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Abstract

The effects of cold plasma under atmospheric pressure are being explored for medical ap‐
plications. It was found that plasma effects on cells correspond to a plasma–medium in‐
teraction; thus, plasma-treated cell culture medium alone is able to influence the cell
behavior. Here, we discovered that the liquid-mediated effect of atmospheric-pressure ar‐
gon plasma on mouse liver epithelial cells persists up to 21 days of storage; i.e., the liquid
preserves the characteristics once induced by the argon plasma. Earlier investigations of
our group revealed that temperature and pH, hydrogen peroxide production and oxygen
content can be excluded as initiators of the detrimental biological changes. As we found
here, the increased osmolality in the media caused by plasma treatment can also be ex‐
cluded as a reason for the observed cell effects. Conversely, we found changes in the
components of cell culture medium by fast protein liquid chromatography (FPLC) and
decreased cell viability in plasma-treated media independent of the presence of fetal calf
serum (FCS) during plasma treatment. The persistent biological effect on plasma-treated
liquids observed here could open up new medical applications. Stable plasma-treated liq‐
uids could find application for dermatological, dental, or orthopedic therapy.

Keywords: Non-thermal atmospheric-pressure plasma jet, Plasma–liquid interaction, Os‐
molality, Size-exclusion chromatography, Cell viability

1. Introduction

Plasma medicine is an emerging field of interdisciplinary research combining physics, biology,
and clinical medicine [1,2]. In the first applications, gas plasma was used in the form of hot
plasma for cauterization [1,3]. Currently, the effects of cold plasma under atmospheric pressure
are being explored for medical applications. Several experiments showed the achievement of
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blood coagulation and bacterial decontamination, with little effect on the surrounding tissue
[4–9], as well as the promotion of wound healing and tissue regeneration [10–13]. This
proliferative reaction was correlated with the secretion of growth factors induced by plasma
treatment [14]. Conversely, adverse effects such as anti-proliferative and anti-tumorigenic
effects were reported [15–18]. Also, the detachment of cells from the substrate, an effect that
accompanies the change to a rounded cell morphology, and apoptosis were reported for animal
cell lines like CHO-K1 (Chinese hamster ovary epithelial cells), 3T3 (mouse fibroblasts), BAEC
(bovine aorta endothelial cells), H5V (mouse endothelial cells), and RASMC (rat aorta smooth
muscle cells) [1,19,20]. This is in line with the observation that the expression of cell adhesion
molecules is changed upon plasma treatment [21]. Detrimental cell effects like DNA damage
were shown by Kalghatgi et al. [22]. Plasma treatment of epithelial cells led to cell detachment
and additional DNA damage, which was proven by the phosphorylation of the histone protein
H2AX [22].

It was discovered that these effects can be mediated by the use of plasma-treated liquids alone
[23]. Plasma treatment of cell culture medium resulted in DNA damage to the subsequently
incubated cells [22,24]. Similar to the direct treatment, liver epithelial cells lost their substrate
attachment when incubated with argon plasma-treated medium alone [25]. In addition, cell–
cell contact proteins, e.g., the tight junction protein zonula occludens (ZO-1), as well as the cell
membrane morphology were shown to be impaired [25,26]. Based on these observations, it
could be concluded that plasma effects are not only solely based on the direct plasma–cell
interaction but also on the interaction between plasma and medium, and these plasma-induced
changes in the complex Dulbecco’s modified Eagle’s medium (DMEM) were long lasting: up
to 7 days and more [26].

Further analysis revealed that neither lipid oxidation [24] nor the generation of ozone [27] was
responsible for these effects. Also, changes in temperature, pH-value, or the concentration of
hydrogen peroxide could be excluded as a reason [25,26]. In addition, it was shown that
decreasing the oxygen concentration of the medium as a result of plasma treatment was not
the reason for the respective cell defects [26]. Several publications speculated that the gener‐
ation of reactive oxygen species (ROS) through plasma treatment would be an explanation for
DNA damage [20,28,29]. However, the cell-damaging effect of plasma-treated medium could
be detected after 1 h as well as up to 7 days after treatment [22,25,26], indicating that the
component(s) remained stable for a long time. This result excludes the short-lived ROS as an
inducing agent.

