-Λ dark energy to decay into
hydrogen, without requiring decay all the way to iron. Positive-cosmological-constant-Λ
Planck-power input thus seems to offer the benefits but not the liabilities of the steady-state
theory [21–23,33–35] [violation of mass-energy conservation without the C field (which
has never been observed and which also entails other difficulties [34,35]) — recall the
second paragraph following that containing Eqs. (1)-(3)]. Positive cosmological-constant
Λ also implies, or at least is consistent with, constant H (τ) = H0 at all cosmic times
τ, and hence a fixed size of our L-region, with its boundary (event horizon [2,3]) R (τ)
always fixed at R0 = c/H0. Thus to sum up this paragraph, the simplest model overall

seems to entail (a) positive-cosmological-constant Λ, (b) Planck-power input initially as
positive-cosmological-constant Λ at the expense of negative gravitational energy, with
(c) f ∼ 10−5 of Planck-power input, then hopefully, somehow, via an as-yet-unknown
mechanism, being transformed into hydrogen. We note that the most reliable and most
recent astronomical and astrophysical observations and measurements as of this writing are
consistent with positive cosmological-constant-Λ dark energy [68,69], indeed possibly or even
probably more consistent with positive cosmological-constant-Λ dark energy than with any
other alternative [68,69]. But, of course, this issue is far from being definitely decided [68,69].
Even though our main point in this chapter most naturally based on positive constant Λ, in
Sects. 5–7 some other possibilities for Λ will be qualitatively considered.

We cannot help but notice that temperature fluctuations in the cosmic background radiation
have a typical fractional magnitude of F ≈ 10−5 [70,71]. The observed and measured value
F ≈ 10−5 [70,71] is obviously far more certain than the speculated value f ∼ 10−5; hence the
distinction between the ≈ symbol as opposed to the ∼ symbol. Although it is unlikely that
there is any connection between F ≈ 10−5 [70,71] and f ∼ 10−5, it doesn’t seem to hurt if
we at least mention this numerical concurrence — just in case there might be a connection.

But the following question arises: Even if there is Planck-power input, why is not all of it
in a thermodynamically-most-probable maximum-entropy form such as (iron + equilibrium

8 (Re: Entry [67], Ref. [67]) Reference [67] is cited in the passage from Ref. [2] that we cite in Entry [65].



The Planck Power – A Numerical Coincidence or a Fundamental Number in Cosmology?

http://dx.doi.org/10.5772/61642

233

blackbody radiation) and none of it as hydrogen — why is not f = 0 [52–57]? If this were the
case then the heat death predicted by the Second Law of Thermodynamics [59–63] would
not be thwarted even with Planck-power input. While we are not sure of an answer to
this question, we can venture what prima facie at least seems to be a reasonable guess:
(a) Planck-power input (if it exists) generates equal nonzero quantities of both positive
mass-energy and negative gravitational energy starting from (zero positive energy + zero
negative energy = zero total energy), and the entropy of (zero positive energy + zero
negative energy = zero total energy) is perforce zero: There is only one way for there to
be nothing (Ω = 1), and hence by Boltzmann’s relation between entropy and probability
S = k ln Ω = k ln 1 = 0. (b) Planck-power input is a steady-state but nonequilibrium process
that does not allow enough time for complete thermalization of the input from the initial
value of zero entropy of (zero positive energy + zero negative energy = zero total energy)
to the maximum possible positive entropy of (nonzero positive energy + nonzero negative
energy = zero total energy) in a form such as (iron + equilibrium blackbody radiation). That
is, Planck-power input is kinetically rather than thermodynamically controlled [72–77].9

Thus even though, thermodynamically, Planck-power input should be in a maximum-entropy
form such as (iron + equilibrium blackbody radiation), kinetically the reaction

zero positive energy + zero negative energy = zero total energy

−→ nonzero positive energy + nonzero negative energy = zero total energy. (8)

occurs too quickly to allow thermodynamic equilibrium = maximum entropy to be attained.
Yet even Planck-power input initially as positive-cosmological-constant Λ, with a fraction f ∼

10−5 of Planck-power input hopefully, somehow, via an as-yet-unknown mechanism, being
transformed into hydrogen, entails some entropy increase. The entropy increase ∆S that it
does entail is sufficient to render the probability of its reversal as per Boltzmann’s relation
between entropy and probability, expressed in the form Prob (∆S) = exp (−∆S/k), equal to
zero for all practical purposes. Thus we are justified in placing only a forward arrow (no
reverse arrow) at the beginning of the second line of Eq. (8). Thus Planck-power input entails
enough entropy increase to stabilize it and prevent its reversal. But it occurs quickly enough
to allow kinetic control [72–77] to prevent it from entailing maximal entropy increase.

To recapitulate out considerations thus far in Sect. 4: Perhaps the simplest possible
Planck-power input is initially as positive-cosmological-constant Λ. Positivity of Λ is
required for positivity of Planck-power input, and constancy of Λ is required for constancy
of Planck-power input. Constancy of Λ is requisite for Λ to be most simply encompassed
within Einstein’s field equations [65–67], besides correlating with constancy of Planck-power
input. Positive-cosmological-constant Λ also implies, or at least is consistent with, constant

9 (Re: Entries [72–77], Refs. [72–77]) Kinetic versus thermodynamic control is specifically discussed on pp. 41–42 of
Ref. [72], p. 43 of Ref. [73], p. 35 of Ref. [74], pp. 311–312 of Ref. [76], and p. 438 of Ref. [77]. Kinetic versus
thermodynamic control are contrasted in Sects. 2.18 and 19.11 of Ref. [75]. Helpful auxiliary material is provided in
Sects. 2.15–2.17, 2.19–2.21, and 19.16 of Ref. [75]. Reference [73] does not render Ref. [72] obsolete, because Ref. [72]
discusses aspects not discussed in Ref. [73], and vice versa. Likewise, Reference [77] does not render Ref. [76]
obsolete, because Ref. [76] discusses aspects not discussed in Ref. [77], and vice versa.
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H (τ) = H0 at all cosmic times τ, and hence a fixed size of our L-region, with its boundary
(event horizon [2,3]) R (τ) always fixed at R0 = c/H0. But we wish for a fraction f ∼ 10−5

of Planck-power input hopefully, somehow, via an as-yet-unknown mechanism, being
transformed into hydrogen. Hydrogen, so that stars can have fuel. But why hydrogen?
Why not a thermodynamically dead form such as (iron + equilibrium blackbody radiation)?
Because kinetically, it would be much more difficult for positive-cosmological-constant Λ to
be transformed into a complex atom such as iron than into the simplest one — hydrogen.
Thus while thermodynamic control would favor iron, if kinetic control wins then hydrogen is
favored [72–77]. Note that kinetic control is vital not only in initial creation of hydrogen,
but also in then preserving hydrogen long enough for it to be of use. It is owing to
kinetic control that the Sun and all other main-sequence stars fuse hydrogen only to helium,
not to iron, and are restrained to doing so slowly enough to give them usefully-long
lifetimes. Main-sequence fusion of hydrogen to iron is thermodynamically favored, but
kinetically its rate of occurrence is for all practical purposes zero. Thus kinetic control
wins, limiting main-sequence fusion to helium and at a slow enough rate to give stars
usefully-long lifetimes [72–77]. Indeed it is owing to kinetic control that not only hydrogen,
but also all other elements except iron, do not instantaneously decay to iron. Kinetic control
may also argue against positive-cosmological-constant Λ being completely transformed into
equilibrium blackbody radiation (without iron). A single hydrogen atom can be created
at rest with respect to the comoving frame [7]. By contrast, to conserve momentum, at
least two photons must be created simultaneously, which may impose a bottleneck that
diminishes the rate of such a process kinetically. Hence f ∼ 10−5 of the Planck-power
input in the positive-but-much-less-than-maximal-entropy form of hydrogen may at least
prima facie seem plausible. Again it doesn’t seem to hurt to at least mention the numerical
concurrence between F ≈ 10−5 [70,71] and f ∼ 10−5, even if any connection is unlikely.

