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Abstract

Xylem is a plant vascular tissue that transports water and dissolved minerals from the
roots to the rest of the plant. It consists of specialized water-conducting tracheary ele‐
ments, supporting fibre cells and storage parenchyma cells. Certain plant pathogenic fun‐
gi, oomycetes and bacteria have evolved strategies to invade xylem vessels and cause
highly destructive vascular wilt diseases that affect the crop production and forest eco‐
systems worldwide. In this chapter, we consider the molecular mechanisms of root-spe‐
cific defence responses against vascular wilt pathogens, with an emphasis on the most
important and well-studied fungal (Verticillium spp. and Fusarium oxysporum) and bacteri‐
al (Xanthomonas spp. and Ralstonia solanacearum) pathogens. In particular, we present the
current understanding of plant immune responses, from invasion perception to signal
transduction and termination. Furthermore, we address the role of specific transcription
factors involved in plant immunity and their regulatory network. We also highlight the
crucial roles of phytohormones as signalling molecules in local and systemic defence re‐
sponses. Finally, we summarize the current knowledge of plant defence responses to xy‐
lem-invading pathogens to devise new strategies and methods for controlling these
destructive plant pathogens.

Keywords: Vascular wilt pathogens, effectors, plant innate immunity, signal transduc‐
tion, biotic stress

1. Introduction

The disease triangle concept, introduced in the 1960s by George McNew to predict plant
disease outcomes, shows the complex interactions among the environment, the host and the
infectious (or abiotic) agent [1]. Plants, continuously challenged by numerous abiotic stresses,
potential pests and pathogens, have evolved efficient strategies to perceive and respond to
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such threats. Plants lack specialized immune cells and their survival relies upon a highly
sophisticated innate immune system, in which each plant cell responds autonomously [2–5].
The first line of defence is a basal resistance response called pattern-triggered immunity (PTI).
It is induced by recognition of exogenous microbe or pathogen-associated molecular patterns
(MAMPs or PAMPs) or endogenous molecules released on pathogen perception or pathogen-
induced cell damage (damage-associated molecular patterns, DAMPs) via pattern-recognition
receptors (PRRs) in the plasma membrane [4]. Successful pathogens overcome PTI by secreting
effectors, hydrolytic enzymes or toxins, which suppress or interfere with host defence
molecules [6]. In an evolutionary arms race, plants have evolved a robust defence response
network termed effector-triggered immunity (ETI) to intercept pathogen effectors through
intracellular receptors, such as nucleotide-binding site/leucine-rich repeat (NLR) proteins
[5,7,8]. An intricate network of signalling pathways transduces these incoming signals into a
diverse array of immune responses activating reactive oxygen species (ROS) generation, MAP
kinases, Ca2+ signalling, the production of phytohormones and extensive transcriptional
reprogramming [9].

In the past, comprehensive research has been dedicated to understanding plant physiolog‐
ical  and  molecular  responses  to  individual  abiotic  and  biotic  stresses  under  controlled
laboratory conditions.  Recent  studies  of  plant  responses to concurrent  abiotic  and biotic
stress  conditions  [10–16]  have  demonstrated  that  plants  perceive  and  respond  to  com‐
bined  stresses  in  a  specific  and  unique  manner.  Moreover,  the  underlying  signalling
pathways are carefully modulated [14,17,18] and coordinated to ensure that plant growth
and fitness are not significantly retarded [19].

Vascular wilt pathogens are soil-borne bacteria, fungi and oomycetes that employ various
infection strategies to invade plant roots at different infection sites [20]. They subsequently
advance inter- or intracellularly through the root cortex and enter the xylem vessels, where
they proliferate and spread passively with xylem sap to aerial plant parts [21]. The character‐
istic wilt symptoms develop as a consequence of obstructed transportation of water and
minerals, either due to the physical blockage of vessels by the pathogen or indirectly due to
the activation of plant physical defence responses (e.g. formation of tyloses, accumulation of
pectin-rich gels and gums) that confine the further spread of the pathogen [22]. In addition to
wilting, other disease symptoms include vein clearing, leaf epinasty, chlorosis, vascular
browning, stunting, necrosis and eventually plant death [21–24].

Primarily due to the specific lifestyle of vascular wilt pathogens, relatively little is known about
their interactions with host plants and root-specific defence responses on molecular and
biochemical levels compared to foliar pathogens. This chapter, therefore, summarizes the
currently available molecular, cellular and systems biology data gathered from studies of
signalling networks in model plants and crops challenged by bacterial or fungal pathogens
and applies this general knowledge to advance understanding of vascular wilt pathogenesis
and implement all these findings into the design of new strategies for the protection of crops
and forest ecosystems.
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2. Plant immune signalling initiation

