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Abstract

Haploidentical hematopoietic cell transplantation (HaploHCT), with cells from HLA-
half-matched first degree related donors (siblings, children and parents), could revolu‐
tionize hematopoietic transplantation as it expands this form of treatment to
approximately 40% of patients who do not have an HLA-matched donor in USA. This
need is particularly acute in developing countries, which usually do not have an unrelat‐
ed donor registry and/or cost is a major issue in acquiring unrelated donor stem cells. Ac‐
cordingly, the number of haploSCTs done in USA, Europe, China, and developing
countries is on the rise. Advantages to HaploHCT include almost universal (more than
95% of patients will have a half-matched related donor) and immediate availability of do‐
nor progenitor cells, the opportunity to select the best donor among family members to
minimize treatment-related mortality, decrease relapse rate and improve outcomes [2],
and the possibility to collect donor cells for cellular therapy post-transplantation, with the
goal to enhance the anti-tumor effects of the graft. Despite its potential advantages, until
recently, high donor-recipient HLA-histoincompatibility has proven very difficult to
overcome.

Haploidentical transplants initially performed with conventional GVHD prophylaxis in
late 70’s led to a strong bidirectional alloreactivity, manifested by both high incidence of
primary graft failure of approximately 30% as well as the development of a syndrome
suggestive  of  hyperacute  GVHD  (manifested  with  seizures,  renal  failure,  respiratory
failure  in  the  majority  of  patients)  and very poor  outcomes.  To prevent  GVHD after
HaploHCT, ex vivo T-cell depletion (TCD) was used successfully in the 80’s [5]; howev‐
er, this approach resulted in a high incidence of graft rejection in up to 50% of cases [6].
This high incidence of graft failure, thought to be primarily related to the remaining T
cells in the recipients system and lack of donor T cells in the graft to support engraft‐
ment, was improved in the 90’s by intensifying the conditioning regimens, combining ex
vivo and in vivo T-cell depletion, and increasing the donor graft inoculum using “mega-
doses” of CD34+ cells. Primary engraftment was achieved in >90% patients with a low
GVHD rate [8].

In the past decade, significant progress has been made as investigators from around the
world have tried to overcome the fore-mentioned barriers in HaploHCT by using T-cell
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replete grafts with intensified GVHD prophylaxis, or by the use of methods to selectively
deplete T cells from the haploidentical graft [12]. In addition, the development of post-
transplant cellular therapy to prevent or treat disease relapse and infectious complica‐
tions after transplant has found an ideal applicability in related donor transplantation,
including haploidentical transplants.

Keywords: Haploidentical Hematopoietic, Stem Cell Transplantation

1. Introduction

A human leukocyte antigen (HLA)-matched sibling is the preferred donor for allogeneic
hematopoietic stem cell transplantation (AlloSCT); however, the probability of having such a
donor depends on the number of one’s siblings and is approximately 30% in the population.
The probability of finding a matched unrelated donor (MUD), the second preferred donor,
primarily depends on a patient’s race and ethnicity. While a Caucasian’s chance of having a
MUD is 75%, that of an African American is less than 20% [1, 2]. For those without an HLA-
matched donor, alternative hematopoietic progenitor cell sources include mismatched
unrelated donors, haploidentical related donors, and umbilical cord blood.

While a patient’s children and parents share one haplotype with the patient, the chance that
one’s sibling and cousin would share at least one haplotype is 75% and 37.5%, respectively.
Consequently, almost all patients with known parents have at least one haploidentical donor.
The use of haploidentical donors as an alternative to HLA-matched sibling donors (MSD) has
been gaining momentum recently [3], particularly after the advent of posttransplantation
cyclophosphamide [4], which rendered this form of transplantation easier and safer.