The present work aimed to examine the contribution of different medium components, e.g.,
fetal calf serum and gentamicin, to the detrimental cell effects resulting from plasma treatment.
Furthermore, physicochemical parameters other than temperature, pH, oxygen concentration,
or the presence of hydrogen peroxide, which had already been excluded as a reason [25, 26],
were investigated. Taking into consideration that the plasma effect is mediated only by liquids
[22,23,25,26,29], the cell culture medium was treated with argon plasma and cells were
incubated afterward with the medium. The plasma treatment was performed using an
atmospheric-pressure argon plasma jet.
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2. Material and methods

2.1. Argon plasma source

The atmospheric-pressure plasma jet kINPen®09 (neoplas tools GmbH, Greifswald) was used
for all experiments. This plasma source consists of a quartz capillary (inner diameter of 1.6
mm) with a needle electrode (diameter of 1 mm). A high-frequency voltage of 1.1 MHz/2–6 kV
is applied at this electrode. Argon gas (purity 99.996%) is used as a feed gas with a gas flow of
1.9 slm. A gas discharge is ignited at the tip of the high-voltage needle exciting the argon gas.
In this way, low-temperature plasma is generated and blown out of the capillary. The so-called
plasma jet outside the nozzle has a length of 12–14 mm and is about 1 mm wide. The temper‐
ature at the visible tip of the plasma jet does not exceed 50°C. Details for the characterization
of the plasma source are given by Weltmann et al. [12,26].

2.2. Argon plasma treatment of cell culture media

One-hundred microliters of the defined cell culture medium (see below) was supplied per well
in a 96-well plate (Greiner Bio-One). The kINPen®09 was mounted vertically and the quartz
capillary was positioned at the top edge of each well in the 96-well plate. The distance between
the tip of the quartz capillary and the 96-well plate does not exceed 1 mm. In this way, the
argon plasma had an immediate contact with the cell culture medium (Figure 1).

Figure 1. Experimental setup for argon plasma treatment of cell culture media. The kINPen®09 was mounted vertical‐
ly. The distance between the tip of the quartz capillary and the 96-well plate does not exceed 1 mm.
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Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) was used for all experiments. For
cell culture experiments, DMEM is usually supplemented with 10% fetal calf serum (PAA
Gold, PAA Laboratories) and 1% gentamicin (Ratiopharm). To explore the effect of the
supplements on plasma treatment results, pure DMEM without supplements or with one
supplement was treated as well. We refer to the different media as follows: pure DMEM =
DMEM; DMEM with 10% FCS and 1% gentamicin = DMEM+FCS+Genta; DMEM with 10%
FCS = DMEM+FCS; DMEM with 1% gentamicin = DMEM+Genta. The different media
underwent argon plasma treatment for 60 or 120 s as indicated for the specific experiment.
Argon gas treatment using the kINPen®09 without igniting the plasma was used as a control.
Untreated medium was included as a further control. After plasma treatment, the different
samples and controls were pooled in separate tubes (1.5 ml, Eppendorf) and analyzed for their
physicochemical parameters. For subsequent cell experiments, the medium was stored at 37°C
and 5% CO2 for at least 24 h to ensure that the cell effects observed were neither caused by the
changed oxygen concentrations nor by the persistence of hydrogen peroxide; these were
shown to be balanced over 24 h after plasma treatment [26]. For investigations regarding the
persistent effect of plasma-treated medium on cells, the medium was stored at 37°C and 5%
CO2 for 7 or 21 days. For all experiments, with the exception of the size-exclusion chromatog‐
raphy, the supplements omitted during plasma treatment were added afterward to ensure
analogous conditions.

2.3. Physicochemical analysis of argon plasma-treated cell culture media

2.3.1. Osmolality

To acquire the loss of solvent during argon plasma treatment, the osmotic strength was utilized
by the measurement of the freezing point depression. The respective medium (50 µl) was
applied to an Osmomat 030 (Gonotec) and analyzed in triplicate. The determination of
osmolality was performed in three independent experiments for DMEM+FCS+Genta, which
had been argon plasma-treated for 60 or 120 s, and for the same medium after argon flow for
60, 120, or 180 s versus the untreated control.