Note that a zero value for the initial entropy as per the paragraph containing Eq. (8) would
also obtain if Planck-power input were ex nihilo [21–25] or at the expense of a negative-energy
C field (despite its never having been observed and its other difficulties [34,35]) or other
negative-energy field rather than at the expense of negative gravitational potential energy:
the entropy of (zero positive energy + zero negative energy = zero total energy) would still
perforce be zero. Thus our considerations of this Sect. 4, including that of dominance of kinetic
over thermodynamic control [72–77], would still be applicable.

Our L-region and O-region clearly manifest evolutionary behavior, for example increasing
metallicity [52–55] and a decreasing rate of star formation [52–55]. But our Planck-power
hypothesis seems to suggest that its evolutionary behavior could gradually merge towards
steady-state behavior. Early in the history of our L-region and O-region, star formation
occurred at a much faster rate than now, and stars were on the average much more massive
and hence very much faster-burning [main-sequence hydrogen-burning rate ∼ (mass of
star)3]. Thus hydrogen was consumed faster than a conversion of f ∼ 10−5 of Planck-power
input could replace it: Stars were burning capital in addition to (Planck-power) income —
indeed more capital than income. But with decreasing rate of star formation and decreasing
average stellar mass, perhaps a steady-state balance between hydrogen consumption and its
replacement via f ∼ 10−5 of Planck-power input could be approached, with stars living
solely on (Planck-power) income. Merging of evolutionary towards steady-state behavior
could already be beginning or could have even begun in the very recent past with as yet
no or at most very limited observational evidence that might be suggestive of it. If such
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merging exists then both metallicity and star formation rate could stabilize in the future.
Perhaps they even could already now be stabilizing or have even already begun stabilizing
in the very recent past with as yet no or at most very limited observational evidence that
might be suggestive of such stabilization in particular, or of such merging in general. This
stabilization, if it exists, would require only a small fraction f ∼ 10−5 of Planck-power as
hydrogen to maintain the current status quo in our L-region and O-region. This would allow
star formation to continue forever not merely at the peripheries of island Universes, but even
in their central regions [58]. We note that there is observational evidence that might at least
be suggestive of “unexplained” hydrogen [78], which perhaps might qualify as such very
limited suggestive observational evidence of merging towards steady-state behavior [78].

It should perhaps be re-emphasized that even Planck-power input as hydrogen entails
some entropy increase and therefore is thermodynamically irreversible, consistently with the
Second Law of Thermodynamics, while still thwarting the heat death. The heat death is
thus thwarted via dilution of entropy as an island Universe [1] expands indefinitely, which
is consistent with the Second Law [59–63] — not via destruction of entropy, which is not:
Planck-power input as hydrogen represents input at positive but far less than maximum entropy.
Thus Planck-power input (if it exists) defeats the heat death predicted by the Second Law of
Thermodynamics [59–63] even though it does not defeat the Second Law itself.

Thus with only f ∼ 10−5 of the Planck-power input as hydrogen, the heat death predicted
by the Second Law of Thermodynamics [59–63] of our L-region of our island Universe [1],
and likewise of any L-region of any island Universe [1], is thwarted forever. The heat death
is thwarted forever not only at the periphery but even at the center [58] of our and every
other island Universe [1]. The heat death is thwarted consistently with, not in violation of,
the Second Law of Thermodynamics [59–63]. Hubble flow export of entropy (along with
mass-energy) out of our L-region of our island Universe [1], and likewise out of any L-region
of any island Universe [1], as its expansion creates more volume forever, is compensated
forever by creation of thermodynamically fresh but still positive-entropy mass-energy — most
importantly, hopefully, the fraction f ∼ 10−5 thereof as hydrogen — via Planck-power input.

Steady-state balance between Planck-power input and Hubble-flow expansion of space can
allow both the entropy density and the nongravitational mass-energy density in our L-region
of our island Universe [1], and likewise in any L-region of any island Universe [1], to remain
constant, even as the total entropy and nongravitational mass-energy of the entire island
Universe increase indefinitely. As mass-energy creation at the rate of the Planck power and at
the expense of negative gravitational energy is matched by mass-energy dilution via an island
Universe’s expanding space, so is entropy production matched by entropy dilution. Thus the
negative-energy gravitational field of an island Universe is an inexhaustible fuel (positive
mass-energy and negative-entropy = negentropy = less-than-maximum-entropy) source.
Gravity is a bank that provides an infinite line of credit and never requires repayment [79].
Planck-power input draws on this infinite line of credit [79], which never runs out — indeed
which cannot ever run out. [Of course, if (positive) nongravitational mass-energy density
remains constant, then so must (negative) gravitational energy density, if the balance of zero
total energy is to be maintained. Thus Planck-power input if it exists is really equally of
positive nongravitational mass-energy and negative gravitational energy simultaneously.]

Additional questions bearing on the Second Law of Thermodynamics will be discussed
in Sects. 5–7. In this chapter, whether concerning Planck-power input or otherwise, we
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limit ourselves to considerations of thwarting the heat death within the restrictions of
the Second Law. Nonetheless we note that the universal validity of the Second Law of
Thermodynamics has been seriously questioned [80–84], albeit with the understanding that
even if not universally valid at the very least it has a very wide range of validity [80–84].

There are two difficulties that should at least be briefly mentioned and, even if only
briefly and only incompletely, also addressed. (i) In order for negative gravitational
energy to balance positive mass-energy of a hydrogen atom (or of any other entity), a
hydrogen atom (or other entity) newly created via Planck-power input would have to
interact gravitationally infinitely fast or instantaneously [85,86] — and hence universally
simultaneously [85,86] — with our entire L-region of the Universe within our cosmological
event horizon [3]. But if a signal of mass-energy and/or information is not transmitted,
no violation of relativity is required [85,86]. Perhaps this may be possible if, as
suggested in the third paragraph of this Sect. 4, Planck-power input occurs initially
as positive-cosmological-constant Λ [65–67], with f ∼ 10−5 thereof, then hopefully,
somehow, via an as-yet-unknown mechanism, being transformed into hydrogen. Perhaps
the gravitational interaction of positive-cosmological-constant Λ [65–67], and thence of
hydrogen atoms (and/or other entities) newly created therefrom via Planck-power input
can be instantaneously “rubber-stamped” onto our entire L-region at once, rather than being
transmitted as a “signal” from one place to another within our L-region. (ii) Even if
an interaction, or any other process such as “rubber-stamping,” can be infinitely fast or
instantaneous — and hence universally simultaneous — it can be so in only one reference
frame [86]. A superluminal phenomenon, even be it only the motion of a geometric point
that possesses no mass-energy and carries no information (for example the intersection
point of scissors blades) [86], can be infinitely fast and hence instantaneous — universally
simultaneous — in only one reference frame [86] (as a subluminal phenomenon can be
infinitely slow — at rest — in only one reference frame [86]).10 But there is a natural choice for
this frame: The comoving frame [7], in which the cosmic background radiation and Hubble
flow are isotropic [7], even if not an absolute rest frame, is at least a preferred rest frame [87],
indeed the preferred rest frame [87], of our L-region of the Universe. If any one reference
frame can claim to be preferred, it is the comoving frame [7,87]. Since by the cosmological
principle [51] there is nothing special about our L-region of the Universe, the same likewise
obtains in any other L-region thereof. The existence of this universal preferred frame [7,87]
implies the existence of a preferred, perhaps even absolute, cosmic time τ [4,5,87]. A clock
in the comoving frame measures cosmic time τ [4,5,87] — the longest possible elapsed time
from the Big Bang until now (and also the longest possible elapsed time from the Big Bang to
the Big Crunch in an oscillating cosmology [16,88–94]) — clocks in all other frames measure
shorter elapsed times [4,5,88–94].11 A clock in the comoving frame also measures the longest

10 (Re: Entry [86], Ref. [2]) Special Relativity permits arbitrarily fast superluminal phenomena that transmit no
mass-energy or information, as well as mutual velocities up to 2c: see pp. 56 and 70 of Ref. [2]. Section 2.10 of
Ref. [2] states that the speed U of transmission of information must not exceed c if violation of causality is to be
prevented in Special Relativity. But Eqs. (2.21) and (2.22) in Sect. 2.10 of Ref. [2] at least suggest the possibility
that Special Relativity may be consistent with a somewhat less conservative limit, namely U ≤ c2/v, where v is the
relative velocity between the transmitter and receiver. Of course to guarantee causality Nature must then have a
method to checkmate any attempt by the transmitter and/or receiver to “cheat” by increasing v while a signal is en
route.