The primary challenge in AlloSCT from haploidentical related donors (HaploSCT) is over‐
coming the high HLA histoincompatibility barrier. In fact, first HaploSCT attempts in the late
1970s led to a strong bidirectional alloreactivity, leading to both high incidence of graft failure
and the development of hyperacute graft-versus-host disease (GVHD) [5, 6]. To prevent GVHD
after HaploSCT, ex vivo T-cell depletion (TCD) was used in the 1980s [7]; however, this led to
a high incidence of graft rejection due to the lack of T cells in the graft that would have
eliminated the remaining recipient T cells [8]. Outcomes after HaploSCT were improved in the
1990s by intensifying the conditioning regimen, combining ex vivo and in vivo T-cell depletion,
and increasing the donor graft inoculum using “mega-doses” of CD34+ cells [9]. This led to
intensified work on HaploSCT and, in the 2000s, Johns Hopkins group introduced a forgotten
method, high-dose cyclophosphamide early after graft infusion, bringing HaploSCT to
mainstream use. These strategies have been improved upon and newer ones are being
developed to tackle the high-HLA histoincompatibility barrier, while at the same time
fastening posttransplant immune reconstitution and preserving graft-versus-leukemia (GVL)
effect. These transplant approaches may be grouped into two: those including ex vivo T-cell
depletion or manipulation of the graft and those relying on modification/intensification of
GVHD prophylaxis without graft engineering. The strategies covered in this chapter and their
rationales are summarized in Table 1.
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Approach Mechanism and rationale Potential shortcomings

Complete/partial ex vivo T-cell depletion Most efficacious GVHD preventive
method

↑  graft rejection
↑  NRM and possible ↑  RI due to
delayed immune reconstitution

Treg and Tcon co-infusion Addition of Tcons to promote
immune reconstitution while
preventing GVHD with Tregs

Treg may decrease GVL effect
Treg/Tcon ratio needs to be
optimized

NK-cell co-infusion Addition of NK cells to enhance
GVL effect and decrease TRM

Clinical efficacy not proven

Engineered donor lymphocytes with a safety
suicide switch

To prevent/treat disease relapse
and improve immune
reconstitution post transplant.
Safety switch allowing T-cell
suicide in case of GVHD
precipitation →  higher T-cell doses
are possible

T cells are not targeted →  while
immune reconstitutive effect is
demonstrated, GVL effect is not
yet clear

T cells with chimeric antigen receptors T cells engineered to recognize
specific antigens (CD19) provide
GVL effect without GVHD

Clinical efficacy after HaploSCT
has not been shown yet

Allodepletion using anti-CD25 antibodies ex vivo depletion of alloreactive T
cells by targeting activation marker
CD25 after incubation with APC
recipients

Treg also express CD25
Clinical efficacy not proven
Possible effect on GVL response

Allodepletion with phototoxic dye ex vivo depletion of alloreactive T
cells with TH9402 that accumulates
in activated T cells

Clinical efficacy not proven
Possible effect on GVL response

Selective αβ T-cell depletion Preservation of γδ T cells (unlikely
to induce GVHD while effective
against infections with an innate-
like response) while eliminating αβ
T cells most responsive for aGVHD
Potential to avoid posttransplant
immunosuppression

Clinical efficacy not proven
Promising early data available
Possible effect on GVL response

Selective CD45RA+ T-cell depletion Elimination of CD45RA+ naïve T
cells (capable of precipitating
GVHD) while preserving memory
T cells (active against infections)
Potential to avoid posttransplant
immunosuppression

Clinical efficacy not proven
Possible effect on GVL response
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Approach Mechanism and rationale Potential shortcomings

Alloanergization Alloreactive T cells are anergized
by blocking co-stimulatory
CD80/86 signal

T cells are not depleted
↑  GVHD rate

High-dose posttransplantation
cyclophosphamide
RIC/NMA conditioning

Eliminating the alloactivated T cells
early after transplant without
affecting stem cells.
T-cell preservation allows lower
intensity conditioning extending
transplantation to elderly patients
Low incidence of cGVHD

Low cost
GVHD incidence higher than after
ex vivo T-cell depletion; however
similar to matched transplantation
Higher leukemia relapse incidence
after NMA conditioning

Myeloablative conditioning To decrease relapse incidence in
leukemia patients

↑  in NRM and possibly in GvHD

Peripheral blood as stem cell source To decrease relapse incidence and
possibly improve immune
reconstitution through higher T-
cell content in PB

↑  in acute GvHD potential

Intensified immune suppression To demeliorate immune reaction
both ways
G-CSF priming of BM and PB graft
to induce T-cell
hyporesponsiveness

Higher aGVHD and cGVHD
incidence

Legend: GVHD – graft-versus-host disease, NRM – nonrelapse mortality, RI – relapse incidence, Treg – regulatory T cells,
Tcon – conventional T cells, APCs – antigen-presenting cells, GVL – graft-versus-leukemia effect, RIC – reduced-intensity
conditioning, NMA – nonmyeloablative conditioning, HaploHCT – haploidentical transplantation, PB – peripheral blood,
BM – bone marrow, G-CSF – granulocyte–colony-stimulating factor, NK – natural killer

Table 1. The rationale and potential shortcomings of the current approaches in haploidentical stem cell
transplantation.