Several factors contribute to the complex regulatory mechanisms in the initiation of plant
immune signalling: (i) as sessile organisms, plants need to respond promptly to danger signals,
(ii) each plant cell reacts autonomously to different stimuli, but the response needs to be
integrated at a higher organizational level to ensure the plant’s survival and (iii) immune
reactions are energy- and resource-demanding processes requiring the proper timing and
amplitude of response [4]. Typically, immune responses occur on recognition of conserved
microbe-, pathogen- or damage-associated molecular patterns or after perception of effector
molecules that are species-, race-, or strain-specific and contribute to pathogen virulence [25].
However, not all microbial elicitors conform to the common distinction between PAMPs and
effectors, and so Thomma et al. [26] proposed that plant immunity should be considered as a
continuum, instead of a two-branched system composed of PAMP-triggered immunity (PTI)
and effector-triggered immunity (ETI). An alternative perspective of plant innate immunity
as a system that evolves to detect invasion has recently been extended into a so-called invasion
model [27]. In this model, invasion patterns (IPs), externally encoded or modified-self ligands
that signify invasion, are perceived by plant invasion pattern receptors (IPRs) and induce IP-
triggered responses that do not result in immunity by default.

2.1. Plant PRRs convey danger signals to the intracellular immune signalling pathways

Recently emerging structural biology data on plant–pathogen interactions, [28] together with
data obtained primarily from genetic and biochemical studies on the leaves of model plants
and crops, have revealed that fine-tuning and coordination of immune responses are achieved
within large protein complexes at the plasma membrane, where plant PRRs reside [4]. Plant
PRRs are either receptor-like kinases (RLKs) or receptor-like proteins (RLPs) [4,6,25,29]. RLKs
are modular proteins comprised of an extracellular domain involved in recognition of MAMPs/
DAMPs, a single-pass transmembrane domain and a cytosolic serine/threonine kinase domain
that transmits a signal to downstream signalling components. RLPs have a similar architecture,
but their short cytoplasmic tail lacks kinase activity. RLPs, therefore, probably form hetero‐
meric complexes with RLKs or other cytosolic kinases to relay downstream signalling.
Extracellular domains of PRRs contain various motifs involved in recognition and binding of
ligands. Leucine-rich repeat (LRR) motifs are widespread and serve as a scaffold for protein-
or peptide–protein interactions [30]. Well-characterized examples of LRR–RLKs are Arabidop‐
sis FLS2 (flagellin-sensitive 2) and EFR (elongation factor Tu receptor), which bind flagellin
fragment flg22 and EF-Tu peptide elf18, respectively [31,32]. Lysine motifs (LysMs), lectin and
epidermal growth factor (EGF)-like domains are found in PRRs that recognize carbohydrate
moieties, such as fungal chitin [33,34] or bacterial peptidoglycans [35].

2.1.1. Perception of chitin

The chitin-responsive PRR system has been thoroughly investigated in both dicots and
monocots. The perception of chitin in monocot plants is best described in rice (Oryza sativa).
Chitin elicitor binding protein (OsCEBiP) is a receptor-like protein that specifically binds chitin
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oligomers [36]. In the absence of chitin, OsCEBiP exists as a homodimer [37]. On binding of
chitin octamer, OsCEBiP associates with receptor-like kinase OsCERK1 and forms heterodim‐
ers [37,38]. This interaction activates the OsCERK1 kinase domain to become phosphorylated.
Subsequently, active OsCERK1 phosphorylates a guanine nucleotide exchange factor OsRac‐
GEF, which activates a Rho-type small GTPase OsRac [39]. OsRac acts as a molecular switch
in many plant signalling pathways and, among other things, regulates the production of ROS
by the NADPH oxidase OsRbohB [40].

The model dicot plant Arabidopsis thaliana harbours chitin elicitor receptor kinase 1/LysM-
containing receptor-like kinase1 (CERK1/LYK1), which perceives chitin (a polymer of N-
acetyl-D-glucosamine, NAG) through its LysM motif [33]. Although the AtCERK1
extracellular domain contains three tandem LysMs, only LysM2 binds NAG5 [41]. This
interaction, however, fails to trigger immune responses. Downstream signalling has been
observed only on binding of chitin octamer, which acts as a bivalent ligand and induces CERK1
dimerization [41]. Another LysM-containing cell surface receptor, AtLYK5, has recently been
proposed as the primary chitin receptor, due to a significantly higher binding affinity for
NAG8 compared to AtCERK1 [42]. AtLYK5 exists as a homodimer in the absence of chitin.
Binding of chitin to AtLYK5 homodimer promotes the association of AtLYK5 with AtCERK1.
This leads to dimerization of AtCERK1 and activation of its kinase domain. The chitin signal
is then transduced downstream to mitogen-activated protein kinases MPK3 and MPK6 [33].

2.1.2. Perception of flagellin

Extensive research of the model plant Arabidopsis thaliana has elucidated molecular mecha‐
nisms triggered in response to recognition of bacterial flagellin by evolutionary conserved LRR
RLK flagellin-sensitive 2 (FLS2) [31]. The extracellular domain of FLS2 contains 28 LRR and
binds the 22-amino acid long flagellin epitope flg22 [43]. Immediately after, FLS2 associates
with co-receptor brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1)/
somatic embryogenesis receptor-like kinase 3 (SERK3) to form a heterodimer [44–46]. BAK1
is a key regulatory LRR RLK coordinating growth–defence trade-offs [47], since it is required
for early defence responses in PTI [48] but also implicated in brassinosteroid hormone
signalling [49]. BAK1 phosphorylates receptor-like cytoplasmic kinase Botrytis-induced kinase
1 (BIK1), which interacts and forms a complex with both BAK1 and FLS2 [50]. BIK1 is subse‐
quently auto-phosphorylated at tyrosine and serine/threonine residues [51]. Activated BIK1
contributes to flg22-triggered calcium influx from apoplast [52] and phosphorylates NADPH
oxidase RbohD involved in reactive oxygen species (ROS) production [53].