11 (Re: Entry [88], Ref. [2]) The following is a near-quote from p. 402 of Ref. [2]: “Though unlikely to represent the
actual Universe (according to present data) the oscillating-Universe model is interesting in itself.”
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possible elapsed time ∆τ corresponding to a given decrease in the temperature of the cosmic
background radiation (or to a given increase in this temperature during the contracting phase
in an oscillating cosmology). This longest possible elapsed time is cosmic time [4,5,87]. A
clock moving at velocity v relative to the comoving frame [7,87] measures times shorter by a ratio

of
(

1 − v2/c2)1/2
[7,87]. Thus the existence of this universal preferred frame and hence of

cosmic time [4,5] weakens [87] the concept of relativity of simultaneity [85] as obtains within
“the featureless vacuum of Special Relativity” [4,5,85–87]: Events, even if spatially separated,
can be considered absolutely simultaneous if they occur when — with “when” having an
absolute meaning — the cosmic background radiation as observed in the comoving frame has
the same temperature, this temperature currently decreasing monotonically with increasing
cosmic time τ since the Big Bang [4,5,87].12 (Simultaneity of non-spatially-separated events is
absolute even in Special Relativity [85].) Also, the contribution to the total nongravitational
mass of our L-region of the Universe of a body of rest-mass [95] m is equal to m only
if it is at rest in the comoving frame; if it moves at velocity v relative to the comoving

frame [7,87] then its contribution is m
(

1 − v2/c2)−1/2
[7,87]. For a zero-rest-mass particle

the contribution is m = E/c2 where E is its energy as measured in the comoving frame
(for example m = E/c2 = hν/c2 for a photon of frequency ν as measured in the comoving
frame). Thus the total nongravitational mass-energy M0 of our L-region as per Eq. (1) is that
measured with respect to the comoving frame.

It should be noted that these two difficulties (i) and (ii) discussed in the immediately
preceding paragraph [85,86] also plague Universes created via the Everett interpretation of
quantum mechanics [96–98], provided that creation of Everett Universes [96–98] is required
to obey mass-energy conservation (no creation of mass-energy ex nihilo [21–25]). The
creation of Everett Universes [96–98] with no higher entropy (or entropy density if they
are infinite) than that of their precursor Universe could perhaps obtain for reasons similar to
Planck-power input into our L-region being at positive but less-than-maximum entropy as
per our considerations in this Sect. 4 — perhaps most importantly kinetic control winning
over thermodynamic control [72–77].

5. The Planck power: One-time and two-time low-entropy boundary

conditions, and minimal Boltzmann brains

As discussed in Sects. 3 and 4 (recall especially the third paragraph of Sect. 4), the simplest
model of Planck-power input entails a fixed positive cosmological constant Λ. Also, from
the viewpoint of General Relativity [65–67], a fixed cosmological constant Λ is the simplest
choice for Λ [65–67]. Yet we should also consider other possibilities [66].

False-vacuum high-energy-density-scalar-field regions — the inflaton field — of the
Multiverse separating island Universes [1] inflate much faster than they decay to
non-inflating true-vacuum regions. Hence while inflation had a beginning once begun it is
eternal [99]. Within island Universes high-cosmological-“constant” regions play essentially
the same role that inflationary regions play between island Universes: they double in size
much faster than their half-life against decay, so each island Universe expands forever,

12 (Re: Entry [87]) The phrase “the featureless vacuum of Special Relativity” is a quote from a very thoughtful and
insightful letter from Dr. Wolfgang Rindler, most probably in the 1990s, in reply to a question that I raised concerning
relativity of simultaneity.
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albeit more slowly than inflationary regions separating island Universes [1,100]. Yet the
cosmological “constant” is not high everywhere in an island Universe [1]; in L-regions and
O-regions such as ours regions it is sedate. As decay of the inflaton field gives birth to island
Universes, within each island Universe decay of high-cosmological-constant-field regions
gives birth to new sedate L-regions and O-regions such as ours. In these sedate L-regions and
O-regions, the cosmological “constant” may eventually decay to negative values, resulting in
a Big Crunch — and perhaps oscillatory behavior, even as entire island Universes expand
forever and the spaces between them expand forever even faster. For simplicity, as noted
in the first paragraph of this Sect. 5, thus far in this chapter (except for brief parenthetical
remarks in the second-to-last paragraph of Sect. 4) we considered our L-region and O-region
to be ever-expanding [more often than not assuming constant H (τ) = H0 for consistency
with a fixed positive cosmological constant Λ and for maximum simplicity]. We now offer a
few brief speculations concerning the role of the Planck power if the Universe, or at least our
L-region and O-region, is oscillating with two-time low-entropy boundary conditions at the
Big Bang and at the Big Crunch [16,88–94,101–105]. It is important to note that there exist
oscillating cosmological models, including those with thermodynamic rejuvenation, both in
conjunction with and apart from the concept of an inflationary Multiverse [16,88–94,101–105].
Some of these models [16,88,89,101–104] were developed well before inflationary cosmology,
when our observable Universe or O-region was construed to be the entire Universe or at least
a major fraction thereof. Within inflationary cosmology, it has been theorized based on
quantum considerations that the probability that an oscillating L-region and O-region will
have a given lifetime τosc from Big Bang to Big Crunch decreases towards zero with increasing
τosc such that τosc = ∞ — a nonoscillating L-region and O-region — is impossible [88,90],
even as entire island Universes expand forever and the spaces between them expand forever
even faster. Based on this theoretical analysis [88–90] the dark energy must eventually switch
sign and become attractive instead of repulsive [88–90]: Hence according to this theoretical
analysis [88–90] not only the current acceleration of our L-region’s and O-region’s expansion
but even the expansion itself must be a passing fad — our L-region and O-region must
be oscillatory [88–90].13 Shortly we will discuss Dr. Roger Penrose’s central point [61,62]
concerning entropy in the context of both ever-expanding and oscillatory behavior.