2. HaploSCT with ex vivo T-Cell depletion or manipulation

The first successful HaploSCT strategy was grafting a “mega-dose” of progenitor cells through
TCD of the bone marrow (BM) and peripheral blood (PB) products. To further decrease graft
rejection, in vivo TCD with antithymocyte globulin (ATG) and a myeloablative-conditioning
regimen were used [9]. Further technical revisions in the protocol led to primary engraftment
in 95% of patients [10]. Although GVHD rates were low, transplant-related mortality (TRM)
rate approached 40% primarily due to opportunistic viral infections, likely related to the
delayed immune reconstitution. Furthermore, the use of myeloablative conditioning restricted
this type of transplant to younger patients with good performance status. Two general
approaches were used to enhance GVL and immune reconstitution after TCD HaploSCT: (1)
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selective lymphocyte add-back during or after TCD graft infusion and (2) selective depletion
or deactivation of T cells capable of inducing GVHD while preserving the rest.

2.1. Selective lymphocyte add-back during or after TCD graft infusion

2.1.1. Co-infusion of regulatory T cells (Treg) and conventional T cells (Tcon)

Tregs modulate the immune system maintaining tolerance to self-antigens. Studies showed that
Tregs may suppress GVHD [11] and facilitate posttransplant immune reconstitution when
coinfused with Tcons [12]. Whether Tregs affect GVL effect is under investigation [13]. To boost
the GVL effect and immune reconstitution with Tcons while preventing GVHD with Tregs, Di
Ianni et al. infused donor Tregs before the infusion of TCD PB progenitor cells and donor Tcons

[14]. Of 28 patients, 26 achieved engraftment and 2 developed acute GVHD (aGVHD). Despite
the rapid development of a wide T-cell repertoire, 8 patients still died of opportunistic
infections. A recent follow-up study also demonstrated high engraftment, low GVHD, and
high TRM rates [15]. These findings suggest that adoptive immunotherapy with Tregs may
counteract the GVHD potential of conventional T cells in HaploSCT; however, the high
incidence of opportunistic infections and TRM remains a concern.

2.2. Natural Killer (NK) cells

It is thought that NK cells, a vital part of the innate immune system [16], recognize their targets
through both inhibitory and activating receptors. According to the widely used “missing self”
model, an NK cell recognizes a cell as foreign when the particular cell lacks one or more HLA
class I alleles specific to the inhibitory receptors (killer immunoglobulin-like receptors, KIRs)
on the NK cell [17, 18]. NK cells primarily attack hematopoietic cells sparing the solid organs;
therefore, they are almost incapable of causing GVHD [19]. NK-cell infusions after HaploSCT
have been utilized to exploit innate immunity against a variety of tumors [20]– [22]. Yoon et
al. reported no acute side effects in 14 patients who were infused with donor NK cells 6–7
weeks after T-cell replete HaploHCT using a reduced-intensity conditioning [23]. Two patients
who received NK-cell infusions during active leukemia did not have a response and 4 patients
developed cGVHD. More recently, the same group reported no acute toxicity after NK-cell
infusions up to 1 × 108 cells/kg. When compared with historical controls, NK-cell infusions
were associated with lower leukemia relapse rate [24]. Further studies are needed to assess the
utility of NK-cell infusions after HaploSCT, and such a study is currently recruiting patients
at our institution.

2.3. Engineered donor lymphocytes with a safety switch

Donor  lymphocyte  infusions  (DLI)  are  more  practical  after  HaploSCT  than  after  trans‐
plants from unrelated donors due to the availability of the related donors. While DLI may
be used to prevent or treat disease relapse and enhance posttransplant immune reconstitu‐
tion, it may also induce GVHD. T cells engineered to express safety suicide switches in case
of GVHD may be used for a safer DLI. Ciceri et al. engineered donor lymphocytes to express
Herpes simplex virus-thymidine kinase suicide gene (TK cells), which can be triggered by the
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use of ganciclovir [25]. TK cells were engrafted in 22 of 28 patients who underwent Hap‐
loSCT with  TCD–PB grafts  and received TK cells  once  a  month for  4  months.  Immune
responses against cytomegalovirus (CMV) and Epstein–Barr virus improved after TK-cell
infusions. Without any GVHD prophylaxis, 10 patients developed acute GVHD and required
ganciclovir resulting in abrogation of GVHD in all. There were no GVHD-related deaths or
long-term complications [25].