2.1.3. Perception of peptidoglycan

Peptidoglycan (PGN), a polymer of N-acetylglucosamine and N-acetylmuramic acid branched
with a short peptide, is an essential component of a bacterial cell wall and is another well-
studied MAMP. In Arabidopsis, the PGN perception system is comprised of two GPI-anchored
LysM domain RLPs, LYM1 and LYM3, which bind PGN, and a transmembrane RLK AtCERK1,
which probably relays the PGN signal downstream [35]. Rice has a similar PGN detection
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system, involving LysM RLK OsCERK1 [54] and two LysM-containing proteins, OsLYP4 and
OsLYP6, which not only bind PGN but also associate with chitin oligomers [55].

2.1.4. Perception of DAMPs

Some PRRs respond to damage-associated molecular patterns (DAMPs), endogenous mole‐
cules such as cell wall fragments or peptides released on pathogen attack or various abiotic
stresses [25,56]. Partial degradation of pectic polysaccharide homogalacturonan (HGA) by
pathogen or plant polygalacturonases produces oligogalacturonides (OGs), oligomers of
α-1,4–linked galacturonic acid [57,58]. In Arabidopsis, OGs are perceived by wall-associated
kinase 1 (WAK1) Ser/Thr RLK kinase with an extracytoplasmic domain that contains several
EGF-like repeats [59]. The signal is then relayed to the MAP kinase signalling pathway, where
AtMPK3 and AtMPK6 become phosphorylated and induce expression of several defence genes
[60]. Additional OGs-triggered defence responses include activation of NADPH oxidase
AtRbohD involved in the generation of ROS, production of NO and deposition of callose in
the plant cell walls [57,58].

The best studied peptides acting as DAMPs belong to the plant elicitor peptides (Peps) family.
They are processed from precursor PROPEPs [61,62]. AtPep1, a 23 amino acid peptide released
from the C-terminal of PROPEP1, was the first peptide elicitor isolated from Arabidopsis [61],
but similar peptides were also later confirmed in other plants [63]. AtPep1 is recognized by
two LRR RLK, PEPR1 and its paralog PEPR2 [64,65]. However, signalling is initiated only in
complex with co-receptor LRR RLK BAK1 [66]. The active receptor complex consequently
induces the expression of MAP kinase 3 (MPK3), WRKY transcription factors and defence-
related genes such as PR-1 and PDF1.2 (encoding defensin) [63]. Moreover, the cytosolic kinase
domain of PEPR1 has guanylyl cyclase activity, which generates cGMP from GTP [67]. An
increased local concentration of cGMP has been proposed to open cyclic nucleotide-gated
channels (CNGC2) in the plasma membrane and activate cytosolic Ca2+ signalling [67,68].

2.2. Intracellular immune receptors NLRs detect pathogen effectors

In addition to PRRs, plants have evolved a second class of immune receptors that intercept
effectors in different parts of the cell [8]. These intracellular receptors, so called NLRs, are
characterized as multi-domain proteins that have a conserved central nucleotide-binding (NB)
domain and variable C-terminal leucine-rich repeats (LRR) domain [28]. In terms of their
distinct N-terminal domains, NLRs are broadly divided into two groups: TNLs that harbour
a Toll–interleukin 1 receptor (TIR) domain and CNLs that contain a coiled-coil (CC) domain
[69–71]. NLRs belong to signal transduction ATPases with numerous domains (STAND) that
operate as molecular switches cycling between an inactive closed ADP-bound state and active
open state with bound GTP [72–74]. In the resting state, N-terminal TIR or CC and C-terminal
LRR domains sterically inhibit the NB domain from ADP–ATP exchange. On pathogen
recognition, a series of conformational changes occur that expose the NB domain, promote
ADP–ATP exchange and initiate signal transduction [8]. Effector recognition by NLRs often,
but not always, leads to a form of programmed cell death termed as a hypersensitive response
[75]. NLRs are, therefore, under precise control by accessory proteins. NLRs interact with
conserved Hsp90-Sgt1-RAR1 protein complexes for proper folding, accumulation and

Signalling Crosstalk of Plant Defence Responses to Xylem-invading Pathogens
http://dx.doi.org/10.5772/61955

415



regulation [76,77]. Moreover, Sgt1 interacts with the suppressor of rps4-RLD (SRFR1) nega‐
tively to regulate NLRs accumulation and prevent autoimmune activation [78].