If Planck-power input is positive when our L-region expands, could it be negative if and
when it contracts? Could this reduce or at least help to reduce the (nongravitational)
mass-energy, and hence also entropy, during contraction, possibly to zero, by the time of the
Big Crunch? If so, could a singularity at the Big Crunch thereby be evaded, thus ensuring
a new thermodynamically fresh Big Bang to begin a new cycle? Moreover, since the Planck
power (whether or not divided by c2) does not contain h̄, but only G and c, would or at

13 (Re: Entries [89]–[94], Refs. [1], [12], and [90]–[93]) The analysis showing that our L-region and O-region must be
oscillatory is discussed qualitatively in the passages from Ref. [1] cited in Entry [89], with more technical discussions
provided in Ref. [90]. At the 27th Texas Symposium on Relativistic Astrophysics, held at the Fairmont Hotel
in Dallas, Texas, December 8–13, 2013, I asked Dr. Michael Turner about the theory discussed in Entry [89] and
Ref. [90], according to which the Universe, or at least our L-region and O-region, must be oscillatory, also mentioning
Entry [89] and Ref. [90]. Dr. Turner is familiar with the passages from Ref. [1] cited in Entry [89] and with Ref. [90],
but nevertheless seemed to favor an ever-expanding Universe. An alternative model of an oscillating Universe is
discussed in the work in Ref. [63] cited in Entry [92]. In the alternative model of an oscillating Universe investigated
in this work, even a Big Rip is shown to be consistent with and indeed part of an oscillating Universe’s life cycle. The
work in Ref. [63] cited in Entry [93] considers related issues. Also, we should mention that an oscillatory Universe
is closer to Einstein’s conception of cosmology than a nonoscillatory one. A closed oscillating Universe with Λ = 0,
similar to that considered by Dr. Albert Einstein in the early 1930s, is discussed in the material from Ref. [12] cited
in Entry [94].
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least might this evading of a Big Crunch singularity be a classical process independent of
quantum effects, if not absolutely then at least via opposing quantum effects canceling out,
as h̄ cancels out in the division PPlanck = EPlanck/tPlanck [12–15]? Note again that perhaps
similar canceling out obtains with respect to the Planck speed lPlanck/tPlanck = c: c is the
fundamental speed in the classical (nonquantum) theories of Special and General Relativity.

But negative Planck-power input requires entropy reduction. Hence it seems to require
two-time low-entropy boundary conditions [101–105] at the Big Bang and at the Big
Crunch — although two-time, or one-time, low-entropy boundary conditions can
also obtain in a “traditional” oscillating Universe without any (positive or negative)
Planck-power input [16,88,89,101–105] and without any (repulsive or attractive) dark energy
or cosmological constant [16,88,89,101–105]. (In “traditional” oscillating cosmologies,
one-time low-entropy boundary conditions imply increasing entropy from cycle to cycle,
with each succeeding cycle being longer and reaching a larger maximum size [106,107].
In nonoscillating, ever-expanding, cosmologies, only one-time low-entropy boundary
conditions can occur.) Two-time low-entropy boundary conditions require that not only
the Big Bang but also the Big Crunch must be special [61,62,101–105]. But even one-time
low-entropy boundary conditions at the Big Bang that are required for our L-region and
O-region to exist as it is currently observed are equally special [61,62]. We will not address
the question of whether or not the decrease in entropy during the contracting phase of an
oscillating universal cycle imposed by two-time low-entropy boundary conditions [101–105]
should be construed as contravening the Second Law of Thermodynamics. It could perhaps
be argued that, within the restrictions of the Second Law, given two-time low-entropy
boundary conditions [101–105] there is no net decrease in entropy for an entire cycle, or
that two-time low-entropy boundary conditions [101–105] impose such a tight constraint on
an oscillating Universe’s journey through phase space that there is no change in entropy from
the initial and final low value during a cycle. In accordance with the third-to-last paragraph
of Sect. 4, in ideas developed in this chapter per se (as opposed to brief descriptions of ideas
developed in cited references) we limit ourselves to considerations of thwarting the heat
death within the restrictions of the Second Law of Thermodynamics. Nonetheless we again
note that the universal validity of the Second Law has been seriously questioned [80–84],
albeit with the understanding that even if not universally valid at the very least it has a very
wide range of validity [80–84].

The reduction of the (nongravitational) mass-energy of a contracting Universe to zero or at
least close to zero at the Big-Crunch/Big-Bang = Big Bounce event might thus be a way,
although not necessarily the only way [101–105], to ensure zero entropy — the entropy of
nothing is perforce zero [recall the paragraph containing Eq. (8) in Sect. 4] — or at least low
entropy at the Big Bounce. It should be noted that a zero- or at least low-entropy state at the
Big Bounce is imposed in models with two-time low-entropy boundary conditions [101–105].
Thus the cosmic time [4,5] interval from the Big Bang to the Big Crunch can be incomparably
shorter than and is totally unrelated to the Poincaré recurrence time [108].14

14 (Re: Entry [108], Ref. [5]) Contrary to what is stated on p. 192 of Ref. [5], in ever-expanding cosmological models
Poincaré fluctuations on the scale of galactic — or smaller, indeed, even minimal-Boltzmann-brain — dimensions in
spite of the dissipation due to expansion would not be expected, because the energy of starlight and ultimately
all energy would be irrevocably lost from each and every galaxy into infinitely-expanding space and (without
compensating input via a Planck-power or other mechanism, which is not considered on p. 192 of Ref. [5]) never
replaced.
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But whether low-entropy or equivalently high-negentropy boundary conditions are
one-time, or two-time in oscillating cosmologies [61,62,101–105], Dr. Roger Penrose’s central
point [61,62] concerning entropy survives unscathed. This point had been brought out
previously [108–110], but Dr. Roger Penrose’s more modern analysis [61,62] takes into
consideration inflation, which was not generally recognized prior to the late 1970s [108–110].
(See Sect. 6 concerning the connection with inflation.) This point begins with but does
not end with recognizing that the L-region and O-region of our Universe are not merely
special. They are much more special than they have to be — their negentropy is much
greater than is required for conscious observers to exist. By far the minimum negentropy
consistent with conscious observation would be that required for the minimal existence of
a single minimally-conscious observer — one and only one minimal Boltzmann brain [111–118]
with no body or sense organs, and with zero information including zero sensory input even
if fictitious [112] and zero memory even if fictitious [113], save only the minimal information
that one exists and is conscious and even this minimal information only for most minimal
fleeting split-second of conscious existence consistent with recognition that one exists and
is conscious, in an otherwise maximum-entropy and therefore dead L-region and O-region
of our Universe — no other observers, no Sun or other stars, no Earth or other planets, no
Darwinian evolution, no nothing (at any rate no nothing worthwhile). Input of any sensory
information even if fictitious [112], and/or any memory even if fictitious [113], is incompatible
with the minimalness of a Boltzmann brain required by Boltzmann’s exponential relation
between negentropy σ ≡ Smax − S and its associated probability Prob (σ) = exp (−σ/k).
[Note: Negentropy σ ≡ Smax − S should not be confused with the entropy change ∆S
associated with a given reaction or process introduced in the paragraph containing Eq. (8),
even though Boltzmann’s relation has the same exponential form for both.] Even fictitious
sensory input [112] or fictitious memory [113], as in a dream or in a simulated Universe,
requires larger σ than none at all and hence is exponentially forbidden. Thus Boltzmann’s
exponential relation Prob (σ) = exp(−σ/k) allows not any Boltzmann brain but only a
minimal Boltzmann brain — and only one of them. Based solely on Boltzmann’s exponential
relation Prob (σ) = exp(−σ/k) a lone minimal Boltzmann brain is not merely by far but
exponentially by far the most probable type of observer to be and exponentially by far the
most probable type of L-region and O-region of our Universe — or of any Universe in
the Multiverse — to find oneself in: One should then expect not even fictitious sensory
input [112], not even fictitious memory [113], but only the most fleeting split-second of
conscious existence consistent with recognition that one exists and is conscious.