However, ganciclovir, a commonly used drug to treat CMV after transplantation, is not a well-
suited drug to induce suicide of T cells. Baylor group used an alternative approach and
engineered donor lymphocytes to express an inducible caspase-9 transgene (iC9), activated by
a bio-inert molecule, AP1903 [26]. All of 10 pediatric patients (age 3–17) who underwent
HaploSCT with TCD grafts and were infused with iC9-T cells between 30 and 90 days after
transplantation, achieved engraftment of iC9-T cells [27]. In 5 patients who developed GVHD
after iC9-T-cell infusion, iC9-T cells were >90% eliminated within 2 hours of AP1903 admin‐
istration, and GVHD was rapidly reversed. Viral replication or disease was resolved within 4
weeks of iC9-T-cell infusion in all patients who had evidence of viral replication. Although
very promising with a strong rationale, engineering T lymphocytes requires good manufac‐
turing practice (GMP) facilities and patient-specific tailoring and is expensive.

2.4. T cells with Chimeric Antigen Receptors (CAR)

Lymphocytes, irrespective of whether they have been engineered to express suicide genes or
not, have a broad target range that may or may not include the underlying malignancy. To
give them a specific target, T cells are engineered to express CARs (CAR T cells) – fusion
proteins with an extracellular antigen recognition moiety and an intracellular T-cell activation
domain. CAR T cells have significantly higher antitumor efficacy for B-cell hematological
malignancies without the added risk for the development of GVHD. Kochenderfer et al.
reported their findings in 10 patients who received anti-CD19 CAR T cells for B-cell malig‐
nancies relapsed after transplantation from matched related or unrelated donors [28]. All
patients had received standard DLIs prior to CAR T cells with only 2 responses. Two patients
achieved responses lasting >3 and >9 months after CAR T-cell infusions, whereas 6 patients
achieved stable disease lasting between 1 and more than 11 months. None of the patients
developed GVHD after the infusion.

CAR T cells after HaploHCT may also be generated from the same donor and used to prevent/
treat relapses. At our institution, we have so far treated 3 acute lymphoblastic leukemia (ALL)
patients – one with active disease – with HaploSCT followed by CAR T cells. All patients
tolerated the infusions well with no significant GVHD. The two patients who received CAR T
cells as preemptive therapy are alive in remission more than 6 months post transplant, whereas
the other patient died of disease relapse. To our knowledge, these are the first HaploSCT
patients treated with CAR T cells. Although the experience is limited, the prevention of disease
relapse post transplant for high-risk ALL patients appears to be the most important therapeutic
benefit of CAR T cells presently.
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2.5. Selective T-Cell depletion/deactivation of the graft

2.5.1. Allodepletion

Allodepletion methods include, first, generating an alloresponse by co-culture of donor T cells
and recipient cells and, then, depleting the activated donor T cells through surface activation
markers or photoactive dyes, which are preferentially retained in activated T cells [29].

Amrolia et al. used an anti-CD25 immunotoxin to deplete alloreactive lymphocytes ex vivo.
Allodepleted lymphocytes of 104–105 cells/kg were infused on days 30, 60, and 90 of TCD
HaploSCT in 16 patients (median age 9 years) [30]. Only two patients developed grade II–IV
acute GVHD, and a wider T-cell receptor (TCR) repertoire was observed 4 months after the
transplant compared with the retrospective controls. Nevertheless, 9 patients (56%) died due
to relapsed disease (5), infection (3), and interstitial pneumonitis (1).

Depletion based on CD25 expression may not be the optimal approach as Tregs also express
CD25 on their surface. An alternate method to deplete activated T cells using TH9402, a
phototoxic dye that accumulates in activated T cells due to their inability to efflux rhodamide-
like drugs, was also developed [29, 31, 32]. Bastien et al. showed that photodepletion in
transplanted patients with resistant chronic GVHD eradicated proliferating T cells while
sparing Tregs [33]. HaploSCT with photodepleted T cells may be possible and requires further
clinical studies.

