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Abstract

Flooded rice (Oryza sativa L.) cultivation has been identified as one of the leading global
agricultural sources of anthropogenic methane (CH4) emissions. Furthermore, it has been
estimated that global rice production is responsible for 11% of total anthropogenic CH4

emissions. Considering that CH4 has a global warming potential that is approximately 25
times more potent, on a mass basis, than carbon dioxide (CO2) and rice production is
globally extensive and concentrated in several mid-southern and southern states and Cal‐
ifornia, the purpose of this review is two-fold: (i) discuss the factors known to control
CH4 production in the soil and transport to the atmosphere from rice cultivation and (ii)
summarize the historic and recent research conducted on CH4 emissions from rice pro‐
duction in the temperate United States. Though some knowledge has been gained, there
is much more that still needs to be learned and understood regarding CH4 emissions
from rice production in the United States, its contribution to climate change, and poten‐
tial mitigation strategies. Extending the current knowledge base surrounding CH4 emis‐
sions from rice cultivation will help regulatory bodies, such as the Environmental
Protection Agency, refine greenhouse gas emissions factors to combat the potential nega‐
tive effects of climate change.

Keywords: Methane, emissions, rice production, agriculture, soil texture

1. Introduction

Methane (CH4) is a known and potent greenhouse gas that is produced by anaerobic Archaea
under anoxic conditions. Agricultural activities have been recognized as contributing an
estimated 50% to global anthropogenic CH4 emissions [1], while an estimated 31% of anthro‐
pogenic CH4 emissions have been attributed to agricultural activities in the United States (US)
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[2]. Due to the anaerobic conditions that form in saturated soils, which is a prerequisite for
CH4 production, flooded rice (Oryza sativa L.) cultivation has been specifically identified as
one of the leading global agricultural sources of anthropogenic CH4 emissions, accounting for
approximately 22% of the total global agriculturally related CH4 emissions [3]. Furthermore,
it has been estimated that global rice production is responsible for 11% of total anthropogenic
CH4 emissions [1,3].

While numerous factors have been determined to impact CH4 emissions from rice cultivation,
due to a general lack of field data, the United States Environmental Protection Agency (USEPA)
currently uses a single emissions factor for all non-California-grown, primary rice crops [4].
Therefore, the purpose of this review is two-fold: (i) discuss the factors known to control
CH4 production in the soil and transport to the atmosphere from rice cultivation and (ii)
summarize the historic and recent research conducted on CH4 emissions from rice production
in the temperate United States.

2. The greenhouse effect

The greenhouse effect is a mechanism by which certain gases such as carbon dioxide (CO2),
CH4, nitrous oxide (N2O), and water (H2O) vapor absorb and release infrared radiation,
interfering with the ability of solar radiation to leave Earth’s atmosphere. The absorption of
thermal radiation by H2O and CO2 was discovered through laboratory experiments in 1859 [5].
However, other gases including CH4 and N2O were not recognized as greenhouse gases until
the 1970s [6].

Global warming potential (GWP) is a metric that allows the warming impact of various
greenhouse gases to be quantitatively compared on the same scale. The assignment of GWP
values to gases requires knowledge of the contribution to global warming of gas emissions
over time based on the amount of radiation per mass that the gas can absorb and emit as well
as the atmospheric lifetime of the gas. Global warming potentials are assigned relative to that
of CO2, thus the 100-yr GWP of CO2, CH4, and N2O are 1, 25, and 298, respectively [7]. For
example, 1 kg of CH4 released to the atmosphere is equivalent to 25 kg of CO2 being released.
Global warming potentials allow greenhouse gas emissions to be reported as CO2 equivalents
in order to compare warming effects of various gases on a single scale.

The current climate change problem is not a result of the greenhouse effect itself, but rather
from an increasing greenhouse effect resulting from anthropogenic activities that have
increased atmospheric concentrations of greenhouse gases. Prior to 1750, the atmospheric
CO2 mixing ratio was about 280 parts per million (ppm) [8]. Since the beginning of the
industrial era, atmospheric CO2 has risen drastically to 379 ppm in 2005 [7] and 395 ppm as of
April 2013 [9]. Between 1750 and 2005, atmospheric CH4 increased from about 700 parts per
billion (ppb) to 1,774 ppb [7]. Nitrous oxide was more variable ranging from 180 to 260 ppb
prior to 1750, but has similarly increased to a mixing ratio of 319 ppb in 2005 [7]. While
atmospheric N2O and CO2 concentrations have increased steadily over the past several
decades, the growth rate (i.e., concentration increase) of atmospheric CH4 seems to be declin‐
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ing. The growth rate of atmospheric CH4 has decreased from highs of about 1% per year in the
1970s and 1980s to nearly zero between 1999 and 2005. However, the decreasing growth rate
is poorly understood [7].

3. Greenhouse gas emissions

Globally, CO2 accounted for about 76% of greenhouse gas emissions in 2004, with around 75%
of CO2 emissions resulting from fossil fuel use and much of the remainder from deforestation
and biomass decomposition [10]. Methane and N2O accounted for 14 and 8%, respectively, of
the estimated global greenhouse gas emissions in 2004. Major CH4 sources include agricultural
activities, waste management, and energy use, while N2O emissions are primarily a result of
agricultural activities, such as fertilizer use and soil management [10]. In the US in 2013, an
estimated 82% of the total greenhouse gas emissions were CO2, 10% were CH4, and 5% were
N2O [2]. Major sources of greenhouse gas emissions are generally the same in the US as the
global sources mentioned above. The major global sectors responsible for greenhouse gas
emissions are energy supply (26%), industry (19%), forestry (17%), agriculture (14%), and
transportation (13%) [10]. In comparison, the major US sectors responsible for greenhouse gas
emissions are energy supply (31%), transportation (27%), industry (21%), commercial and
residential (12%), and agriculture (9%) [2].

Although agricultural activities do not dominate total greenhouse gas emissions, agriculture
contributes an estimated 50 and 60% of global anthropogenic emissions of CH4 and N2O,
respectively [1]. Agriculture in the US is responsible for an estimated 36% of anthropogenic
CH4 emissions and 79% of anthropogenic N2O emissions [2]. Enteric fermentation, rice
cultivation, and manure management contribute an estimated 64, 22, and 8%, respectively, to
global anthropogenic agricultural CH4 emissions, while agricultural N2O emissions are
dominated by agricultural soil management (80%) [3]. In comparison, enteric fermentation,
rice cultivation, and manure management contribute to 70, 4, and 26% of US anthropogenic
agricultural CH4 emissions [2]. Although rice cultivation makes up a small portion of CH4

emissions in the US, globally rice cultivation accounts for approximately 11% of total anthro‐
pogenic CH4 emissions.