Various strategies of effector recognition by NLRs exist and are represented in different
models. In the gene-for-gene model, originally described by Flor in 1971, NLRs can recognize
effectors directly (e.g. Pita-AvrPita [79], Pto-AvrPto [80] and many others) acting like receptor
and ligand pairs that initiate a cascade of reactions leading to resistance [3]. When considering
pathogen effector diversity, it is more likely that a single NLR recognizes multiple effectors
from diverse pathogens in the presence of other host proteins. This hypothesis is explained by
the guard model, in which the NLR protein is assigned the role of a sentinel that is activated
indirectly by detecting an effector-modified host protein and induces a defence response
[81,82]. An example of such mechanism is given by Arabidopsis CNL receptors, RPM1 and RPS2,
which constantly monitor host protein RIN4 (a negative regulator of basal resistance) for
interference with Pseudomonas syringae effectors AvrB, AvrRpm1 and AvrRpt2 [83]. Another
indirect effector recognition strategy is proposed in the decoy model [84]. As guarded effector
targets are evolutionarily unstable, it is likely that the targeted host gene has duplicated and
evolved into decoy proteins. These serve as bait to trap effectors that target structurally related
proteins involved in basal defence. For example, in the inactive state, Arabidopsis CNL RPS5
interacts with its N-terminal CC domain with protein kinase PBS1, which has no function in
basal resistance [85]. Cleavage of PBS1 by Ps. syringae effector AvrPphB activates RPS5 [86].
However, several PBS1-like kinases (including Botrytis-induced kinase 1 (BIK1)) are also
cleaved by AvrPphB [87]. PBS1, therefore, acts as a decoy that prevents cleavage of BIK1, which
is an important component of PRR signalling [53] and the key AvrPphB target. An integrated
decoy model has recently been proposed [5]. In this model, the effector-targeted plant protein
is duplicated and fused to one member of the NLR pair to act as bait that, on effector binding,
triggers defence signalling by the second NLR.

Activated NLRs trigger a variety of immune responses, from the generation of ROS, elevation
of intracellular Ca2+, activation of MAPK cascades, transcriptional reprogramming to produc‐
tion of phytohormones [8]. Although effector-triggered responses are qualitatively similar to
immune responses elicited by MAMPs/DAMPs, there are quantitative differences in the
strength and duration of pathways, which result in different resistance responses and signal‐
ling networks [17].

2.3. Signal transduction cascades

Perception of MAMPs/DAMPs by their cognate receptors triggers an array of immune
responses, comprising changes in intracellular calcium levels [Ca2+]i, membrane potential
depolarization, extracellular alkalinization, production of ROS, NO and phosphatidic acid,
activation of kinases (mitogen-activated protein kinases (MAPKs) or Ca2+-dependent protein
kinases (CDPKs)), transcriptional reprogramming and changes in plant hormone concentra‐
tions (e.g. ethylene, salicylic and jasmonic acid) [88,89].

2.3.1. Calcium and ROS signalling interconnection

Ca2+ is a ubiquitous second messenger released in response to various stresses and develop‐
mental processes. In Arabidopsis, various MAMPs/DAMPs induce distinct and sustained
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elevations of intracellular calcium concentration ([Ca2+]i), which differ in the lag phase and
amplitude of response [89,90]. Moreover, changes in [Ca2+]i are organ-specific and correlate
with the expression patterns of the corresponding MAMP/DAMP receptors. Chitin octamer
and Pep1 induce similar responses in seedling shoots and roots, while roots are insensitive to
elf18 and show only a minor response to flg22 [90]. Furthermore, Ca2+ fluxes are generated
from different sources; flg22/FLS2 signalling involves the release of Ca2+ from intracellular
stores (e.g. endoplasmic reticulum and/or tonoplast) and inositol phosphate signalling,
whereas Pep/PEPR signalling requires an influx of Ca2+ from the apoplast [68]. The identity of
plant Ca2+ channels and pumps involved in the generation of Ca2+ signals is largely unknown,
although some candidates (e.g. ionotropic glutamate receptor (iGluR)-like channels, cyclic
nucleotide gated channels (CNGCs) and annexins in plasma membrane and two-pore-channel
1 (TPC1) in the tonoplast membrane) have been investigated [88,91]. Elevated [Ca2+]i is detected
by Ca2+sensor proteins such as calmodulins (CaMs), calcium-dependent protein kinases
(CDPKs), calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs)
[88,91]. CaMs are highly conserved eukaryotic proteins that bind free Ca2+ with four EF-hand
motifs and regulate the function of their interacting proteins, such as CaM-binding transcrip‐
tion factors [88]. CDPKs are unique proteins acting as sensors and decoders of Ca2+ signals and
are suited for rapid responses to stimuli. Binding of Ca2+ via four EF-hand domain motifs in
the C-terminus activates the CDPKs’ N-terminal kinase domain and promotes transmission
of a Ca2+ signal by phosphorylating different target proteins [91]. The functional specificity of
CDPKs is achieved by targeting distinct membrane subdomains and involves specific lipid
modifications (e.g. N-terminal myristoylation, S-acylation) [91]. In contrast to CDPKs, CBLs
are Ca2+ sensors without enzymatic activity. They bind Ca2+ with four EF hands and then
associate with CIPKs through the NAF motif in the kinase C-terminal regulatory domain. This
interaction liberates kinase from auto-inhibition and enables conversion of the Ca2+ signal into
phosphorylation events [91]. Like CDPKs, CBLs have different lipid modifications (e.g. N-
terminal myristoylation, S-acylation) that determine their localization and, consequently, the
site of action of CBL–CIPK complexes [91].