But a basis solely on Boltzmann’s relation Prob (σ) = exp(−σ/k) is incorrect, or at the
very least incomplete. Boltzmann’s relation Prob (σ) = exp(−σ/k) is valid only assuming
thermodynamic equilibrium — that the ensemble of L-regions and O-regions corresponds to
that at thermodynamic equilibrium. Probably the most powerful argument against this being
the case is the vast disparity between our L-region and O-region that we actually observe
and what one would observe as per the immediately preceding paragraph based solely on
Boltzmann’s relation Prob (σ) = exp(−σ/k). This disparity, the minimal-Boltzmann-brain

disparity, by a factor of O ∼ 1010123
[61,62], utterly dwarfs the disparity by a factor in

the range of O ∼ 10120 [119] to O ∼ 10123 [120] between the observed and predicted
values of the cosmological constant [119,120] — indeed it may utterly dwarf all other
disparities combined [121]. These other disparities [121] relate mainly to the fundamental
and effective laws of physics and physical constants requisite for the existence even of a
minimal Boltzmann brain. Yet, even apart from viewpoints [122] that not all of them [121]
may be significant, they are utterly dwarfed by the minimal-Boltzmann-brain disparity that
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obtains even given these requisite fundamental and effective laws of physics and physical
constants.15 In contrast to minimal Boltzmann brains, we are sometimes dubbed “ordinary
observers” [115–117] — but based solely on Boltzmann’s relation Prob (σ) = exp(−σ/k)
dubbing us even as extraordinary observers would be a vast understatement. Indeed the
same reasoning can be extended to extraordinary observers. For, based solely on Boltzmann’s
relation Prob (σ) = exp(−σ/k), exponentially by far the most probable extraordinary observer
(say, a human with a typical life span) is a minimal extraordinary observer, and only one of
these per L-region or O-region. While σ required for a lone minimal extraordinary observer
greatly exceeds that required for a lone minimal Boltzmann brain, it is still utterly dwarfed
by the actual σ of our L-region and O-region: The disparity of Prob (σ) = exp(−σ/k)
between that corresponding to a lone minimal extraordinary observer and that corresponding
to our observed L-region and O-region is still by a factor of O ∼ 1010123

[61,62]. We are
privileged to be not merely minimal extraordinary observers but super-extraordinary observers
— more correctly hyper-extraordinary observers — with an entire Universe to explore and
enjoy [61,62].

There are many arguments against Boltzmann-brain hypotheses [111–118]. Indeed, if
there exist (a) imposed one-time low-entropy boundary conditions, (b) imposed two-time
low-entropy boundary conditions [16,88–94,101–105] in an oscillating L-region and O-region,
or (c) Planck-power (or other [21–25,33–35]) imposed low-entropy mass-energy input such as
hydrogen in a nonoscillating one [78], then such imposition would preclude thermodynamic
equilibrium. Indeed, given (b) or (c), thermodynamic equilibrium would not only be
precluded but be precluded forever. Given (b) or (c), there would be no need to assume
a decaying or finite-lived Universe [117] to help explain consistency with our observations.
But even given (a) the heat death σ = 0 need not be the most probable current state of
the L-region or O-region of our Universe and hence a minimal Boltzmann brain [111–118]
need not be the most probable current observer therein, because at the current cosmic time
decay to maximum entropy has not yet occurred. Since by the cosmological principle [51]
our L-region and O-region are nothing special, this must likewise be true with respect to
any L-region or O-region in our island Universe — and likewise with respect to those
in any other island Universe in the Multiverse. Moreover, it has even been argued that
low-entropy boundary conditions are not required to avoid minimal Boltzmann brains being
exponentially by far the most probable type of observer, or even the most probable type of
observer at all [116]. Also, it has been argued that special, i.e., low-entropy, conditions are not
required at Big Bangs or Big Bounces [123,124]. [Clustering of matter at t = 0, which might
typically be expected to increase entropy in the presence of gravity [125,126], does not do
so because in this model [123,124] it is prevented owing to positive kinetic energy equaling
negative gravitational energy in magnitude, so that the total energy (which in a Newtonian
model excludes mass-energy) equals zero. But on pp. 3–4 of Ref. [124], friction, which
generates entropy, is invoked during the time evolution of the system. Frictional damping, by
degrading part of the macroscopic kinetic energy of any given pair of objects into microscopic
kinetic energy (heat), facilitates their settling into a bound Keplerian-orbit state. But because
friction thus generates entropy, this may correspond to a hidden, overlooked, pre-friction
low-entropy assumption concerning the initial t = 0 state of this model [123,124] in either
of its two directions of time [123,124]. But a Kepler pair can be formed without friction,
for example via a three-body collision wherein a third body removes enough macroscopic

15 (Re: Entry [122], Ref. [112]) Reference [112] provides discussions of a spectrum of numerous viewpoints concerning
Multiverses and related topics, Dr. Steven Weinberg’s viewpoint among this spectrum of viewpoints.
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kinetic energy from the other two — without degrading any into heat — that they can settle
into a bound Keplerian-orbit state.]

Low-entropy Planck-power (or other [21–25,33–35]) input such as hydrogen in
nonoscillating cosmologies, or two-time low-entropy boundary conditions in oscillating
ones [61,62,101–105], would enable our Universe — and likewise any Universe in
the Multiverse — to forever thwart the heat death predicted by the Second Law of
Thermodynamics. It should be noted that there also are other ways that the heat death
can be thwarted: see, for example, Ref. [127]. Hopefully, one way or another, the heat death
is thwarted in the real Universe, whether within an inflationary Multiverse [89–94,105] or
otherwise [88,89,101–105,127].

Perhaps we should also note that the fraction f ∼ 10−5 of Planck-power input as
hydrogen mentioned in Sect. 4 would maintain our L-region and O-region much farther from
thermodynamic equilibrium than is required for existence of one and only one minimal
Boltzmann brain. Thus if Planck-power input exists then f ∼ 10−5 rather than f = 0
cannot be explained owing to our L-region being lucky: Boltzmann’s exponential relation
Prob (σ) = exp(−σ/k) on the one hand, and σ being a monotonically increasing function
of f on the other, rules out any values of σ and f larger than the absolute minima that
allow the existence of one and only one minimal Boltzmann brain obtaining by dumb luck.

Thus if Planck-power input exists then perhaps there is an underlying principle or law of
physics requiring f ∼ 10−5 not only in our L-region but in accordance with the cosmological
principle [51] in every L-region of our, and also every other, island Universe [1] in the
Multiverse [52–58].

6. Dr. Roger Penrose’s concerns: Both sides of the inflation issue

We still must consider Dr. Roger Penrose’s difficulty with inflation per se, the evidence

for inflation not yet being totally beyond doubt [36–50]. Dr. Penrose has shown that,

as per Boltzmann’s exponential relation between negentropy and probability Prob (σ) =
exp(−σ/k), the probability Prob 1, per “attempt,” of creation of a Universe as far from

thermodynamic equilibrium as ours without inflation, while extremely small, is nevertheless

enormously larger than the probability Prob 2 with inflation. That is Prob 2 ≪ Prob 1 ≪ 1.

At the 27th Texas Symposium on Relativistic Astrophysics [8], I asked Dr. Penrose the

following question (I have streamlined the wording for this chapter): No matter how much

smaller Prob 2 is than Prob 1 (so long as Prob 2, however miniscule even compared to the

already miniscule Prob 1, is finitely greater than zero), inflation has to initiate only once —

after initiating once it will then overwhelm all noninflationary regions. Dr. Penrose provided

a concise and insightful reply [128], and also suggested that I re-read the relevant sections

of his book, “The Road to Reality [15,61,62]” I did so. Dr. Penrose’s key argument seems to

be centered on squaring inflation with the Second Law of Thermodynamics. Dr. Penrose’s

central point, already briefly discussed in Sect. 5, begins with but does not end with

recognizing that our L-region and O-region are much more thermodynamically atypical

— with much lower entropy — than is required for us to exist even as hyper-extraordinary

observers, as opposed to only one of us as a minimal extraordinary observer, let alone only

one of us as a minimal Boltzmann brain. Our L-region and O-region are thermodynamically

extremely atypical not merely with respect to all possible L-regions and O-regions. They
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are thermodynamically extremely atypical even with respect to the extremely tiny subset of
already thermodynamically extremely atypical L-regions and O-regions that allow us to exist
as hyper-extraordinary observers, as opposed to only one of us as a minimal extraordinary
observer, let alone only one of us as a minimal Boltzmann brain. But now the link to
inflation per se: As thermodynamically untypical as our L-region and O-region are today,

they become as per Boltzmann’s relation Prob (σ) = exp(−σ/k) exponentially ever more

thermodynamically untypical as one considers them backwards in time [61,62]. Thus the

disparity today by a factor of O ∼ 1010123
between the minimal-Boltzmann-brain or even

minimal-extraordinary-observer hypothesis and observation becomes exponentially ever more

severe as one considers our L-region and O-region backwards in time [61,62]. Thus the

connection with inflation: Since inflation smooths out temperature differences and other

nonuniformities, the very existence of temperature differences and other nonuniformities

prior to inflation implies lower entropy than without such nonuniformities and hence

renders the thermodynamic problem of origins worse not better [61,62]. In fact exponentially

worse as per Boltzmann’s exponential diminution Prob (σ) = exp(−σ/k) of probability with

increasing negentropy σ [61,62]. As thermodynamically atypical and hence exponentially

improbable as our Big Bang was, it must have been thermodynamically more atypical

and hence exponentially more improbable if it was inflation-mediated than if it was not.