Methane emissions from US rice cultivation were estimated to be 8.3 Tg CO2 equivalents in
2013, a reduction from 9.3 Tg CO2 equivalents in 2012 due to a decline in rice production area
[2]. Arkansas was responsible for 36% of the estimated CH4 emissions from rice cultivation,
although Arkansas accounted for 43% of the total US rice production in 2013. Louisiana was
the next leading contributor to CH4 emissions accounting for 27% of 2013 emissions, while
harvesting 16% of 2013 production [2,11]. Louisiana and Texas CH4 emissions are large relative
to their production areas due to extensive ratoon cropping in 2013, which occurred on an
estimated 38 and 68%, respectively, of the production area in those states [2]. A ratoon crop is
a second crop that is managed and produced after the first or primary crop is harvested.
California, Mississippi, and Missouri, none of which reported any ratoon cropping, contrib‐
uted 14, 3.6, and 4.5%, respectively, to the estimated 2013 CH4 emissions from US rice culti‐
vation [2].

Methane Emissions from Rice Production in the United States — A Review...
http://dx.doi.org/10.5772/62025

181



The USEPA periodically publishes CH4 emissions factors based on research data. Separate
emission factors of 178 kg CH4-C ha–1 season–1 and 585 kg CH4-C ha–1 season–1 were used in the
inventory estimates for non-California-grown, primary rice cropping and ratooned cropping
areas, respectively, as is consistent with the Intergovernmental Panel on Climate Change [3],
which recommends calculating separate emissions factors for as many different factors and
cultural practices as is possible. Emissions factors for California rice production are 200 and
100 kg CH4-C ha–1 season–1 for winter-flooded and non-winter-flooded rice, respectively [2].
While it is known that factors such as water management, soil properties, rice cultivar, fertilizer
management, and residue management have strong impacts on CH4 emissions from rice
cultivation, data available from US studies limit the further disaggregation of these factors [2].
The non-California-grown, primary crop emissions factor is based on US studies with
emissions ranging from 46 to 375 kg CH4-C ha–1 season–1 [13–20] and the ratoon crop factor is
based on studies conducted in Louisiana with emissions ranging from 361 to 1118 kg CH4-C
ha–1 season–1 [21,22]. The California-specific emissions factors include studies with emissions
ranging from 47 to 166 kg CH4-C ha–1 season–1 for the non-winter-flooded and from 98 to 277
kg CH4-C ha–1 season–1 for the winter-flooded rice [23,24].

4. Rice production

Rice is a semi-aquatic, cereal grain that makes up about 21% of total global grain production
[25]. The importance of rice is further exemplified by the fact that rice is a staple food crop for
about half of the global population, with direct human consumption accounting for 85% of
rice production compared to 72% of wheat (Triticum aestivum L.) and 19% of maize (Zea mays
L.) production [26,27]. In Southeast Asia, 60% of human food intake is provided by rice as well
as 35% of food intake in both East Asia and South Asia [26]. Rice has the ability to support
more people per unit of land area than wheat or maize because rice produces, on an average
yield basis, more food energy and protein per hectare than wheat or maize [28]. Therefore, any
potential negative environmental consequences associated with rice production have to be
taken seriously.

4.1. Rice production extent

Common rice (Oryza sativa) is commercially produced in 112 countries worldwide, spanning
latitudes from 53°N along the Amur River at the China–Russia border to 35°S in central
Argentina [26]. In 2012, more than 158 million ha globally were planted to rice, with average
yields of 4.4 Mg ha–1 for a total global production of 470 Tg of rice. Comparatively, nearly 216
million ha were planted in wheat in 2012, with average yields of 3.0 Mg ha–1 for a total of 656
Tg of global wheat production. More than 174 million ha were planted in maize in 2012, with
an average yield of 4.9 Mg ha–1 and a total global production of 857 Tg of maize [25]. Global
rice production peaked in 1994 at 534 Tg of rice, with Asia being responsible for 90% of that
production [29]. The majority of global rice production occurs in east, south, and southeast
Asia, which together accounted for 90% of global production in 2012. Substantial production
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also occurs in South America (Brazil and Peru), Sub-Saharan Africa (Nigeria and Madagascar),
Europe (Italy and Spain), Egypt, and the US [25].

China and India currently dominate global rice production accounting for 30 and 22%,
respectively, of the total global production in 2012. The third-, fourth-, and fifth-ranked global
producers in 2012 were Indonesia (8%), Bangladesh (7%), and Vietnam (6%). The remaining
top 10 producers, in order, were Thailand, the Philippines, Burma, Brazil, and Japan, followed
by the eleventh-ranked US, which accounted for 1.3% of global production [25]. The US,
however, plays a larger role in global exports contributing 9% of 2012 global exports and
ranking fifth after Thailand (21%), India (20%), Vietnam (20%), and Pakistan (10%). Global
exports in 2012 were estimated to be 8% of total production, while the US exported 55% of 2012
production [30]. Global rice yields in 2012 were estimated to be 4.4 Mg ha–1 compared to 8.3
Mg ha–1 in the US, which was second only to Egypt (8.8 Mg ha–1) among the major rice-growing
countries. The two top rice-producing countries, China and India, had estimated yields of 6.7
and 3.6 Mg ha–1, respectively [25].

Nearly 1.1 million ha of rice were planted in the US in 2012, yielding an average of 8.3 Mg
ha–1 for a total production of 9.0 Tg of rice prior to milling, compared to 23 million ha planted
with an average yield of 3.1 Mg ha–1 for a total of 62 Tg of wheat production, and over 39 million
ha of planted maize with average yields of 7.7 Mg ha–1 for a total production of 274 Tg [11].
The four major regions that produce rice in the US are the Arkansas Grand Prairie, the
Mississippi Delta, which is made up of portions of Arkansas, Missouri, Mississippi, and
Louisiana, the Gulf Coast (Texas and southwest Louisiana), and California’s Sacramento
Valley. Most US states produce primarily long-grain cultivars, while much of the medium-
grain rice and nearly all of the short-grain rice is produced in California [11]. Although
Oklahoma and Florida are often included as rice-producing states, the six previously men‐
tioned states have made up essentially all of US production in recent years [11]. Arkansas is
the leading state in both area of cultivation and total production, contributing 48% of total US
rice production in 2012, followed by 23% of production by California and 13% of production
by Louisiana [11]. Arkansas rice production takes place in the eastern portion of the state with
the top five rice-producing counties in 2012 being Poinsett, Lawrence, Arkansas, Greene, and
Cross, which made up 35% of the state’s production area [31].