Rapid production of reactive oxygen species (ROS) in response to MAMPs/DAMPs depends
primarily on respiratory burst oxidase homologues (RBOHs) [92,93]. These NADPH oxidases
are integral membrane proteins that generate superoxide anions (O2

−), which are rapidly
converted into hydrogen peroxide (H2O2). RBOHs have cytosolic FAD- and NADPH-binding
domains in the C-terminal region, six membrane-spanning domains and a cytosolic N-terminal
extension that harbours two EF-hand motifs and multiple phosphorylation sites [94]. Recent
studies in Arabidopsis have revealed different regulation mechanisms of RBOHD and RBOHF-
dependent ROS production. RBOHF regulation involves direct binding of Ca2+ to its EF-hands
and Ca2+-dependent phosphorylation by CBL1/9–CIPK26 complexes [95]. Direct binding of
Ca2+to EF-hand motifs on MAMP-induced elevation of [Ca2+]i causes conformational changes
and activation of RBOHD [96]. Additionally, RBOHD is activated by protein phosphorylation
at multiple sites via calcium-dependent protein kinase 5 (CPK5)[97,98] and MAMP-receptor-
associated Botrytis-induced kinase 1 (BIK1) [53]. In addition to local defences, Ca2+ and
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RBOHD-dependent ROS production is implicated in the systemic signal propagation required
for long-distance signalling [98–100]. In accordance with the current model [98], the perception
of MAMPs triggers a rapid rise of [Ca2+]i, causing the activation of CPK5 and subsequent
phosphorylation of RBOHD and other CPK5 substrates. Apoplastic H2O2, generated after
dismutation of the O2

− produced by the RBOHD, probably represents the cell-permeable signal,
which serves as the stimulus for further reiterations of calcium-dependent CPK5 activation
and RBOHD phosphorylation, resulting in rapid propagation of the MAMP signal throughout
the plant.

2.3.2. MAPK signalling

Plant mitogen-activated protein kinase (MAPK) cascades generally comprise MAPKK kinases
(or MEKKs), which receive signals from receptors/sensors and phosphorylate downstream
MAPK kinases (or MKKs) and which subsequently activate MAPKs (or MPKs) that control the
activities and synthesis of a plethora of transcription factors (TFs), enzymes, hormones,
peptides and antimicrobial chemicals [101,102]. In Arabidopsis, two kinase cascades, MKK4/
MKK5–MPK3/MPK6 [103] and MEKK1–MKK1/MKK2–-MPK4, [104] are activated after
perception of MAMPs/DAMPs. The activation of MEKK1–MKK1/MKK2–MPK4 negatively
regulates ROS and salicylic acid (SA) production [105,106], as well as repressing cell death and
immune responses [107]. MKK4/MKK5–MPK3/MPK6 cascade positively regulates the
expression of several defence–related genes [60,103] and promotes accumulation of camalexin
via transcription factor WRKY33 [108,109]. Moreover, activation of MPK3/MPK6 is required
for full priming of stress responses [110] and increases ethylene production via ACC synthases
ACS2/ACS6 [111]. Given the essential nature of the MKK4/MKK5–MPK3/MPK6 cascade, its
activation has to be precisely controlled, since inappropriate activation (e.g. constitutively
activated MKK4/MKK5 [112] or over-expression of MPK3 [113]) may promote hypersensitive
response (HR)-like cell death or be lethal to plants. MPK3 has also recently been indicated to
be a negative regulator of defence gene expression, flg22-triggered SA accumulation and
disease resistance to Pseudomonas syringae [114]. Another negative regulator of MAPK activities
is MAPK phosphatase 2 (MKP2), which interacts with and dephosphorylates MPK3 and MPK6
[115]. Additionally, a Raf-like MAPKK kinase (EDR1) has been proposed to negatively regulate
the MKK4/MKK5–MPK3/MPK6 cascade by physically interacting with MKK4 and MKK5 via
its N-terminal domain [113].

2.4. Transcriptional reprogramming converges with complex phytohormone signalling
networks

Transcription factors (TFs) involved in plant immunity reside in transcriptional complexes
and, together with co-regulatory proteins, directly or indirectly recruit RNA polymerase II to
the target promoters or release it from them [116]. TFs vital for plant immunity comprise
members of the AP2/ERF, bHLH, bZIP, MYB, NAC and WRKY TF families and perform
diverse roles [9]. For instance, certain members of apetala2/ethylene-response element binding
factor (AP2/ERF) participate in the regulation of genes related to the jasmonic acid (JA) and
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ethylene hormone signalling pathways [117]. AtMYC2/JAI1/JIN1 and closely related proteins
AtMYC3 and AtMYC4 belong to basic-helix-loop-helix (bHLH) TFs and coordinate JA-
mediated defence responses with other phytohormones (salicylic acid (SA), abscisic acid
(ABA), gibberellins (GA) and auxin) [118]. TGA/basic domain leucine zipper (bZIP) family
members are central players in SA-mediated resistance to biotrophic pathogens. Moreover,
AtTGA2, 5 and 6 TF have central roles in establishing systemic acquired resistance (SAR),
regulate host detoxification pathways and are essential activators of certain ethylene-induced
defence responses [119].