2.3.2. Size-exclusion chromatography

Size-exclusion chromatography was performed by gel filtration on a fast performance liquid
chromatography (FPLC) system equipped with a UV detector (ÄKTA purifier, GE Health‐
care). After argon plasma treatment, samples were pooled and the protein concentration was
measured. The samples were diluted with distilled water to a concentration of 4 mg/ml protein,
sterile-filtrated (0.2 µm), applied to a size-exclusion column (Superdex 200, 10/300 GL, GE
Healthcare) and separated with a constant flow of 0.5 ml/min for 60 min, using a phosphate
buffer (34.3 mM Na2HPO4, 14.5 mM NaH2PO4, 200 mM NaCl, pH 7.14). The samples were
monitored by the UV detector (280 nm) and collected in fractions of 500 µl. Chromatograms
were conducted for DMEM, DMEM+FCS, and DMEM+Genta, which were argon plasma-
treated for 120 s, for the untreated control and for the same medium after argon flow for 120 s.
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2.4. Epithelial cell experiments

2.4.1. Cell culture of mHepR1

The epithelial cell line mHepR1 (murine hepatocytes) [30] was used throughout the experi‐
ments. These immortalized mHepR1 cells represent a clone of the HepSV40 line derived from
transgenic mice [31] and exhibit characteristic markers for epithelial cells like the tight-
junction-associated protein ZO-1. The epithelial cells were cultured in DMEM supplemented
with 10% FCS and 1% gentamicin at 37°C and 5% CO2. Near confluence, cells were detached
with 0.25% trypsin/0.38% EDTA (Invitrogen) for 10 min. After stopping trypsinization by the
addition of cell culture medium, an aliquot of 100 µL was put into 10 mL of CASY® ton buffer
solution (Roche Innovatis) and the cell number was measured in the counter CASY® Model
DT (Schärfe System).

2.4.2. Immunofluorescence staining of ZO-1

Into a 24-well plate (Greiner), which was provided with a round coverslip (diameter of 12 mm,
MENZEL) and 1 ml DMEM+FCS+Genta, 5×104 cells/well were seeded. The mHepR1 cells were
incubated for 2 days at 37°C and 5% CO2 to achieve a confluent cell layer for ZO-1 observation.
Then the culture medium was replaced by plasma-treated or control DMEM+FCS+Genta,
prepared as described in paragraph 2.2. and stored for 21 days at 37°C and 5% CO2. The plate
was incubated for another 24 h at 37°C and 5% CO2 followed by immunofluorescence staining
of the cells for ZO-1 protein. The cells were permeabilized with ice-cold acetone (−20°C, 200
ml, Lab-Scan) for 5 min and, after washing three times with phosphate buffer solution (PBS;
PAA Laboratories), the cells were incubated with rabbit anti-ZO-1 antibody (diluted 1:100,
Invitrogen) for 30 min at room temperature. After washing again with PBS, the cells were
incubated with fluorescein-conjugated Alexa Fluor 488 secondary antibody goat anti-rabbit
(1:100, Invitrogen) for 30 min at room temperature in the dark to avoid fading of the fluorescent
dye. Finally, the cells were embedded in mounting medium (FluroShield, Sigma Aldrich) with
a coverslip. The ZO-1 protein was analyzed by the inverted confocal laser scanning microscope
LSM 780 (Carl Zeiss, Oberkochen, Germany), equipped with a 63× oil-immersion differential
interference contrast (DIC) objective.

2.4.3. Cell viability

To monitor the viability of the cells in plasma-treated medium, the CellTiter 96®AQueous Non-
Radioactive Cell Proliferation Assay (Promega) was used. For each medium sample and the
control (prepared as described in paragraph 2.2.), three wells containing 100 µl of medium
were prepared in a 96-well plate and 2×104 mHepR1 cells were added to each well. After an
incubation time of 24 h (37°C and 5% CO2), 20 µl of the MTS solution (Promega) was added to
each well and incubated for 2 h (37°C and 5% CO2) with manual shaking for every 30 min.
Afterward, 60 µl of each well was transferred into a fresh 96-well plate and the absorption was
determined at 492 nm (reference 620 nm) using a microplate reader (Anthos). The appropriate
medium without cells served as a blank. The viability of cells was calculated corresponding
to cells in the untreated control medium (100%). The determination of cell viability was
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performed in three independent experiments for DMEM+FCS+Genta, which had been argon
plasma-treated for 60 or 120 s, for the untreated control and for the same medium after argon
flow for 60, 120, or 180 s. Three additional experiments were performed for DMEM and DMEM
+FCS, which were argon plasma-treated for 120 s, for the untreated control and for the same
media after argon flow for 120 s. The supplements omitted during plasma treatment were
added before cell culture to ensure analogous conditions.