4.2. Global rice production practices

Rice production practices vary globally based on economic, cultural, and climatic factors, each
of which show temporal and spatial variability throughout the rice-growing countries. A
simple classification or characterization of rice production systems is nearly impossible on a
global scale due to the variability of factors that influence production. Classifications of rice
production techniques are commonly based upon flood presence (e.g., upland or lowland),
water source (e.g., irrigated or rainfed), and stand establishment technique (e.g., transplanting,
direct-seeding, or water-seeding) with many combinations and variations of these techniques
occurring throughout the globe [32]. In one of the most recent classification attempts, Chang
[33] classified global rice production into five major agroecosystems: (i) irrigated wetland,
which made up 53% of global rice production area and had the greatest yield potential at 3 to
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5 Mg ha–1, (ii) rainfed wetland, making up 26% of global area and yielding 2 to 4 Mg ha–1, (iii)
flood-prone or tidal swamps, which made up an insignificant area, (iv) deep water (1–5 m),
making up 8% of global area, and (v) dryland, which made up an estimated 13% of global
production area with average yield potentials of 1 to 1.5 Mg ha–1.

While a small portion of rice is produced under upland conditions, the majority of rice
production requires substantial quantities of water in order to maintain a flood on the semi-
aquatic crop. In much of the tropical rice-growing area, particularly south and southeast Asia,
rainfed rice is the main production system, where most of the production comes from wet-
season harvests and the cropping season is determined by rainfall patterns [32]. In temperate
production areas, rice production must coincide with suitable temperatures for the crop which,
coupled with inadequate rainfall, requires that temperate rice be almost entirely irrigated in
order to maintain a flood for the duration of the growing season [32]. The utilization of
irrigation in temperate areas allows greater control of environmental factors, which ultimately
tends to increase yields, while rainfed systems may suffer from droughts and floods that may
substantially damage crops and reduce yields [32].

Direct-seeding and transplanting are common establishment techniques in both irrigated- and
rainfed-wetland systems, while direct-seeding is the major practice in dryland and deep-water
agroecosystems [33]. While transplanting does occur in irrigated- and direct seeding occurs in
rainfed-wetland systems, it is more common for irrigated systems to utilize direct-seeding and
for rainfed systems to use transplanting techniques [32]. Transplanting systems involve raising
seedlings in a nursery seedbed area at the beginning of the season and transplanting into
puddled paddy soils early in the vegetative growth stage. Transplanting is the major estab‐
lishment system for rainfed rice in tropical Asia, with the majority of production in northeast
India, Bangladesh, and Thailand relying upon transplanting techniques [32]. Direct-seeding
by grain-drilling or broadcasting pre-germinated seeds onto puddled soil is practiced in parts
of India, Sri Lanka, Bangladesh, and the Philippines, while drill-seeding into dry soil is the
most common practice in the US and other mechanized regions such as Australia [32]. Rice
seed may be broadcast onto dry or moist soil by airplane followed by harrowing to cover seeds,
but this establishment method requires more seed and stand establishment is often poorer than
with drill-seeding [32]. Water-seeding is an establishment technique that originated and is
practiced in parts of Asia, where pre-germinated seeds are broadcasted from an airplane into
already flooded paddies or fields [32]. The rice-production system, and associated specific
production practices, can significantly affect CH4 production and emissions.

4.3. Rice production practices in the US

Rice production under mechanized US systems requires high temperatures, nearly level land,
plentiful water, and soils that inhibit percolation of floodwater, so production is limited to
Arkansas, Louisiana, Mississippi, Missouri, Texas, California, and Florida [34]. All US rice is
produced using high-input, mechanized production practices, but practices vary somewhat
from region to region based on differences in climate, soils, weed proliferation, and other
factors that influence production. Essentially, all US rice is irrigated and sources of irrigation
water include shallow or deep groundwater, runoff reservoirs, rivers, bayous, and lakes [34].
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It is estimated that between 1000 and 2500 m3 ha–1 of water are required to produce a rice crop
in the southern US and generally less than one third of that requirement is met by rainfall [35].
Levees, which separate fields into bays, or paddies, and control flood depth (i.e., by use of
gates or spills), are commonly constructed on contours that were surveyed on 3 to 6 cm vertical
intervals. This creates winding, contour-shaped levees in fields that are not precision-leveled,
whereas precision leveling to a uniform grade of 0.2% or less allows the construction of
uniformly spaced, straight levees and may reduce the number of levees required [34].

The two stand establishment techniques utilized in the US are dry-seeding and water-seeding.
Dry-seeding techniques, particularly drill-seeding, are predominant in most of the US, while
water-seeding techniques are used extensively in California and to a small degree in southwest
Louisiana and other regions as a weed control method [34]. A continuously flooded, water-
seeding technique is used in California, where pre-germinated seeds are broadcast by airplane
into flooded fields and the seedlings grow through a standing flood, while a pinpoint-flood,
water-seeding technique is used in Louisiana, where seeds are broadcast into a flooded field
that is drained within a few days and then permanently flooded after drying for 3 to 5 days
[34,36]. In dry-seeded systems, seed is most often drilled into a well-pulverized, firm, and
weed-free seedbed in 15- to 25-cm rows to a depth of 2.5 cm or less. When rice is following a
high-residue crop, such as rice, maize, or wheat, it is necessary to till the land in the fall or early
spring so that decomposition of the residue does not immobilize nutrients after the subsequent
rice crop is planted, whereas rice following soybean (Glycine max L.), a crop that produces
relatively little residue, may not require as much preparation because crop residues are not as
abundant or as persistent compared to that of rice or maize [34,37].