Although allodepletion has a strong rationale, clinical studies to date are limited, and its broad
use is severely hampered by the requirement of cell cultures in a GMP facility.

2.5.2. Alloanergization

For activation of T cells, two signals from antigen-presenting cells (APCs) are required:
presentation of the immunogenic peptide on major histocompatibility complex activating the
TCR and a costimulatory or an inhibitory signal through CD80/86 and CTLA-4 on APCs,
respectively, to the CD28 on T cells. Although a costimulatory signal would lead to differen‐
tiation to Tcons, an inhibitory signal from CTLA-4 would induce anergy and the development
of Tregs [34] allowing transplantation of histoincompatible allografts [35].

Guinan et al. showed the feasibility of HaploSCT using a BM graft in which donor T cells were
anergized through incubation with recipient’s mononuclear cells and CTLA-4-Ig [36]. Of 12
patients transplanted, 1 died early post transplant, 11 achieved sustained engraftment, and 3
developed acute GVHD. No deaths due to GVHD occurred in this group. In a follow-up study,
5 of 24 transplanted patients were reported to develop severe aGVHD and 12 patients died
within 200 days of transplantation (5 due to infection) [37]. Similar to allodepletion methods,
use of alloanergization is restricted to those centers with GMP facilities.

2.5.3. CD45RA depletion

Various classification schemes of T cells exist according to their cell surface phenotype and
functional activity [38]– [40]. Majority of T cells that can respond to minor H antigens and cause
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GVHD are thought to be never exposed to their cognate antigen, in other words, naïve (TN),
with a CD45RA+CD62L+ surface phenotype [41]. Several in vitro and mouse studies support
this hypothesis [42]– [46]. However, depletion of CD45RA+ naïve T cells is not straightforward,
as a subset of CD34+ hematopoietic progenitor cells also express CD45RA [47]. To preserve
the progenitor cells, Bleakley et al. devised a two-step procedure in which donor-apheresed
PB is first selected for CD34+ cells, and then CD34-negative fraction was depleted for CD45RA
to preserve all CD34+ cell subsets [48]. Conversely, investigators at St. Jude chose to deplete
CD3+ cells from the first day – preserving all CD34+ cells – and CD45RA+ cells from the second-
day apheresis products [49]. A 4.5-log depletion in TN cells was detected in the final product
to be infused. In 8 pediatric patients who underwent HaploSCT after myeloablative condi‐
tioning, the use of CD3/CD45RA depleted grafts led to engraftment in all and development of
GVHD in none of the patients [49]. On posttransplant day 30, almost all T cells were negative
for CD45RA. After a median follow-up of 171 days, none of the patients died of infectious
complications. Although very promising, these results need to be verified in larger cohorts
and in adults.

2.5.4. Alpha-beta T-cell depletion

γδ T cells, with TCRs made up of one γ (gamma) and one δ (delta) chain, possess properties
of both innate and adaptive immune system with rapid, innate-like responses and rearranged
TCRs yielding adaptability [50]. Remarkably, γδ T cells are thought not to require antigen
processing and HLA presentation of antigens, rendering them unlikely to induce GVHD,
whereas αβ T cells are thought to be the primary cause of GVHD [51]. Accordingly, a faster
recovery of γδ T cells after SCT has been associated with longer disease-free survival [52].
Recently, methods to deplete αβ T cells preserving γδ T cells have been developed [53].

Of the few clinical studies available, Bertaina et al. reported primary engraftment in 44 of 45
children (median age of 10 years) with acute leukemia who underwent HaploSCT with TCR-
αβ and CD19-depleted PB grafts [54]. With the only pharmacologic GVHD prophylaxis of pre-
transplant ATG, none of the patients developed grade III–IV acute GVHD, whereas 13 children
developed grade I–II skin-only GVHD. Two patients died of infectious complications. After a
median follow-up of 11 months, the 2-year leukemia-free survival was 75%. On a follow-up
study of 23 children with nonmalignant disorders, the same strategy led to a TRM of 9.3% and
grade III–IV acute GVHD was not found. As with CD45RA depletion, these results are
promising but need to be verified in larger cohorts and in adults.