2.4.4. Scanning Electron Microscopy (SEM)

Into a 24-well plate (Greiner), which was provided with a round coverslip and 1 ml DMEM
+FCS+Genta, 5×104 cells/well were seeded. The mHepR1 cells were incubated for 2 days at 37°C
and 5% CO2 to achieve a confluent cell layer. Then the culture medium was replaced by plasma-
treated DMEM+FCS+Genta (60 s) or control medium, prepared as described in paragraph 2.2.
and stored for 7 days at 37°C and 5% CO2. After 24 h of incubation, the mHepR1 monolayer
was washed three times with PBS and subsequently fixed in glutardialdehyde (GDA, Sigma
Aldrich, 0.5% in PBS) and stored for at least 24 h at 4°C. Afterward, the mHepR1 monolayer
was critical point-dried. For this purpose, the GDA PBS solution was first gradually removed
by drainage using acetone with increasing concentrations of 30, 50, 70, 90, and 100% for 10 s,
5, 10, and 15 min and twice for 10 min, respectively. Subsequently, the acetone was substituted
by critical point drying (K 850 EMITECH). Then samples were sputter-coated with gold
particles for 100°s (layer thickness approximately 20 nm), achieving a conductive dissipation
for SEM. The cell surface structure was analyzed with a DSM 960 A (Carl Zeiss), operated at
10 kV at a magnification of 5,000× and a tilt angle of 60°.

3. Results and discussion

The atmospheric-pressure plasma jet kINPen09 [12] was applied throughout the experiments.
The same plasma jet was used in our recent work [25], where we found that plasma effects on
cells correspond to a plasma–medium interaction, and thus plasma-treated DMEM+FCS
+Genta alone is able to open cell–cell contacts in a confluent cell monolayer of mHepR1 cells.
Immunostaining of the zonula occludens tight junction protein (ZO-1) showed large openings
between cells, which led to the complete degradation of the tight junction proteins. Normally,
untreated cells represent clear, continuous ZO-1 bands between adjoining cells. In contrast,
large intercellular openings were observed using plasma-treated DMEM+FCS+Genta. This
effect was verified also for the medium that was stored up to 7 days after plasma treatment
showing a persistent effect of plasma-treated medium on cells [26].

As we discovered here, this long-lasting effect is persistent for up to 21 days after argon plasma
treatment. The tight junction protein ZO-1 of murine hepatocytes mHepR1 is shown in Figure
2. After incubation of cells with DMEM+FCS+Genta, which was plasma-treated for 120 s and
stored for 21 days, the expression of ZO-1 in the cell contact zone was either reduced in different
areas or disappeared due to the retraction in a centripetal direction. In consequence, the cell
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size increased due to the loss of cell–cell contacts in the monolayer. In normal controls, tight
cell–cell contacts could be found between neighboring cells.

Figure 2. ZO-1 of mHepR1 cells after 21 days. (A) In control cells, the tight cell–cell contacts between neighboring cells
are clearly visible. (B) After incubation of cells with plasma-treated DMEM+FCS (120 s) – which was stored for 21 days
– either the expression of ZO-1 in the cell contact zone was reduced (arrow) or ZO-1 disappeared due to the retraction
in a centripetal direction (arrowhead). Confocal microscopy (LSM 780, Carl Zeiss, bars 10 µm).

Accompanied with the long-lasting effect of plasma-treated medium on the distribution of
ZO-1 in mHepR1 cells, we found changes in the cell surface morphology by SEM. The mHepR1
cells exhibited shortened microvilli with a lower density resulting from the plasma-treated cell
culture medium [26]. These findings on microvilli shortening were revealed after a 1-day as
well as a 7-day storage time of plasma-treated medium (60 s; complete DMEM). SEM images
of mHepR1 cells (Figure 3), incubated for 24 h with the plasma-treated (60 s), 7-day stored
DMEM+FCS+Genta illustrate this effect. Untreated and even argon-treated mHepR1 cells
present elongated microvilli covering the cell surface at a high density. In contrast, the plasma-
treated mHepR1 cells showed greatly shortened microvilli and the density over the entire cell
surface seems to be reduced.