Water management at and shortly after planting varies across US systems, but a permanent
flood is established in all systems usually by the four- to five-leaf vegetative growth stage/
beginning tillering (V4-5) [38]. Flush irrigation is used as necessary to promote germination
and seedling growth in dry-seeded rice systems prior to establishment of a permanent flood,
which typically occurs three to four weeks after emergence (i.e., the V4 to V5 growth stage).
Drainage during the season is typically avoided except if a nutrient deficiency, such as zinc,
is detected, to aerate the soil in order to treat or prevent disorders, such as straighthead and
hydrogen sulfide toxicity, or to apply pesticides. Fields are drained prior to harvest in order
to dry the soil enough for operation of harvest equipment [34]. Fields are flooded again within
five to seven days after primary-crop harvest in ratoon cropping systems, which are common
in southwest Louisiana, Texas, and Florida, and the flood is again maintained until harvest of
the ratoon crop [34].

Crop rotations are important in rice, especially where weedy/red rice is problematic and
difficult to control during rice cropping seasons. In order to suppress weedy rice, nearly all
rice in Louisiana is grown either in a 1:1 rotation with soybean or a 1:1:1 rotation where crawfish
(Procambarus clarkia) are double-cropped following rice, with soybean produced the following
season [34]. In 2012, greater than 70% of Arkansas rice was produced in rotation with soybean,
with most of the remaining production in a rice–rice rotation [39]. In California, approximately
70% of rice is produced in a rice–fallow or rice–rice rotation [40].
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4.4. Arkansas rice production practices

Arkansas is the leading rice-producing state, accounting for 40 to 50% of total annual produc‐
tion in the US [11]. Rice production in Arkansas began in 1902 when 0.4 ha were planted in
Lonoke County. Production increased over time until 1955 when government quotas limited
production to 202,350 ha. The limitation was lifted in 1974 and production increased again,
peaking in 1981 at 623,240 ha, again in 1999 with 667,755 harvested hectares, and finally in
2010 with 724,413 ha [31]. In 2012, 518,016 ha rice were harvested in Arkansas [11]. Rice
production in Arkansas is highly mechanized with a heavy dependence upon synthetic
fertilizers, chemical pest control, and machinery. Planting of rice in Arkansas generally begins
the last week of March and extends into early June with floods typically being established by
the end of May or early June. Harvesting operations usually begin in mid-August and peak in
early- to mid-September [31].

Arkansas rice is produced on a wide variety of soils ranging from sandy to clay soils with the
differing textural classes generally requiring different management, especially with regards
to tillage practices and nutrient management [39, 41]. Production on sands and sandy loams
is minor and has been decreasing from 3.1 and 5.2% of Arkansas area, respectively, in 2007 to
0.7 and 3.7%, respectively, in 2012. Arkansas production on clay and clay-loam soils, however,
has increased from under 40 to 48% between 2007 and 2009 but declined to 43% in 2012.
Production on silt-loam soils has remained fairly steady at 52% in 2007 and 53% in 2012 [39,42].

Dry-seeding techniques have always dominated in Arkansas. Water-seeding has varied
between 2 and 8% of the production area between 2007 and 2012, with an estimated 5% of the
2012 Arkansas rice area being water-seeded [39,42]. Approximately 80% of 2012 Arkansas rice
area was drill-seeded, compared to approximately 20% being broadcast-seeded [39]. Conven‐
tional tillage accounted for over half of Arkansas planted-rice area, while stale-seedbed (i.e.,
tillage and floating, or leveling the field, in the fall or winter) and no-tillage accounted for 35
and 10% of the planted-rice area, respectively, in 2012 [39]. Stale-seedbed and no-tillage are
oftentimes utilized on clay soils where conventional tillage produces a cloddy seedbed with
poor seed-to-soil contact [41].

While pinpoint, water-seeding techniques do occur in Arkansas, over 90% of the Arkansas rice
production area utilizes a delayed-flood system, where the permanent flood is not established
until the four- to five-leaf growth stage, which generally occurs approximately three to four
weeks after emergence [39]. Fields are drained two to three weeks prior to harvest and most
fields remain unflooded until the subsequent rice crop is produced, while nearly 20% of
Arkansas rice area is winter-flooded [34,39]. Over 75% of Arkansas rice is irrigated by
groundwater with 10 and 13% of the rice area utilizing water stored in reservoirs and from
streams/rivers, respectively [39].

The two methods of nitrogen (N) fertilization in Arkansas are (i) the standard two-way split
system, where 65 to 75% of the total N is applied pre-flood with the remainder applied at mid-
season in one or two applications between beginning internode elongation and half-inch
internode elongation [i.e., reproductive stage 0 (R0) to 1 (R1)], and (ii) the single optimum pre-
flood system, where a single N application is made immediately prior to flooding. Nitrogen
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fertilizer rate recommendations have previously been based only on cultivar, soil texture, and
previous crop. Implementation of the new N-Soil Test for Rice (N-STaR) enables recommen‐
dations to be adapted to the soil’s ability to supply N to the rice crop on a field-by-field basis,
reducing the likelihood of over- and under-fertilization of N [43]. Ammonium-N sources, such
as urea and ammonium sulfate, are used in order to prevent N loss through denitrification that
occurs with nitrate-containing fertilizers. Phosphorus and potassium are incorporated prior
to planting as recommended by routine soil tests [43]. Organic amendments are uncommon,
although poultry litter is utilized to a small degree, especially in precision-leveled fields.

5. Flooded soils

The saturated soils that occur during wetland, or lowland, rice cultivation give rise to a set of
physical, chemical, and biological properties that are quite different from upland soils. Rice is
the only major row crop produced under flooded-soil conditions and the absence of air-filled
pores along with reduced soil–atmosphere interactions result in an almost entirely different
set of processes than those occurring in upland cropping systems.

5.1. Physical characteristics of flooded soils

The major physical difference between saturated and unsaturated soils involves the availabil‐
ity and rates of movement for gases and solutes. Under aerated conditions, the soil atmosphere
contains essentially the same gases as the atmosphere although the proportions of oxygen
(O2) and CO2 differ from the atmosphere due to soil respiration [44]. Carbon dioxide diffuses
into the atmosphere from the soil due to production during respiration and O2 diffuses into
the soil as it is consumed during respiration. The saturation and ponding of flooded soils
greatly reduce gas transport between the soil and atmosphere compared to aerated soils and
plant-mediated transport of gases by diffusion is often the main exchange mechanism between
the soil and atmosphere in saturated or flooded systems [45]. As a flooded soil dries, gases
trapped in the soil may escape due to increases in diffusion and convective flow rates that
occur as water escapes soil pores.