This is the basic reason for Dr. Penrose’s extremely strong inequality Prob 2 ≪ Prob 1.

(We should, however, cite the remark that prior to inflation there may have been little

mass-energy to thermalize [129].) Nevertheless my question still persists: In infinite time,

or even in a sufficiently long finite time, even the most improbable event (so long as its

probability, however miniscule, is finitely greater than zero) not merely can occur but must

occur. It has been noted “that whatever physics permitted one Big Bang to occur might

well permit many repetitions [130].” But suppose that Universe creations can occur via

both noninflationary and inflationary physics. Even if because Prob 2 ≪ Prob 1 there first

occurred an enormous but finite number N1 of noninflationary Big Bangs yielding Universes

as far from thermodynamic equilibrium as ours, so long as Prob 2, however miniscule even

compared to the already miniscule Prob 1, is finitely greater than zero, after a sufficiently

enormous but finite number N1 of such noninflationary Universe creations inflation must

initiate. And it need initiate only once to kick-start the inflationary Multiverse. Thereafter the

inflationary Multiverse rapidly attains overwhelming dominance over the noninflationary

one — with the number N2 of inflation-mediated Big Bangs yielding Universes as far from

thermodynamic equilibrium as ours henceforth overwhelming the number N1 of noninflationary

ones by an ever-increasing margin. To reiterate, no matter how much smaller Prob 2 is

than Prob 1 (so long as Prob 2, however miniscule even compared to the already miniscule

Prob 1, is finitely greater than zero), in infinite time, or even in a sufficiently long finite

time, inflation must eventually initiate once, kick-starting the inflationary Multiverse, which

henceforth becomes ever-increasingly overwhelmingly dominant over the noninflationary

one. But even if inflation is eternal, it did have a beginning [99], and hence so did the

inflationary Multiverse [99].

While in this Sect. 6 the focus is on thermodynamic issues concerning inflation, we note

that Dr. Penrose also considers nonthermodynamic issues, specifically the smoothness and

flatness problems [131].
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7. Kinetic control versus both heat death and Boltzmann brains?

A tentative solution to the thermodynamic problem of origins, namely dominance of kinetic
over thermodynamic control [72–77] has already been proposed, as a reasonable guess, for
the special case of Planck-power input discussed in association with Eq. (8) in Sect. 4 and
Everett-Universe creation in the last paragraph of Sect. 4. We would now like to consider this
issue somewhat more generally.

A generalized form of this prima facie perhaps reasonable guess might include: (a) Creation in
general, by whatever method, both initial via Big Bang with or without inflation, etc. [26–31],

via Everett [96–98], and sustained via Planck-power (or other [33–35]) input of equal nonzero

quantities of both positive mass-energy and negative gravitational (or other negative [33–35])

energy starting from (zero positive energy + zero negative energy = zero total energy)

entails an initial entropy of zero — the entropy of (zero positive energy + zero negative

energy = zero total energy) is perforce zero: recall the paragraph containing Eq. (8) in Sect.

4. (b) Creation in general, by whatever method, both initial via Big Bang with or without

inflation, etc. [26–31], via Everett [96–98], and sustained via Planck-power (or other [33–35])

input of equal nonzero quantities of both positive mass-energy and negative gravitational (or

other negative [33–35]) energy starting from (zero positive energy + zero negative energy =
zero total energy) is a nonequilibrium process. These processes do not allow enough time for

complete thermalization of the input from the initial value of zero entropy of (zero positive

energy + zero negative energy = zero total energy) to the maximum possible positive entropy

of (nonzero positive energy + nonzero negative energy = zero total energy). Thus even

though, thermodynamically, exponentially the most probable creation, initial or sustained, by

any method, would yield a maximum-entropy Universe with exponentially the most probable

observer a minimal Boltzmann brain, kinetically the reaction

zero positive energy + zero negative energy = zero total energy

−→ nonzero positive energy + nonzero negative energy = zero total energy

(8 (restated))

occurs too quickly to allow thermodynamic equilibrium = maximum entropy to be attained.

Thus creation, initial or sustained, by whatever method, yields (nonzero positive energy +
nonzero negative energy = zero total energy) at positive but far lass than maximum entropy,

consistently with the Second Law of Thermodynamics but not with the heat death. Thus the

basis of our proposed tentative solution to the thermodynamic problem of both initial and

sustained-input origins: the reaction (rx) of Eq. (8) is kinetically rather than thermodynamically

controlled [72–77]. This kinetic control does not defeat thermodynamics (specifically the

Second Law of Thermodynamics) but it does defeat the heat death. Thus if the reaction

of Eq. (8) is kinetically rather than thermodynamically controlled then the heat death is

thwarted, but within the restrictions of the Second Law of Thermodynamics. This kinetic as

opposed to thermodynamic control could similarly obtain at the initial creation in accordance

with Eq. (8) of an oscillating Universe with two-time low-entropy boundary conditions at the
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Big Bang and at the Big Crunch [16,61,62,88–94,101–105], and in the case of creation ex nihilo

(in contravention of the First Law of Thermodynamics) [21–25].

But as we discussed in the third paragraph of Sect. 4, perhaps the simplest model of
Planck-power input is initially in the form of the simplest possible type of dark energy,
corresponding to positive constant Λ — a positive cosmological constant [65–67]. The simplest

possible type of dark energy, corresponding to positive constant Λ — a positive cosmological
constant [65–67] — is perhaps the type of dark energy that is most easily reconcilable with
Planck-power input, in particular with positive constant Planck-power input. As we have
mentioned, it is also simplest with respect to General Relativity [65–67], and it also implies,
or at least is consistent with, constant H (τ) = H0 at all cosmic times τ, and hence a fixed size
of our L-region, with its boundary (event horizon [2,3]) R (τ) always fixed at R0 = c/H0.

Let ∆Srx be the increase in entropy associated with the reaction (rx) of Eq. (8), with respect
to our L-region. If 0 ≪ ∆Srx ≪ Smax ∼ 10123k, then, on the one hand, the strong inequality
0 ≪ ∆Srx ensures an equilibrium constant Keq = exp(∆Srx/k) sufficiently large that the
reverse reaction is forbidden for all practical purposes, thus stabilizing creation [72–77]. Thus
the strong inequality 0 ≪ ∆Srx justifies the placement of only a forward arrow (no reverse
arrow) at the beginning of the second line of Eq. (8) [72–77]. On the other hand, the strong
inequality ∆Srx ≪ Smax ∼ 10123k ensures against the doom and gloom that one would dread
based solely on Boltzmann’s relations Prob (∆S) = exp(−∆S/k) and Prob (σ) = exp(−σ/k).
Note for example that even if ∆Srx = 10120k and hence for the reaction (rx) of Eq. (8)
Keq = e10120

, the entropy of our L-region is still only O ∼ 10−3 of that corresponding
to thermodynamic equilibrium and hence still σ ∼

(

10123k − 10120k
)

, which is for all
practical purposes still σ ∼ 10123k. [References [73–77] express the equilibrium constant as
Keq = exp(−∆Grx/kT), where ∆Grx is the Gibbs free energy change per molecular reaction
in the special case of a system maintained at constant temperature T and constant ambient
pressure. (To be precise, the ambient pressure must be maintained strictly constant during a
reaction, but the temperature of the reactive system can vary in intermediate states so long
as at the very least the initial and final states are at the same temperature, for this definition
of ∆Grx to be valid [132–135].16) In this special case, |∆Grx| is the maximum work obtainable
per molecular reaction if ∆Grx < 0 and the minimum work required to enable it if ∆Grx > 0.
But in this special case ∆Grx = −T∆Srx where ∆Srx is the total entropy change of the (system
+ surroundings) per molecular reaction. Hence Keq = exp(−∆Grx/kT) is the corresponding
special case of Keq = exp(∆Srx/k). In this chapter ∆S and ∆Srx are always taken to be total

entropy changes of the entire Universe or at least of our L-region thereof.]