The formation of cell surface structures, e.g., microvilli, is essential for characteristic functions
of specialized cells in tissues. Microvilli increase the cell surface and play an important role in
metabolic processes: they regulate cellular functions by external signals as well as Ca2+

signaling [32]. Effects similar to those we observed in our work were detected by Pfister and
Burstein after the treatment with ophthalmic drugs [33]. They observed the loss of surface
epithelial microvilli as well as rupture of the tight junctions on corneal epithelial cells.

As a consequence, the question arises of which parameter that can persist as long as 21 days
is changed in cell culture medium due to plasma treatment. As recently shown, plasma effects
due to thermal damage of differential proteins in cell culture medium could be excluded for
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treatment times below 180 s for the atmospheric-pressure plasma jet kINPen09 [26]. The
temperature in the cell culture medium did not exceed 25°C. Plasma–liquid interactions were
studied by Oehmigen et al. [34] and von Woedtke et al. [35] relating to the effective disinfection
of liquids. It was shown that the inactivation of bacteria is strongly dependent on the acidifi‐
cation of aqueous liquids (pH decrease). In our work, we could show that the pH of the
complete cell culture medium DMEM remained constant. The buffering capacity of sodium
hydrogen carbonate in the medium was sufficient to maintain the pH even after a plasma
treatment. Furthermore, the redox amphoteric hydrogen peroxide was found in liquids after
plasma treatment in various studies [10,34]. As hydrogen peroxide also occurs in the cell
metabolism, it can be degraded by various repair and protection mechanisms in the cell.
Antioxidants inside the cell are able to detoxify “natural” amounts of ROS. In the presence of
an overabundance of ROS, these mechanisms fail. Thus, the concentration of hydrogen
peroxide and oxygen in the medium after plasma treatment was investigated earlier. Our
investigations revealed that hydrogen peroxide and oxygen concentrations were balanced
over the time period of up to 1 day, but the cell behavior was affected by argon plasma-treated
medium stored for 1 or 7 days [26] or as described here for 21 days.

These detrimental effects on mHepR1 cells due to argon plasma-treated cell culture medium
lead us to investigate other physicochemical parameters, which could change during the
plasma treatment of a medium. One parameter to which cells react sensitively is the osmolality
[36]. Due to evaporation processes induced by the argon gas flow, the medium volume in the
well could be reduced during plasma treatment. Accordingly, the osmotic strength in the
medium would increase. To examine this, we utilized the osmolality by measuring the freezing
point depression for argon plasma-treated DMEM+FCS+Genta. The results in Figure 4 show

Figure 3. Microvilli of mHepR1 epithelial cells (A) in DMEM+FCS+Genta as control and (B) in the same medium,
which was argon plasma-treated for 60 s and stored for 7 days (culture time 24 h). Scanning electron microscopy (SEM,
DSM 910, magnification 5,000×, tilt angle 60°, and bar 4 µm).
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an increasing osmolality for the medium after argon plasma treatment for 60 or 120 s. Inter‐
estingly, argon gas flow alone did not influence osmolality as high as argon plasma did. Thus,
osmolality in the medium after 60 s of plasma treatment is higher (444.11 mOsmol/kg) than in
the argon gas-treated control (384.67 mOsmol/kg). To reach the same osmolality level as after
60 s of plasma treatment, the argon gas flow needs to impact on the medium for 180 s.

Figure 4. The osmolality of treated DMEM+FCS+Genta increased significantly with longer exposition times. Note that
argon plasma treatment (plasma) over 60 s and argon gas treatment (argon) over 180 s result in similar values. (mean ±
SD, *** p < 0.001, t-test, n = 3).

To determine the effect of increasing osmolality on the cell behavior, we studied the viability
of mHepR1 cells cultured for 24 h in DMEM+FCS+Genta, which was treated similarly to the
samples used for osmolality measurements. As can be seen in Figure 5, the viability of the cells
was massively reduced due to the 60 s plasma-treated medium. Interestingly, cells in 180 s
argon gas-treated medium kept a viability of around 80%, although the osmolality values of
60 s argon plasma versus 180 s argon gas were in the same range.