While solute movement by diffusion may be greater in saturated soils due to an increase in
water-filled pore space, diffusion of gases through water is roughly three to four orders of
magnitude slower than diffusion of gases through air [46,47]. Both diffusive and convective
flow of gases and solutes are related to pore connectivity and tortuosity, so it is expected that
movement of gases and solutes are slower in fine-textured soils, such as clays and clay loams,
than in coarser-textured soils, such as silt loams and sands, which generally have larger, more
connected pores [47]. Convective flow of gases in saturated soils can occur as dissolved gases
move with moving soil water, which is dependent largely upon soil texture and structure, and
as ebullition, which is where gases escape as bubbles through ponded water [47]. Generally,
diffusion dominates gas transport in fine-textured soils, such as clay loams and clays, and
diffusion rates typically decrease as particle size decreases, which is due to differences in size,
orientation, and shape of soil pore spaces [45,48]. Soil texture also affects the amount of time

Methane Emissions from Rice Production in the United States — A Review...
http://dx.doi.org/10.5772/62025

187



it takes for a soil to become saturated with infiltration rates in clayey soils estimated to be 1 to
5 mm hr–1 compared to 10 to 20 mm hr–1 in soils such as silt loams [47]. The amount of time a
soil takes to become saturated has an effect on chemical and biological processes that develop
as the system becomes anaerobic.

5.2. Soil redox potential

Isolation of flooded soils from the atmosphere and depletion of soil O2 induces biological and
chemical reactions that create anaerobic and reducing conditions rather than the aerobic and
oxidized conditions that generally occur in upland soils. Organic matter decomposition slows
under anaerobic conditions, but as organic matter is oxidized, transformations such as
denitrification and manganese (Mn) and iron (Fe) reduction occur as well as production of
gases such as hydrogen sulfide (H2S) and CH4. Soil reduction/oxidation (redox) reactions are
coupled half-reactions where the oxidation of organic matter, which provides electrons, is
coupled with the reduction of elements or compounds that act as electron acceptors [49].
Oxygen is the major electron acceptor under aerobic conditions, but as O2 is depleted, the
sequence of electron acceptors shifts to NO3

–, MnO2, Fe(OH)3, SO4
2–, and CO2, which are

theoretically reduced in that order based on thermodynamic favorability [44,50]. The reduced
forms of the previously mentioned terminal electron acceptors are H2O, N2, Mn2+, Fe2+, H2S,
and CH4, respectively. Soil redox reactions in a controlled laboratory environment may follow
the theoretical sequence, but environmental conditions in the field result in spatial variability
of oxidizable organic compounds, electron acceptors, and microorganisms that cause sub‐
stantial overlap of the terminal electron acceptor sequence [44,49].

Soil redox potential (Eh) is a measure of the electrical potential status of a system that results
from the tendency of substances in the system to donate or acquire electrons [51]. Soil redox
potential is measured in millivolts (mV) using a platinum electrode along with a mercury
chloride (HgCl) or silver chloride (AgCl) reference electrode, both connected to a voltmeter
[49]. Combination platinum electrodes are also available that can continuously monitor soil
Eh when connected to a logger box. When using AgCl electrodes, a correction factor of
approximately +200 mV is added to field-measured voltages in order to adjust measurements
to the standard hydrogen electrode [52]. In well-aerated soils, soil Eh may be as great as +700
mV, but Eh values near –300 mV may be observed in saturated organic-matter-rich soils [51].
As a system shifts from aerobic to anaerobic and soil redox potential declines, atmospheric
O2 is reduced first at +380 to +320 mV, followed by NO3

– (+280 to +220 mV), MnO2 (+220 to +180
mV), Fe(OH)3 (+110 to +80 mV), SO4

2– (–140 to –170 mV), and CO2 (–200 to –280 mV), based on
measurements by Patrick and Jugsujinda [53].

6. Methane emissions from rice

Methane emissions from any ecosystem, particularly a rice agroecosystem (Figure 1), are
governed by the magnitude and balance of microbial CH4 production (methanogenesis) and
oxidation (methanotrophy), which occur by separate microbial communities. The two groups
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of microorganisms are adapted to different environmental conditions, and, as a result, are
affected differently based on the structure and conditions of an ecosystem, which results in
variability of CH4 production and oxidation potentials across time and space [54]. With low
CH4 production rates or long diffusion pathways, it seems that the majority of the CH4 produced
is oxidized. Conversely, in cases where CH4 production rates are high or diffusion paths are
short, less CH4 is oxidized and a greater portion reaches the atmosphere [54] (Figure 1).

 

 
 
 
 

Figure 1. Chamber-based measurements of methane emissions from small plots at the Rice Research and Extension
Center near Stuttgart, AR (top), and at the Northeast Research and Extension Center at Keiser, AR (bottom). Photo‐
graphs taken by K. Brye.
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6.1. Methane production and oxidation

Methane production occurs toward the end of a complex anaerobic decomposition process in
which soil organic matter (SOM) is degraded to acetate, hydrogen gas (H2), and CO2 by a
community of various fermenting microorganisms, which are mostly bacteria. Methanogenic
Archaea are then able to split acetate into CH4 and CO2 (i.e., acetoclastic methanogenesis) or
utilize H2 and CO2 to produce CH4 (i.e., hydrogenotrophic methanogenesis) [55,56]. Metha‐
nogens encompass a large group of strictly anaerobic, obligate Archaea, which is currently
composed of three classes, six orders, 12 families, and 35 genera [56]. Rice Cluster I is a specific
group of methanogens identified by Grosskopf et al. [57] that contains enzymes in order to
detoxify highly reactive O2 species, allowing the methanogens to survive in aerated soils or
oxygenated rhizospheres, and occurs preferentially in environments that undergo transient
aerobic conditions, such as in rice fields [55,58]. Rice Cluster I has been detected in almost all
rice field soils tested [59,60] and occurs in great abundance in rice soils and on rice roots,
representing up to 50% of total methanogens in rice fields [61]. Rice Cluster I has been identified
as occupying a niche on rice roots by producing CH4 from photosynthates released as root
exudates [55,62]. Recent research has confirmed that methanogens are ubiquitous in aerobic
soils and have the ability to produce CH4 as soon as anoxic conditions form and substrate is
available [56]. Conrad [63] reported that methanogens isolated from the soil of rice fields were
not killed but only inhibited by high redox potentials or O2 exposure, allowing them to survive
drainage and maintain their population size throughout the year in a state of low activity.