TF expression and activities are regulated in multiple ways. Certain nucleotide-binding site/
leucine-rich repeat (NLR) proteins directly regulate transcription by physically interacting
with TFs [120–123]. Several TFs are controlled by phosphorylation as downstream targets of
activated MAPK cascades [109,124–127]. Another mechanism of TFs activation is carried out
by Ca2+sensors such as CaMs and CDPKs [128–133]. Additional factors (e.g. components of
mediator complex [134,135], chromatin modifications [136–138]) and levels of regulation (e.g.
ubiquitination [139], sumoylation [140], alternative mRNA splicing [141]) also contribute to
the complexity of transcriptional networks and fine-tuning of immune responses.

Coordination of diverse stress responses and growth is resolved within complex phytohor‐
mone signalling networks, in which salicylic acid (SA), jasmonic acid (JA) and ethylene (ET)
perform central roles, while other hormones merely modulate their responses [142]. SA is
synthesized in chloroplasts from chorismate by isochorismate synthase [143] and exported to
the cytosol [144]. In response to pathogens and various abiotic stresses, SA mediates expression
of pathogenesis-related (PR) genes and the synthesis of antimicrobial compounds to provide
basal defence and systemic acquired resistance (SAR) [145]. SA activates these defence
responses through transcription cofactor nonexpresser of PR genes 1 (NPR1) [146] and
transcription factors TGA2, TGA5 and TGA6 [119]. In the absence of SA, NPR1 is sequestered
in the cytosol and forms oligomeric complexes stabilized by intermolecular disulphide bonds
[147]. In response to activation of SA pathway, thioredoxins reduce these disulphide bonds,
causing the release of NPR1 in monomeric form, which can translocate to the nucleus via a
nuclear translocation signal (NLS) [148]. In addition, NPR1 protein levels oscillate through
CUL3NPR3- and CUL3NPR4-mediated degradation in the nucleus, which is required for fine-
tuning of immune responses [147,149,150].

Jasmonates (JAs) are plant hormones with essential roles in plant defence and development
[118]. JAs are derived from α-linolenic acid liberated from membrane phospholipids by the
action of phospholipase A and enzymatically converted in a series of steps in chloroplasts and
peroxisomes, to be finally transformed into bioactive molecule JA-isoleucine (JA-Ile) in the
cytosol [151]. JA-signalling is activated after repressor removal [152,153]. In unstimulated cells,
jasmonate ZIM domain (JAZ) proteins repress transcription of JA signalling components, such
as the basic-helix–loop-helix (bHLH) master transcription factor MYC2 and its close homo‐
logues MYC3 and MYC4 [154]. On JA signal perception by coronatine insensitive 1 (COI1), a
component of the Skp1-Cul-F-box protein (SCF) E3 ligase complex, JAZ repressor proteins are
targeted for proteasome-mediated degradation and MYC2 activates the transcription of
several JA-responsive genes [154,155].
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Ethylene (ET) is a gaseous hormone that often works synergistically with JA [156]. Important
steps in ET biosynthesis are the conversion of S-AdoMet to 1-aminocyclopropane-1-carboxylic
acid (ACC) by ACC synthase and oxidation of ACC by ACC oxidase to form ET [157]. In
Arabidopsis, MPK3 and MPK6 phosphorylate ACS2 and ACS6 proteins to prevent rapid
degradation of ACS2/ACS6 by the 26S proteasome pathway and enhance ET production in
response to MAMP perception [111]. MPK3 and MPK6 also phosphorylate TF WRKY33, which
subsequently binds to ACS promoters and regulates ET production [158]. Generated ET binds
to its receptors, such as ethylene response 1 (ETR1) in the ER membrane. When ET is absent,
active receptors ETR1 negatively regulate ethylene insensitive2 (EIN2) through phosphoryla‐
tion via Raf-like protein kinase constitutive triple response1 (CTR1) [159]. At the same time,
TFs ethylene insensitive3 (EIN3) and EIN3-like1 (EIL1) are recruited by two F-box proteins,
EBF1 and EBF2, to 26S proteasomal degradation. On ET signal perception, the ETR1 receptors
are inactivated and CTR1 repressed. Subsequently, the C-terminal part of EIN2 is cleaved and
translocated to the nucleus [160]. This induces degradation of EBF1 and EBF2 and stabilizes
EIN3 and EIL1, which regulate expression of ET-responsive genes (e.g. TF ERF1 and ORA59)
[161,162].