Thus, increasing osmolality during argon plasma treatment is not the reason for the detri‐
mental cell effects we observed, neither the changing of the pH nor the oxygen concentration
nor the persistence of hydrogen peroxide after plasma treatments, which were precluded
earlier.

Besides physical parameters, which could be changed due to plasma treatment, alterations in
the chemical composition of the cell culture medium were investigated. In a recent study,
Kalghatgi et al. [24] demonstrated an induction of DNA damage in mammalian breast epithelial
cells by plasma-treated cell culture medium. This effect was not reduced if the medium had
been stored up to 1 h prior to addition to the cells. The authors hypothesized that this remaining
biological effect of plasma-treated cell culture medium is caused by stable organic peroxides
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made up of medium compounds like amino acids [24]. The formation of stable peroxides from
amino acids and proteins by reactive oxygen species like an OH radical is a well-known process
[37]. In recent years, an active discussion has begun about the very complex ROS chemistry in
plasma-treated liquids and its biological effects, including reactive species like OH radical,
hyperoxide anion, and also the relatively stable hydrogen peroxide [1,38,39].

As we showed recently by size-exclusion chromatography on an FPLC analysis system,
medium components are modified by argon plasma treatment [26]. We detected an additional
peak upon plasma treatment of DMEM+FCS+Genta compared with the argon gas-treated
control. In these experiments, we separated the components after plasma treatment by gel
filtration. Interestingly, the peak height increased depending on the treatment time of the
medium. In the present experiments, we examined the contribution of different medium
components, FCS and gentamicin, to this additional peak and to the effects on cells. For this
purpose, we investigated plasma treatment for the medium with (DMEM+FCS) and without
supplements (DMEM). The different medium samples were analyzed after argon gas flow for
120 s and after argon plasma for 120 s by gel filtration with an FPLC system and compared
with untreated controls (Figure 6).

All chromatograms of the analyzed media show peaks at a retention volume of about 22 ml
(21.67–22.10 ml) and 26 ml (25.41–25.77 ml). The characteristic peak for albumin at about 15
ml (14.38–14.70 ml) was found in DMEM supplemented with FCS. An additional peak was
found for the samples, which were treated for 120 s with argon plasma (see arrow) in basic
DMEM, in DMEM+FCS (see Figure 6) and in DMEM+Genta (data not shown). No signal
around the retention volume of 20 ml could be detected in untreated media and media that

Figure 5. Difference in the viability of cells cultured in argon plasma- and argon gas-treated DMEM+FCS+Genta. Note
that argon gas treatment over 180 s did not decrease cell viability as much as the argon plasma treatment did. (mean ±
SD, *** p < 0.001, t-test, n = 3).
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were only exposed to argon gas flow. This result gives rise to the idea that the visible changes
in the chromatogram were caused by a change in the basic media (DMEM) independent of the
supplements (FCS and gentamicin). Argon plasma seems to initiate the formation of compo‐
nents with higher molecular weight in the basic DMEM that appear at a lower retention time
in the chromatogram.

Investigators hypothesized that ROS induces the formation of organic peroxides, which could
be responsible for the damaging effects on cells in culture [21,22,37]. This conclusion is mainly
based on the comparison of the incubation of cells with plasma-treated PBS, FCS, bovine serum
albumin (BSA) or single amino acids [22]. DNA damage could not be shown after incubation
of cells with plasma-treated PBS. However, incubation with plasma-treated BSA (in PBS) or
FCS (in PBS) resulted in DNA damage of subsequently added cells. Even plasma treatment of
PBS containing single amino acids resulted in adverse cell effects. Further analysis revealed a

Figure 6. An additional peak at a retention volume of about 20 ml could be detected in the plasma-treated samples
using size-exclusion chromatography. Note that cell culture medium DMEM without FCS also showed this signal, in‐
dicating that the source of this signal was not the interaction of argon plasma with FCS.
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correlation between the peroxidation efficiency of single amino acids and their potential to
induce DNA damage in cells [22]. These findings supported the thesis of amino acid peroxide
formation and its potential contribution to DNA damage generation. The damage could be
mediated either by single amino acids or by FCS, both being usual components of cell culture
media.