16 (Re: Entry [132], Ref. [132]) One point: On p. 479 of Ref. [132], it is stated that in an adiabatic process all of the
energy lost by a system can be converted to work, but that in a nonadiabatic process less than all of the energy lost
by a system can be converted to work. But if the entropy of a system undergoing a nonadiabatic process increases,
then more than all of the energy lost by this system can be converted to work, because energy extracted from the
surroundings can then also contribute to the work output. In some such cases positive work output can be obtained at
the expense of the surroundings even if the change in a system’s energy is zero, indeed even if a system gains energy.
Examples: (a) Isothermal expansion of an ideal gas is a thermodynamically spontaneous process, yielding work even
though the energy change of the ideal gas is zero. (b) Evaporation of water into an unsaturated atmosphere (relative
humidity less than 100%) is a thermodynamically spontaneous process, yielding work even though it costs heat, i.e.,
yielding work even though liquid water gains energy in becoming water vapor: see Refs. [133–135] concerning this
point.
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Thus the doom and gloom that one would dread based solely on Boltzmann’s
relation Prob (σ) = exp(−σ/k) does not obtain, and furthermore will never obtain
if there exists imposed two-time low-entropy boundary conditions in an oscillating
cosmology [16,61,62,88–94,101–105], or Planck-power (or other [21–25,33–35]) imposed

sustained low-entropy mass-energy input such as hydrogen in a nonoscillating one [78]. Thus
creation — initial via Big Bang with or without inflation, etc. [26–31], via Everett [96–98],

and sustained via Planck-power (or other [21–25,33–35]) input — being kinetically rather

than thermodynamically controlled [72–77] seems to be at least a reasonable tentative

explanation of why we are privileged to be not merely minimal extraordinary observers

but super-extraordinary observers — more correctly hyper-extraordinary observers — with

an entire Universe to explore and enjoy [61,62]. By the cosmological principle [51] we may

hope that this is true everywhere in the Multiverse.

As a brief aside, we note that many chemical reactions are similarly kinetically rather than

thermodynamically controlled [72–77], in like manner as Eq. (8). While only chemical

reactions are discussed in Refs. [72–77], the same principle likewise applies with respect

to all kinetically rather than thermodynamically controlled processes, for example kinetically

rather than thermodynamically controlled physical and nuclear reactions. As we discussed

in Sect. 4 if nuclear reactions were thermodynamically rather than kinetically controlled

then there would be nothing but (iron + equilibrium blackbody radiation) — an iron-dead

Universe.

8. A brief review concerning the Multiverse, and some alternative

viewpoints

Four Levels of the Multiverse have been recognized [136–141]: Level I, the infinite number of
L-regions and O-regions within an island Universe, with identical fundamental and effective
laws of physics but with generally different histories (given the infinite number of L-regions
and O-regions per island Universe, identical histories must occur in sufficiently widely
separated ones); Level II, an infinite number of island Universes with identical fundamental
but different effective laws of physics; Level III, Dr. Hugh Everett’s many worlds [96–98];
and Level IV, wherein — within limits [136–142] — different fundamental laws of physics
are allowed [136–142].17

Dr. Max Tegmark [138,139] writes that Level III is at least in some sense may be equivalent to
Levels I+II: Level I incorporates different quantum branches within one single given Hubble
volume of an infinity of such volumes contained in an island Universe. Level II incorporates
different quantum branches within an entire island Universe. Level III incorporates different
Level I and Level II Universes within one single given quantum branch. But it seems that
Levels I+II, or at the very least Level I, must exist first, because Levels I+II, or at the very least
Level I, seems prerequisite for the existence of entities capable of executing Dr. Hugh Everett’s
program [96–98].

17 (Re: Entry [137], Ref. [112]) Reference [112] provides discussions of a spectrum of numerous viewpoints concerning
Multiverses and related topics, Dr. Max Tegmark’s viewpoint among this spectrum of viewpoints.
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We should note that if conscious observers, also referred to as self-aware substructures
(SASs) [143–145], are not merely self-aware but also have free will, then they have at least
some degree of choice concerning creation of Level III Universes: They then have at least
some freedom to choose whether or not to make a given observation or measurement, which
observations and measurements to make, and when to make them. Even if the Everett
interpretation [96–98] of quantum mechanics is incorrect [146] and Level III Universes
exist only in potentiality until one and only one of them is actualized [146], say via
wave-function collapse [147], then an SAS with free will still has this degree of choice.
Even if the probabilities of the possible outcomes of any given observation or measurement
cannot be altered, the set of possible outcomes on offer to Nature depends on which
observations and measurements are chosen by an SAS with free will, and when they are
on offer depends on when an SAS with free will chooses to observe or measure. Thus
irrespective of the character of Level III Universes, if free will exists then there is this qualitative
difference between unchosen observations and measurements made by Nature herself, say
via decoherence [148,149], and chosen ones made by an SAS with free will. Furthermore, a
choice made by an SAS with free will seems to be an initial condition on the future history of
the Universe, or on the future history of the Level III Multiverse of quantum branches given
the Everett scenario [96–98]. The question then arises of compatibility with the Mathematical
Universe Hypothesis (MUH), according to which initial conditions cannot exist [150,151]. But
both the very notion of choice [152] and exhortations to "Let’s make a difference!" [153] seem
incompatible with denial of free will. Moreover, “decoherence” is perhaps too strong a term;
“delocalization of coherence” seems more correct. Since quantum-mechanical information
in general cannot be destroyed, quantum-mechanical coherence in particular is never really
destroyed, merely delocalized. As with any delocalization process there is an accompanying
increase in entropy. But within a system of finite volume this increase in entropy is limited to
a finite maximum value, implying recoherence, or more correctly relocalization of coherence,
after a Poincaré recurrence time [108,154,155]. Of course, typical Poincaré recurrence
times [108,150,151] of all but very small systems are inconceivably long, but in a very small
system at least partial recoherence, or more correctly relocalization of coherence, may occur
in a reasonable time. We should mention that even before the term “decoherence” had
been coined, some aspects of decoherence, or more correctly delocalization of coherence, had
been partially anticipated [156,157]. For general reviews concerning the quantum-mechanical
measurement problem see, for example, Refs. [149] and [156–159].18

Perhaps the concepts considered in this chapter may be at least to some degree applicable
to the maximal proposed version of the Multiverse, the Level IV Multiverse [136–145],
wherein all well-defined mathematical structures [140–145] — but not all arbitrary figments
or fantasies of one’s imagination [140–142] — would be realized as physically-existing
Universes [140–145]. But as Dr. Alex Vilenkin points out, not all mathematical structures,
indeed not even all allowable mathematical structures given the restrictions stated by