3. HaploSCT without graft engineering

A highly effective GVHD prevention is necessary to overcome the intense bidirectional
alloreactivity (in both graft-versus-host and host-versus-graft directions) associated with
HaploSCT. Ex vivo TCD is the most efficacious method to prevent GVHD; however, (1) it
requires myeloablative conditioning to ensure engraftment compensating for the lack of donor
T cells eradicating residual recipient immune cells, (2) it requires a relatively sophisticated cell
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processing laboratory, and (3) it is associated with slower recovery of cell-mediated immune
system. To overcome these hurdles, either T-cell depletion methods were modified or aug‐
mented as outlined above or a robust GVHD prophylaxis regime was used in place of ex vivo
TCD. The latter is typically achieved by either posttransplantation cyclophosphamide or
intensification of the traditional GVHD prophylaxis.

3.1. Posttransplantation high-dose cyclophosphamide (Post-Cy)

In 1960s, Barenbaum et al. demonstrated that Post-Cy could prevent skin graft rejection when
administered 2–3 days after allografting in a mouse model [55]. This forgotten method was
revived by the Johns Hopkins group in the late 1990s when they showed that Post-Cy attenu‐
ated lethal and nonlethal GVHD in mice and prolonged their survival [4]. Cyclophosphamide
is thought to prevent GVHD by eliminating rapidly dividing donor T cells induced by the
major HLA mismatch early after the haploidentical graft infusion. Furthermore, quiescent
progenitor cells and memory T cells in the graft are less susceptible to cyclophosphamide due
to their high levels of aldehyde dehydrogenase [4, 56].

Post-Cy has been adapted to HaploSCT using nonmyeloablative conditioning and BM grafts
that have a lower T-cell content than PB grafts [4, 57]. After various single-center reports, the
multicenter BMT CTN 0603 trial demonstrated the feasibility of Post-Cy in HaploSCT with
an acceptable incidence of GVHD (32% acute grade II–IV and 13% chronic GVHD) and very
low TRM [58]. The disappointingly high relapse incidence (45%) was primarily attributed to
the use of nonmyeloablative conditioning for patients with acute leukemias. Conversely, Post-
Cy has yielded particularly impressive results in patients with lymphoma. A retrospective
analysis  of  151 consecutive patients  with poor risk or  advanced lymphoma who under‐
went HaploSCT with Post-Cy revealed a progression-free survival of 40% at 3 years [59],
similar to what has been observed in patients with Hodgkin’s disease after HLA-matched
transplants [60].

3.1.1. Post-Cy after myeloablative conditioning

Relatively high relapse rates with Post-Cy approach in patients with acute leukemia prompted
researchers to intensify the conditioning regimen. Early results from the Johns Hopkins group
with Post-Cy after myeloablative conditioning demonstrated acceptable GVHD and engraft‐
ment rates, albeit in a pediatric and young adult cohort [61]. More recently, Raiola et al.
reported grade II–III acute GVHD incidence of 12% and disease-free-survival of 68% after a
median follow-up of 333 days in a cohort of 50 patients with high-risk hematological malig‐
nancies who underwent HaploSCT with Post-Cy and busulfan or total-body irradiation (TBI)-
based myeloablative conditioning [62]. Our experience with Post-Cy approach using a
myeloablative yet reduced-intensity conditioning with fludarabine, melphalan +/− thiotepa
(subsequently changed to 2 Gy TBI) has been very good, with TRM and progression-free
survival of 21% and 53% after a median follow-up of 14 months in 57 patients with advanced
hematological malignancies [63]. Updated results for our first 100 patients treated showed a
3-year PFS of 56% for patients with acute myeloid leukemia (AML) in CR1/CR2 or chronic-
phase CML (chronic myeloid leukemia), 62% for patients with lymphoid malignancies, and
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44% for patients with advanced acute lymphoblastic leukemia [63], results comparable with
matched transplants.

3.1.2. Post-Cy with peripheral blood grafts

With a higher T-cell content, the use of PB grafts may lead to faster posttransplant immune
recovery and improve graft-versus-leukemia effect with the expense of higher GVHD inci‐
dence. Raj et al. reported that while the incidence of grade II−IV aGVHD appeared to be twice
as much as with a BM graft, the incidence of severe grade III−IV aGVHD was not much higher
than with a BM graft [64]. Nevertheless, it remains to be seen if outcomes with a PB graft are
as good as with a BM graft in this setting. If the higher incidence of aGVHD has a negative
impact on outcomes, an optimized PB graft will likely be needed.