As shown in Figure 5 and also observed in an earlier work of our group, DMEM+FCS+Genta
impaired cell vitality after argon plasma treatment [25]. Based on the results deduced from
size-exclusion chromatography (see Figure 6), it was deemed important to analyze the viability
of mHepR1 cells dependent on the medium supplements during plasma treatment. For this
purpose, DMEM and DMEM+FCS were argon plasma-treated for 60 and 120 s. Controls
without treatment or only argon gas flow were also investigated. It was found that the mHepR1
cell viability decreased significantly in plasma-treated media after 24-h incubation for both
approaches (Figure 7). In particular, in the presence of FCS during plasma treatment, the
inhibitory effect is more obvious.

Figure 7. Cell viability after incubation of mHepR1 cells in plasma-treated DMEM and DMEM+FCS. (mean ± SD, ** p <
0.005, *** p < 0.001, t-test, n = 3).

Therefore, it can be assumed that components in the basic DMEM without supplements were
changed due to the impact of argon plasma and influenced cell viability.

Based on the hypothesis of Kalghatgi et al., for the generation of stable organic peroxides from
amino acids during plasma treatment [22] and our cell viability results in mHepR1 cells in
plasma-treated DMEM versus DMEM+FCS, it can be concluded that peroxides formed from
single amino acids by plasma treatment could be the reason for the detrimental cell effects we
found. However, peroxidated amino acids are semi-reactive compounds and it seems possible
that they generate compounds with higher molecular weight during storage, e.g., by poly‐
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merization. The identification of the newly generated substances in the cell culture medium
awaits further analysis.

There is increasing evidence that plasma treatment promotes the healing process of tissue and
accelerates wound healing [13,40–42]. The skin is a complex architectural multilayer cell
system and processes concerning wound healing can be examined on cell monolayers as an
in vitro model system. However, it is important to keep in sight that a cell monolayer in vitro
is much more sensitive to agents because there are no cells in the “second row” to protect or
replace cells in the apical row [43]. Here, we described effects of argon plasma-treated liquids
(e.g., cell culture medium) as an indirect approach for plasma application in medicine.
Transferred to in vivo systems, the opening of cell–cell contacts we observed by plasma-treated
liquids could have a positive effect on the penetration of conventional therapeutics (antibiotics
and disinfectants) on skin. Often, the application of conventional liquid antiseptics is not
sufficient and sustainable as the borders and the surrounding of chronic wounds frequently
consist of sclerotic skin, impeding an effectual penetration of these products [44]. With regard
to disinfection, direct plasma treatment of living intact and wounded skin was found to be safe
for doses even higher than required for inactivation of bacteria [45,46]. Impaired cell adhesion
and reduced cell viability due to plasma-treated liquids are important starting points for
further investigations concerning cancer therapy. The work presented here, focused on the
basic mechanisms in the interaction of plasma-treated cell culture medium with cells and on
the components in the treated medium, which are responsible for the persistent biological
effect.

The vision could be the establishment of local plasma centers to prepare relatively stable
plasma liquids for dermatological (chronic wounds and tumors), dental (peri-implantitis), or
orthopedic (joint rinsing) applications to support or replace the conventional therapy.

4. Summary and conclusions

This study focused on the physicochemical analysis of argon plasma-treated cell culture
medium DMEM with the additives FCS and gentamicin. In addition, the efficacy of plasma-
treated complete cell culture medium DMEM upon storage and its impact on the cell physi‐
ology of epithelial mHepR1 cells were ascertained. We discovered that the liquid-mediated
effect of atmospheric-pressure argon plasma on mouse liver epithelial cell–cell contacts and
cell membrane microvilli persists up to even 21 days or 7 days of storage, respectively. Earlier
investigations of our group revealed that temperature and pH (both were constant) as well as
hydrogen peroxide production and oxygen content (both decreased within 1 day) can be
excluded as initiators of the detrimental biological changes. As we found here, increased
osmolality in the media caused by plasma treatment can also be excluded as a reason for the
observed cell effects. On the other hand, we found an additional peak in size-exclusion
chromatography analysis in basic DMEM after plasma treatment and significantly decreased
cell viability in plasma-treated media independent of the presence of FCS during plasma
treatment. High molecular compounds generated during plasma treatment of DMEM without
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FCS give an impulse for further investigations on the formation, stability, and reaction of amino
acid peroxides in this medium. The persistent biological effect on plasma-treated liquids
observed here could open up new medical applications. Stable plasma-treated liquids could
find applications for dermatological, dental, or orthopedic therapy.
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