Most methanogens are mesophiles and neutrophiles, with optimal growth occurring between
30 and 40oC and between a pH of 6 and 8 [54]. Methanogens are highly sensitive to variations
in temperature and pH and CH4 production is greatly reduced when soil temperatures are low
or in acidic or alkaline soils [56]. Within the optimal temperature range, which is generally the
case during the rice growing season, temperature has a positive effect on methanogenesis,
causing an increase in CH4 production as temperature increases [54,56].

Methane oxidation is achieved by a group of aerobic Proteobacteria known as methanotrophs,
which only utilize CH4 or methanol as a source of C and energy and are currently classified
into two phyla, three orders, four families, 21 genera, and 56 species [56]. One group, known
as low-affinity methanotrophs, is capable of oxidizing high CH4 concentrations (>100 ppm)
and exists at oxic–anoxic interfaces, where the methanotrophs consume CH4 produced in
anoxic environments [56]. Another group, known as high-affinity methanotrophs, exists in
upland soils and possesses the ability to oxidize CH4 at low atmospheric levels (<2 ppm) [64].
Unlike methanogenesis, methanotrophy is not impacted greatly by temperature, although
CH4 oxidation is decreased below 10oC and above 40oC, or pH, as similar CH4 oxidation has
been observed in soils with pH values ranging from 3.5 to 8 [56]. Due to the differing effect of
temperature on methanogenesis and methanotrophy, CH4 production increases as soil
temperatures increase, while CH4 oxidation changes little, resulting in a general increase in
CH4 emissions as soil temperature increases throughout the rice growing season. This effect
has been confirmed in a laboratory incubation of anaerobic soils at various temperatures
between 5 and 25oC [65].
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6.2. Substrate for methane production

Available SOM stimulates CH4 production due to enhanced fermentative production of acetate
and H2/CO2 and, in principle, CH4 production could be expected to be proportional to organic
C inputs, but the reduction of nitrate (NO3

-), iron (Fe), manganese (Mn), and sulfate (SO4
2-) all

precede methanogenesis and reduce the amount of available C for CH4 production [54].
Methane production may be stimulated by root exudates [66–68] or the application of animal
manures [69], green manures [70–73], or rice straw [67,70,73–75], while the application of
composted organic C sources does not greatly increase CH4 production [73,75,76]. This
indicates that the amount of available organic C (OC) is more important in determining CH4

production than total OC (TOC), as composted residue contains lower amounts of degradable
C, on a mass basis, compared to fresh residues [77]. Yagi and Minami [73] and Wang et al. [78]
confirmed a positive correlation between CH4 production and readily mineralizable C, while
studies have indicated no clear relationship between soil TOC and CH4 production [68,79–
81]. Research conducted by Denier van der Gon and Neue [76] determined that increasing
fresh OM inputs would result in increases in CH4 production up to a point where another
factor becomes limiting; however, fresh green manure inputs up to 20 Mg ha–1 still indicated
OC limitations. In most rice production situations, organic residue inputs are below 20 Mg
ha–1 and will generally exhibit an increase in CH4 emissions as organic inputs increase.

Using 13C-labeled rice straw incorporated at 6 Mg ha–1, Watanabe et al. [82] determined that
42% of season-long CH4 emissions originated from rice straw C, 37 to 40% from the rice plant,
and 18 to 21% from SOM. The contribution of SOM to CH4 production was fairly consistent
over the growing season, while the contribution from rice straw decreased from nearly 90% at
14 days after transplanting to only 11 to 16% during heading and grain fill. In contrast, the
contribution of living rice plants to CH4 production increased over time and amounted to 65
to 70% during heading and grain fill [82]. Chidthaisong and Watanabe [83] also observed that
the contribution of rice straw to CH4 production was greatest at 20 to 40 days after flooding,
while plant-derived C became increasingly more influential as the season progressed. The link
between root exudates and CH4 production has been observed directly by Aulakh et al. [84],
who showed a positive correlation between TOC in root exudates and CH4 production. Several
others have observed an inverse relationship between grain yield and CH4 production [19,85],
indicating that lower grain yields are accompanied by greater CH4 production as a result of
greater root exudation, which was confirmed by Aulakh et al. [66]. Using 13C-labeled CO2, it
was observed that photosynthates were a major source of CH4 and accounted for 4 to 52% of
CH4 under field conditions [86,87].

6.3. Duration and timing of methane production

Methane production occurs for some period of time following a period of prolonged saturated
conditions and continues until the C substrate becomes limiting or environmental conditions
limit methanogenesis (i.e., the soil becomes too cold, hot, or aerated). In flooded soils, the rate
of reduction processes is determined by the composition and texture of a soil as well as the
content of inorganic electron acceptors [i.e., NO3

–, MnO2, Fe(OH)3, SO4
2–] and available C, so

the amount of time between flooding a soil and the onset of methanogenesis can vary from
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several days to several weeks [88]. From the onset of methanogenesis, CH4 emissions from rice
systems generally increase over time as the soil becomes more reduced and usually shows one
or more of three general peak flux trends. Early season peak fluxes are generally attributed to
decomposition of freshly incorporated residues and generally occur within 20 to 40 days after
flooding [83,89] and late-season peaks are thought to result from decomposition following
senescence of rice roots [90,91]. The other time period of peak fluxes generally occurs near the
time of 50% heading (i.e., approximately the time of anthesis) and has been linked to the sink-
source relationship of photosynthates in the plant when CH4 fluxes have been observed to
increase during vegetative growth as root exudates increase and decrease following heading
as fixed-C is translocated to developing grain. This plant-related peak has been observed in
several studies [15–17,80,92–94,95] and similar seasonal trends have been observed in root
growth [96–98], root exudation rates [66], and anaerobic root respiration rates [99].

6.4. Transport mechanisms

The three mechanisms by which CH4 is transported from a ponded soil to the atmosphere are
diffusion through the floodwater, ebullition, and plant-mediated diffusion. Diffusion of CH4

through overlying floodwater is minor as diffusion of gases is approximately 10,000 times
slower through water than through air [46]. Ebullition, bubbles forming and forcing their way
to the surface, may be a significant transport mechanism early in the season, especially with
high OM inputs, soil disturbances, and in coarse-textured soils, but generally plays only a small
role in CH4 transport, which diminishes as plants mature and plant-mediated transport (PMT)
increases [76,100]. The majority of CH4 emissions from a rice system occur through the rice
plants via aerenchyma cells, where studies have indicated that about 90% of season-long
emissions are released through the rice plants, compared to 8 to 9% released by ebullition and
1 to 2% by diffusion through the floodwater [100–104].