Plant hormonal crosstalk is extensive and occurs in several combinations [163]. The molecular
mechanism underlying SA-mediated reprogramming of the JA transcriptional network points
to immune signalling antagonism and the involvement of transcriptional regulators NPR1,
TGA, WRKY and ORA59 as signal integrators [164]. Phytohormones JA and ET synergistically
regulate plant defence responses to necrotrophic fungi via JA-induced EIN3 and EIL1 activa‐
tion and ET-induced EIN3 and EIL1 stabilization. In addition, antagonistic effects observed in
JA and ET signalling are mediated by the interaction of JA-activated MYC2 TF and ET-
stabilized TF EIN3 [165].

2.5. Inactivation of immune signalling pathways

Various negative regulation mechanisms ensure immune signalling activation is switched off
when there is no danger. In the absence of ligand, several phosphatases interact with PRRs
and their associated kinases to keep immune complexes inactive through dephosphorylation.
For instance, Ser/Thr phosphatase type 2A (PP2A) constitutively associates with BRI1-
associated kinase1 (BAK1) and negatively controls BAK1 activation in PRR immune receptor
complexes [166]. Negative regulation exerted by downstream phosphatases is illustrated by
Arabidopsis MAPK phosphatase 1 (MKP1) operating as a negative regulator of MPK6-mediated
MAMP responses [167] and also observed with MAPK phosphatase 2 (MKP2), which acts as
the key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen
responses in plants [115].

Ubiquitination and proteasomal degradation are other mechanisms by which plant immune
responses are attenuated. For example, two U-box E3 ubiquitin ligases, PUB12 and PUB13, are
recruited to flagellin-induced FLS2/BAK1 receptor complex and phosphorylated by BAK1 to
polyubiquitinate FLS2 and promote its degradation [168]. Downregulation of immune
signalling can also be achieved by ligand-induced endocytosis and degradation [169]. This has
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been reported in localization studies of flg22-induced FLS2 receptors in Arabidopsis [170] and
was recently proposed as a mechanism for desensitizing host cells to flg22 stimulus and in
turning over ligand-bound FLS2 [171].

3. Plant defence responses to xylem-invading pathogens

3.1. General perception of MAMPs in roots

Despite the fact that roots are subjected to a rich microbial community, the perception of
MAMPs and immune responses in roots are poorly understood. Millet et al. [172] studied
immune responses in Arabidopsis roots after exposure to flg22, PGN and chitin. Flg22 and PGN
initiated signalling only in association with LRR RLK BAK1. Furthermore, bacterial flg22 and
PGN triggered a localized response in the elongation zone of the root tip, while chitin induced
a response only in the mature zones of roots. It is thus likely plants have evolved tissue-specific
MAMP-triggered immune responses, depending on the nature of the attacker [172,173]. While
fungi and nematodes can directly penetrate the epidermal layer of roots, bacteria cannot and
therefore exploit the weakest part of the roots as infection site. This hypothesis has been
confirmed by recent FLS2 expression studies [174], which indicated that basal FLS2 promotor
activity is restricted to the vascular cylinder and outgrowing lateral roots. Moreover, the FLS2
receptor system in roots is functional, since flg22 treatment induced rapid calcium influx and
caused phosphorylation of MAPK [174]. Whole transcriptome expression analysis of flg22-
elicited roots also revealed a set of genes specifically upregulated in roots, with functions in
hormone and stress signalling, root and lateral root development, signalling and defence [174].

3.2. Perception of vascular wilt pathogens

At early stages of infection, vascular wilt pathogens are faced with preformed physical and
chemical root defences and MAMP-induced immune responses that hinder their invasion [20].
Once they breach the rigid secondary xylem walls and enter the xylem vessels, vascular wilt
pathogens are presumably recognized by specific extracellular receptors in the parenchyma
cells surrounding the xylem vessels [21].

3.2.1. Perception of Verticillium spp.

In tomato, extracellular LRR RLP Ve1 [24,175,176] plays a role in xylem defence and provides
resistance against race 1 strains of V. dahliae and V. albo-atrum [177,178]. In recent years, several
other homologue genes have been reported in Gossypium, Solanum and Mentha. A functional
Ve1 orthologue has also been discovered in Nicotiana glutinosa [179]. Ve1 recognizes a small
effector protein, Ave1, with a similarity to plant natriuretic peptides involved in regulation of
water and ion homeostasis [180]. Phylogenetic analysis has indicated hundreds of Ave1
homologues in plants but only a few in fungi, suggesting Verticillium spp. acquired Ave1
through horizontal gene transfer [180].
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Ve1 forms heterodimers with a tomato orthologue of the Arabidopsis RLK suppressor of BIR1-1/
evershed (SOBIR1/EVR) in the absence of Ave1 [181]. However, Ve1-mediated signalling also
requires other critical signalling components, such as SERK1 and SERK3/BAK1, to establish
Verticillium resistance in tomato and Arabidopsis [177,178,182]. Additionally, Ve1-mediated
signalling depends on ER-QC-assisted folding mediated by ER-resident chaperones HSP70
binding proteins (BiPs) and lectin-type calreticulins (CRTs) [183].