18 In Chap. 23 of Ref. [156], Dr. David Bohm expresses the viewpoint that classical mechanics should be considered in
its own right and as prerequisite for quantum mechanics, rather than as a limiting case of quantum mechanics.
This is opposed to the more generally accepted viewpoint that classical mechanics should be considered as a
limiting case of quantum mechanics. Moreover, even Dr. David Bohm expresses the latter viewpoint in his own
recognition of the Universe as ultimately quantum-mechanical, in Chap. 8 (especially Sects. 8.22–8.23) and Chap. 22
(especially Sects. 22.2–22.3) of Ref. [156]. But, in any case, this is apart from Dr. David Bohm’s partial anticipation of
certain aspects of decoherence, or more correctly delocalization of coherence, in Sect. 6.12 and Chap. 22 (especially
Sects. 22.11–22.12) of Ref. [156].
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Dr. Max Tegmark [140–142], are equal: some are more beautiful and hence more equal
than others [160]. Alex Vilenkin writes: “Beautiful mathematics combines simplicity with
depth [160].” (But also that “simplicity” and “depth” are almost as difficult to define as
“beauty [160].”) But Dr. Alex Vilenkin also writes: “Mathematical beauty may be useful
as a guide, but it is hard to imagine that it would suffice to select a unique theory out of
the infinite number of possibilities [161].” These points are also considered by Dr. Roger
Penrose [162]. Yet even so mathematical beauty should have at least some selective power.
A case in point: Newton’s laws have both simplicity and depth, and hence are beautiful.
But Einstein’s laws have both greater simplicity and greater depth, and hence are more beautiful.
The laws of motion have the same form in all reference frames in General Relativity but not
in Newton’s theory (for example, Newton’s theory requires extra terms for centrifugal and
Coriolis forces in rotating reference frames), thus General Relativity has greater simplicity;
additionally, Newton’s theory is a limiting case of Einstein’s but not vice versa, thus General
Relativity also has greater depth. Hence might a Universe wherein Newton’s laws are
the fundamental laws, not merely a limiting case of relativity and quantum mechanics, be
denied physical existence in a Level IV Multiverse — because even though it is a beautiful
mathematical structure, it is not the maximally-beautiful one that maximally entails both
simplicity and depth? While (even neglecting quantum mechanics) we cannot be sure
if General Relativity is the maximally-beautiful mathematical structure, we can be sure
that Newtonian theory, while beautiful, is not maximally beautiful. Moreover, while the
Multiverse is eternal, it nonetheless, at least below Level IV [136], did have a beginning [99].
The laws of quantum mechanics — our laws of quantum mechanics — governed the initial
tunneling event that created not merely our Universe but the Multiverse, at least through
Level II [99,136]. Thus these laws, on whatever tablets they are written, must have existed
before, and must exist independently of, the Multiverse at least through Level II [99,136] —
not merely of our island Universe [99]. Concerning Level III, it seems that Levels I+II, or
at the very least Level I, must exist first, because Levels I+II, or at the very least Level I,
seems prerequisite for the existence of entities capable of executing Dr. Hugh Everett’s
program [96–98]. But might the prerequisites for a beginning and for the pre-existence of our
laws of quantum mechanics be general, operative even at Level IV [136]? But if so then might
Level IV — but not Levels I, II, and III — be more restricted than has been suggested [136]?
For then might our laws of quantum mechanics be part of the one maximally-beautiful
mathematical structure that maximally entails both simplicity and depth — our fundamental
(not merely effective) laws of physics [136] — after all? Then perhaps this one maximally
beautiful mathematical structure, this maximal possible entailment of both simplicity and
depth, is the only one realized via physically-existing Universes. But if this is the case then
the question arises: Why does this one maximally beautiful mathematical structure permit
life [163] (at the very least, carbon-based life as we know it on Earth)?

We must admit that in this chapter we have not even scratched the surface, as per this
paragraph and the two immediately following ones. There are many alternative viewpoints
concerning the Multiverse and related issues. We should at least mention a few of them that
we have not mentioned until now. According to at least one of these viewpoints, inflation
is eternal into the past as well as into the future, and hence has no beginning as well as no
end [164–166]. But perhaps this is compatible with inflation having a beginning if regions
of inflation in the forward and backward time directions are disjoint and incapable of any
interaction with each other [167]. Then perhaps observers in both types of regions would
consider their home region to be evolving forward, not backward, in time. According to
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other viewpoints, inflation not only has a beginning but also has an end — eternal inflation
is impossible [168,169]. According to one of these viewpoints, the end of inflation is imposed
by the increasingly fractal nature of spacetime [168,169]. We also note that Dr. Roger Penrose
considered another difficulty associated with possible fractal nature of spacetime: inflation
does not solve the smoothness and flatness problems if the structure of spacetime is fractal, let
alone worse than fractal [170]. According to another of these viewpoints, the end of inflation
is imposed by the Big Snap, according to which expansion of space will eventually dilute
the number of degrees of freedom per any unit volume, and specifically per Hubble volume,
to less than one, although the Universe will probably be in trouble well before the number
of degrees of freedom per Hubble volume is reduced to one [171,172]. But perhaps new
degrees of freedom can be created to compensate [171,172]. Perhaps Planck-power input, if it
exists, can, because it replenishes mass-energy, also replenish degrees of freedom — thereby
precluding the Big Snap. In Dr. Max Tegmark’s rubber-band analogy, this corresponds to
new molecules of rubber being created (at the expense of negative gravitational energy of
a "rubber-band Universe") the rubber band stretches, thereby keeping the density of rubber
constant [171,172]. But, with or without a Big Snap [171,172], if inflation does have an end
for any reason whatsoever, then my question to Dr. Roger Penrose in Sect. 6 is answered
negatively: then the vast majority of Big Bangs will be noninflationary.

There are also many proposed solutions to the entropy problem (why there is so very much
more than one minimal Boltzmann brain in our L-region and O-region), some of which we
have already discussed and/or cited in Sects. 5–8, other than Planck-power input. But there
are still other proposed solutions to the entropy problem. One other proposed solution that
we have not yet cited entails quantum fluctuations ensuring that every baby Universe starts
out with an unstable large cosmological-constant, which corresponds to low total entropy
because it is thermodynamically favorable for the consequent high-energy false vacuum to
decay spontaneously [173,174]. Yet another proposed solution that we have not yet cited
entails observer-assisted low entropy [172].

There are also many alternative viewpoints concerning fine-tuning and life in the Universe.
It has been noted that since physical parameters such as constants of nature, strengths of
forces, masses of elementary particles, etc., all have real-number, or perhaps rational-number,
values. The range of real numbers, or even of rational numbers, is infinite. (The countable
infinity of rational numbers is smaller than the uncountable infinity of real numbers, but
even a countable infinity is still infinite.) Hence, if the probability of occurrence of a given
real-number, or even rational-number, value of a given parameter is uniform, or at least
non-convergent, then there is only an infinitessimal probability of this value being within
any finite range [175,176]. But if thee are an infinite number of L-regions and O-regions,
this infinity may be as large or even larger. We should also note that while some scientists
are favorable towards the idea of fine tuning [177], others are skeptical to the point of not
requiring a Multiverse to explain it away, but stating that it is an invalid concept even if our
O-region constituted the entire Universe [178–180]. Even this skeptical viewpoint admits that
only a very small range of parameter space is consistent with carbon-based life as we know
it on Earth [180], but assumes that a much larger range of parameter space is consistent
with life in general [180]. But life, at least chemically-based life, probably must be based
on carbon, because no other element even comes close to matching carbon’s ability to form
highly complex, information-rich molecules. Even carbon’s closest competitor, silicon, falls
woefully short. Also, nucleosynthesis in stars forms carbon more easily than silicon [181], so
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carbon is more abundant in the Universe [181]. We conclude by citing a paper that, while
favoring a purely materialistic viewpoint, discusses would be required to seriously question
it [182], and a book that explores many topics and viewpoints [183]. Reference [183] considers
not only many, probably most, of the topics and viewpoints also considered in references that
we have previously cited, but also many additional topics and viewpoints.
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