Based on experiments using artificial atmospheres of various gas compositions, Denier van
der Gon and van Breemen [105] determined that PMT is driven by molecular diffusion and
not affected by transpiration or stomatal opening. Others have observed a decreasing CH4

concentration gradient from the soil to the rice root aerenchyma, shoot aerenchyma, and
atmosphere, indicative of a diffusive transport pathway from the soil to the atmosphere
through the plant [104,106]. Other studies have also confirmed that CH4 transport is not related
to transpiration and is unaffected by cutting plants just above the water surface [103,104,107].
However, Hosono and Nouchi [108] determined that PMT was reduced linearly as roots were
cut and increased with root growth up to heading, indicating that the surface area of roots in
contact with soil solution is important in determining PMT. Several studies have determined
that the most restrictive zone of CH4 transport through the rice plant is the root–shoot transition
zone where dense intercalary meristem cells restrict movement from the root aerenchyma to
the shoot aerenchyma [101,105,106,109,110].

It has been postulated that CH4 in the gaseous form or dissolved in water enters into root
aerenchyma, which forms by degeneration of cortical cells between the exodermis and the
vascular bundle, where the dissolved CH4 is gasified and moves by diffusion from the root
aerenchyma through the restrictive transition zone into the aerenchyma of the culm and then
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to the atmosphere [104,107,109]. It has been determined that CH4 is released from the rice plant
mainly through the lower leaf sheaths. Examining the cultivar ‘Koshihikari’ with a scanning
electron microscope, Nouchi et al. [104] and Nouchi and Mariko [107] observed CH4 release
from 4-µm diameter, hook-shaped micropores arranged regularly approximately 80 µm apart
on the abaxial epidermis of leaf sheaths as well as from the connections of leaf sheaths to the
culm at nodes. Butterbach-Bahl et al. [106] also determined that CH4 is primarily released
through the lower leaf sheaths, however, micropores were not observed in the cultivars ‘Roma’
or ‘Lido’. More research is required to determine differences in CH4 release from various
cultivars. It has been determined that rice cultivars have differences in CH4 transport capacity,
likely in relation to differences in aerenchyma morphology and the root–shoot transition zone
[101] and that CH4 transport capacity increases as soil temperature increases [108]. Research
indicates that PMT is the dominant mechanism of CH4 release from rice soils and that the rate
of transport can be influenced by cultivar or environmental conditions.

7. Factors affecting methane emissions from rice

Through numerous research efforts since the 1980s, several factors have been determined to
affect CH4 emissions from rice cultivation. Due to the complex balance of methanogenesis and
methanotrophy that determines how much CH4 escapes the rice system to the atmosphere
along with the large variety of cultural and environmental conditions around the globe, there
is large variability in the impact of different factors across time and space. There are a few soil,
environmental, and plant factors, however, that seem to have somewhat consistent impacts
on CH4 emissions from rice.

7.1. Soil factors affecting methane emissions from rice

Various studies have observed inconsistent results of N fertilizer application on CH4 emissions
including an increase in emissions with added N [85,90,111,112], a decrease in emissions with
added N [113,114], or no impact of added N on CH4 emissions [15,75,115]. Banger et al. [116]
conducted a meta-analysis and determined that CH4 emissions were significantly greater from
N-fertilized rice in 98 out of 155 data pairs, indicating that the increase in plant growth and C
fixation resulting from N-fertilization generally increases CH4 emissions. Wang et al. [78]
postulated that the effect of urea on CH4 emissions may be impacted by pH, where it was
observed that urea may cause a decrease in emissions in alkaline soils as urea hydrolysis
increases soil pH, limiting the neutrophilic methanogens. In acidic soils, however, the increase
in pH from urea hydrolysis shifts the soil pH toward neutral and enhances methanogenesis.
Research has consistently indicated that ammonium sulfate reduces CH4 emissions relative to
urea application [70,113,116], likely due to the impact of soil acidification and sulfate reduction
decreasing the available C substrate for methanogenesis. Similarly, other studies have
determined that oxidized Fe [80,117–120] or NO3

– [120] amendments have the ability to reduce
CH4 emissions. In addition, Lu et al. [121] observed a 19 to 33% reduction in CH4 emissions
with the application of P due to enhanced root growth and root exudation that was measured
in the P-deficient treatment.
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Multiple studies have indicated no significant correlations between CH4 emissions and any
static soil properties [68,81] or between CH4 emissions and total soil C [79,80], while readily
mineralizable C has been shown to be positively correlated with CH4 emissions [75,78].
Particle-size distribution is one soil property that has been regularly related to CH4 emissions
as emissions have been positively correlated with soil sand content [78,80,118,119,122] and
inversely correlated with soil clay content [71,78,118,119,122,123]. Studies have observed an
increase in CH4 entrapment resulting from increasing clay contents [71,78], and Sass and Fisher
[91] attributed the reduction in CH4 emissions from clay soils to the entrapment and slow
movement of CH4 that allows more CH4 to be oxidized in aerated zones surrounding roots
and at the soil surface. In a laboratory incubation study, Wang et al. [78] observed varying
degrees of CH4 entrapment, even among soils with similar sand and clay contents, where the
greatest entrapment (98%) was measured from a Sharkey clay (very-fine, smectitic, thermic
Chromic Epiaquerts) soil compared to 81 and 68% entrapment from a Beaumont clay (fine,
smectitic, hyperthermic Chromic Dystraquerts) and a Sacramento clay (very-fine, smectitic,
thermic Cumulic Vertic Endoaquolls), respectively. This research indicates that clayey soils
have the capability of restricting movement of CH4 to the atmosphere and that other factors,
such as clay minerology and soil chemical properties, may impact emissions more than simply
the total amount of clay.

7.2. Environmental factors affecting methane emissions from rice

Two major environmental factors that impact CH4 emissions from rice are temperature and
soil saturation status. Numerous studies have observed increases in CH4 fluxes in relation to
increasing soil temperatures [100,108,124]. A study conducted in Japan observed a 1.6-fold
increase in emissions from one year to another under the same management and location
resulting from an increase in average air temperature from 24.6 to 26.9oC [119]. Methanotrophic
activity changes only slightly between 10 and 40oC, while temperature has a strong influence
on methanogenesis [56], which leads to a decrease in the proportion of CH4 oxidized and an
increase in emissions as soil temperature increases. Van Winden et al. [65], for example,
reported 98% CH4 oxidation at 5oC compared to 50% oxidation at 25oC.