3.2.2. Perception of Fusarium oxysporum f. sp. lycopersici

Three I (immunity) genes have been identified in tomato [184] in a resistance response to
Fusarium oxysporum f. sp. lycopersici (Fol) that involves callose deposition, accumulation of
phenolics and formation of tyloses and gels [185]. The I-2 gene encodes an intracellular CC-
NB-LRR receptor protein that perceives Fol effector protein Avr2 (secreted in xylem 3; Six3)
[186]. Avr2 is under the control of transcription factor Sge1 and is highly expressed in roots
and xylem vessels [187]. Avr2 forms homodimers and requires nuclear localization to trigger
I-2-mediated cell death [188], which can be strongly suppressed by Fol effector Six6 [189]. It
has recently been shown that Six5 also contributes to the virulence of Fol in tomato plants that
Six5 and Avr2 can interact and are together required for I-2-mediated resistance [190].

3.2.3. Perception of Xanthomonas oryzae pv. oryzae

The rice LRR RLK Xa21 that provides resistance to Xanthomonas oryzae pv. oryzae (Xoo) [191]
recognizes sulphated peptide from the N-terminal part of the secreted quorum-sensing (QS)
signal molecule activator of Xa21 (Ax21) [192,193]. In the absence of a signal, Xa21 associates
with XB24, a protein with ATPase activity that enhances Xa21 autophosphorylation of Ser/Thr
residues [194]. On Ax21 recognition, XB24 is released and Xa21 becomes activated to induce
rice defence responses [193]. Subsequently, a protein phosphatase 2C (XB15) specifically
interacts with activated Xa21, leading to dephosphorylation and inactivation of Xa21 [195]. In
addition, several other proteins (e.g. RING finger ubiquitin ligase XB3 [196] and plant-specific
ankyrin-repeat protein XB25 [197]) are associated with Xa21 and required for Xa21 accumu‐
lation and resistance to Xoo [193]. Moreover, Xa21 binds XB10, a WRKY62 transcription factor.
When overexpressed, XB10 suppresses the activation of defence-related genes OsPR1 and
OsPR10 and acts as a negative regulator of basal and Xa21-mediated immunity [198]. Xa21 also
interacts with the endoplasmic reticulum (ER) chaperone BiP3, which regulates its stability
and processing [199].

3.2.4. Perception of Ralstonia solanacearum

A pair of Arabidopsis thaliana TIR-NB-LRR proteins, RRS1 and RPS4, function together in
disease resistance against Colletotrichum higginsianum, Pseudomonas syringae pv.tomato and
Ralstonia solanacearum [200–202]. RRS1 and RPS4 proteins form an inactive heterodimer
complex through the SH motif in their TIR domains [5,121]. RRS1 protein recognizes and,
through its C-terminal WRKY domain, directly binds R. solanacearum effector PopP2 [203–
205]. This leads to disruption of RRS1/RPS4 TIR heterodimer (but not full-length hetero-
complex), allowing the formation of signalling active RPS4 TIR homodimer. PopP2 interacts
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with other WRKY domain-containing proteins and acetylates lysines to block DNA binding,
suggesting that PopP2 interferes with WRKY TF-dependent defence [205,206].

3.3. Induced defence responses to vascular wilt pathogens

Recognition  of  vascular  wilt  pathogens  by  plant  immune  receptor  complexes  activates
defence  responses  in  the  xylem  vessels.  Physical  defence  responses  that  confine  patho‐
gens from further spread comprise the formation of  tyloses,  accumulation of  pectin-rich
gels and gums, vascular coating and callose and secondary cell wall deposition [20,21]. An
interesting adaptation to vascular wilt infection is vein clearing, a tissue-specific develop‐
mental  programme leading to the formation of  new xylem elements [207].  Furthermore,
significant metabolic changes have been reported in response to xylem infection and involve
the induction of pathogenesis-related (PR) proteins, peroxidases, proteases as well as the
production of antimicrobial secondary metabolites such as phytoalexins, sulphur-contain‐
ing compounds and phenolic compounds [20,21].

Studies of defence signalling in response to root pathogens have so far mainly focused on the
leaves and have provided evidence that defence mechanisms involve similar signalling
pathways (Ca2+-signalling, induction of ROS and MAPK cascades, modulation of phytohor‐
mone signalling) [20]. Moreover, plant microarray and RNASeq studies have revealed that the
interaction between vascular wilt pathogens and host plants involves transcriptional reprog‐
ramming of hundreds of genes [208–211]. Interestingly, in an incompatible interaction, only
modest changes in gene and protein expression have been reported [210,212–214] and most of
the differentially expressed genes have been repressed in roots rather than in leaves [211].
Moreover, genes implicated in photorespiration, hypoxia, glycoxylate metabolism and auxin
signalling show inverse regulation on infection with the foliar pathogen Cladosporium fulvum
or root pathogen Verticillium dahliae [210].

Genome-wide analyses on transcriptional and proteomic levels, together with functional
characterization of individual genes, have revealed a convergence of signalling pathways in
response to individual pathogens, in mostly controlled conditions. In the field, plants are
simultaneously challenged by multiple stress factors, both biotic and abiotic. Even though
signalling components of plant regulatory networks are partly shared in both and point to
general stress response mechanisms, there is evidence of specific responses to combined
stresses that are controlled by different signalling pathways and such studies may provide
additional candidates for crop protection breeding [14–16,18].
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