Soil saturation status has a profound influence on CH4 emissions through the impact of
saturation on soil redox processes, such as methanogenesis. Methane emissions have been
observed from soils at an Eh as great as –100 mV [125], while emissions increase as Eh
decreases. The amount of time required after saturation to reach low redox potentials condu‐
cive to methanogenesis varies based on soil textural and chemical properties [119], but
generally occurs within several days or weeks after flooding. Studies have indicated that a
single mid-season drainage can reduce CH4 emissions by as much as 65% [68,70,75,95,113,126],
however, the potential for greenhouse gas mitigation is reduced or negated due to an increase
in N2O emissions resulting from the drainage [70,113,126,127]. Further research is needed in
order to more adequately understand the balance between CH4 and N2O emissions under
various water management regimes as well as the impact that N management has on emissions
when fields are drained.
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7.3. Plant factors affecting methane emissions from rice

Due to the strong impact of rice plants on CH4 transport and CH4 production from root
exudates and residue, there are several plant factors that significantly impact emissions from
rice cultivation. A strong relationship between plant growth and CH4 emissions has been
observed in many studies [16,17,80,92–95], particularly in temperate regions, where much of
the previous crop’s residue decomposes during the winter. Studies have indicated that CH4

emissions are up to 20 times greater from soil planted with rice than from unvegetated soil
[67,107,123], indicating the large influence of rice plants on emissions.

One of the major plant factors impacting CH4 emissions from rice is whether or not a ratoon
crop is grown. This impact is reflected in the USEPA’s emissions factors, which are 178 kg
CH4-C ha–1 for non-California primary rice crops and an additional 585 kg CH4-C ha–1 when a
ratoon crop is produced [2], based on ratoon crops studied in Louisiana [21,22]. The large
increase in emissions from ratoon crops is likely a result of large quantities of residue inputs
from the harvest of the primary crop in addition to well-developed root systems that further
increase the available C for methanogenesis. Lindau et al. [22] observed a significant positive
correlation between rice straw additions from a primary crop and resulting emissions from
the following ratoon crop.

Another plant factor that has a substantial impact on CH4 emissions is biomass accumulation.
Huang et al. [128] determined that CH4 fluxes measured during the growing season were
positively correlated to aboveground and belowground dry matter on the dates of flux
measurements. Additional studies have observed positive correlations between season-long
CH4 emissions and aboveground [16,72,102,128] and belowground dry matter [129]. These
studies have indicated a strong relationship between plant growth and CH4 emissions, which
may result from an increase in available substrate as root exudates have been correlated to
biomass [66].

Cultivar selection has also been shown to be an important plant factor influencing CH4

emissions from rice. While the mechanisms for cultivar differences in CH4 emissions have not
been extensively studied, it appears that differences likely arise from variability in CH4

transport capacity, biomass or dry matter production, root exudation, and microbial com‐
munity dynamics among cultivars. Butterbach-Bahl et al. [101], for example, attributed a 24 to
31% difference in emissions between two pure-line cultivars to differences in CH4 transport
capacities, as no differences were observed between CH4 production or oxidation. Aulakh et
al. [84] observed a positive correlation between TOC from root exudates and CH4 production
potential, indicating the potential for cultivar differences in emissions based on variable root
exudation rates. Previous studies have reported reduced emissions from semi-dwarf relative
to standard-stature cultivars [22,91,130]. The difference in CH4 emissions between semi-dwarf
and standard-stature cultivars observed in these studies may be a result of the positive
correlation between dry matter and C exudation rates from roots [84] or between aboveground
dry matter and CH4 emissions [16,72,102,128]. While a reduction in emissions from semi-dwarf
cultivars is oftentimes linked to reduced dry matter accumulation, Rogers et al. [93] observed
a reduction in aboveground dry matter that was not accompanied by a reduction in emissions.
Furthermore, Sigren et al. [130] measured greater emissions accompanied by greater soil
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acetate concentrations from a standard stature (‘Mars’) relative to a semi-dwarf cultivar
(‘Lemont’), while aboveground dry matter was similar between the two cultivars. Huang et
al. [128] indicated that, while biomass may explain differences in emissions within one cultivar,
the intervarietal differences in biomass are small in comparison to differences in emissions,
indicating that another factor besides aboveground dry matter impacts intervarietal differen‐
ces in CH4 emissions.

Cultivar differences, however, extend beyond the impact of biomass production on emissions.
Ma et al. [131] observed a 67% increase in CH4 oxidation from a hybrid cultivar accompanied

 

 
 
 
 
 
 

Figure 2. Methane emissions from standard-stature, conventional rice varieties, such as “Taggart” (top left) and
“Wells” (top right), and hybrids varieties, such as “CLXL745” (bottom) have recently been studied in the field at the
Rice Research and Extension Center near Stuttgart, AR. Photographs taken by K. Brye.
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by a reduction in emissions and soil CH4 concentration relative to pure-line cultivars. Addi‐
tional studies have also identified 25 to 37% reductions in fluxes from hybrid relative to pure-
line cultivars [93,132,133] (Figure 2). This indicates that greater methanotrophic activity in the
rhizosphere of hybrid cultivars may reduce CH4 fluxes by oxidizing a greater proportion of
the produced CH4. It is clear that cultivar selection has the potential for mitigation of CH4 from
rice cultivation. However, due to the lack of understanding the mechanisms for differences in
emissions, it appears that direct CH4 flux measurements from various cultivars are necessary
in determining emissions differences until further research clarifies the understanding for
cultivar differences in CH4 emissions (Figure 2).

8. Conclusions

Though some knowledge has been gained, there is much more that still needs to be learned
and understood regarding CH4 emissions from rice production in the US, its contribution to
climate change, and potential mitigation strategies. Additional field research needs to be
conducted to better assess the magnitudes and relative contributions the various known factors
have on CH4 production and emission from soils used for rice production.

It is possible that a single CH4 emissions factor for application to all non-California-grown,
primary-crop rice in the US is too general. Consequently, the single CH4 emissions factor may
be a severe overestimation for some rice-producing areas, while being an underestimation for
other areas. Only after additional data have been generated can regulatory agencies, such as
the USEPA, further refine greenhouse gas emissions factors to reflect the large variety of soils
and agronomic cultural practices throughout the temperate US and combat the potential
negative effects of climate change.
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