3.2. Intensification of traditional GVHD prophylaxis

The Chinese investigators developed a different approach to control GVHD after HaploSCT.
They used a myeloablative conditioning regimen, an intensified GVHD prophylaxis with ATG,
cyclosporine, methotrexate, mycophenolate mofetil, and a donor graft composed of granulo‐
cyte–colony-stimulating factor (G-CSF)-primed BM and PB progenitor cells (GIAC protocol
after G-CSF, intensified immunologic suppression, anti-thymocyte globulin, and combination
of PB and BM grafts) [65]. Incidences of GVHD in 250 acute leukemia patients were higher
than those seen with Post-Cy (46% grade II−IV aGVHD and 54% cGVHD), whereas almost all
patients had successful engraftment. Di Bartolomeo et al. obtained similar results in Europe
but reported a lower GVHD incidence using different myeloablative regimens and only a BM
graft [66].

4. Haploidentical donor selection

Most patients requiring SCT have more than one haploidentical donor. The presence of
recipient antibodies against donor-specific HLA, KIR mismatch predicting NK-cell alloreac‐
tivity, degree of HLA mismatch between donor and recipient, mismatch for noninherited
maternal versus paternal alleles, donor age, and ABO-match may be important determinants
of donor selection for HaploSCT.

Previous pregnancy or blood product transfusions may induce recipient anti-HLA antibodies
against donor HLA antigens (DSA). The presence of DSAs is associated with increased risk of
graft rejection [67]– [70]. Plasma exchange or rituximab may be used for recipients with DSA.

NK cells primarily attack hematopoietic cells sparing solid organs [19] and express inhibitory
receptors, KIRs, that recognize epitopes shared by HLA class I alleles [16, 71]. In recipients
lacking HLA class I alleles specific to the donor KIRs, donor NK cells may prevent GVHD and
disease relapse by eliminating residual recipient antigen-presenting cells and leukemia cells
[17, 72]. Accordingly, KIR mismatch between recipient and donor has been associated with
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improved HaploSCT outcomes with both TCD and T-cell replete grafts [17, 72]– [74]; however,
this finding has been disputed by other researchers [75, 76].

Although a progressive increase in TRM with increasing genetic disparity has been historically
reported, contemporary transplant strategies may negate this correlation by overcoming larger
histoincompatibility barriers. In fact, Kasamon et al. and Wang et al. reported a similar
incidence of acute GVHD and TRM after HaploSCT from full-haplotype mismatched donors
compared with those from better-matched donors [77, 78].

The immune system is subject to senescence with advancing age. Accordingly, in the largest
HaploSCT cohort published to date, Wang et al. reported a lower incidence of GVHD with
younger donors compared with older ones [78]. Moreover, having a maternal donor was
associated with a higher GVHD incidence and TRM than having a paternal donor. The latter
is in contrast to the findings from a small registry study in which HaploSCT from maternal
donors was found to be associated with lower TRM and longer OS compared with those from
paternal donors [79]. Consequently, van Rood et al. demonstrated no significant differences
in TRM, survival, or acute GVHD rates between HaploSCT from maternal and paternal donors
[80]. The discrepancies between these studies are difficult to explain. However, both Wang et
al. and van Rood et al. also found that HaploSCT from a sibling with a noninherited maternal
antigen (NIMA) mismatch was associated with a lower GVHD incidence than that from a
sibling with a noninherited paternal antigen (NIPA) mismatch supporting the hypothesis that
the immunologic tolerance developed between the mother and the fetus during pregnancy [81,
82] may affect the transplant outcomes if the mismatched haplotype is of maternal origin. It is
possible that although an immunologic tolerance is developed primarily in fetus against
NIMA, immunity to minor histocompatibility antigen-encoded genes on the Y chromosome
remains in the mother [83, 84]. Finally, older multiparous women may be the least preferred
donors for male recipients [85].

Transplants involving a major ABO incompatibility require mononuclear cell separation to
prevent a hemolytic reaction, which reduces the graft cell dose. If maximizing the infused stem
cell dose is indeed important in HaploSCT, then younger, larger donors without a major ABO
incompatibility with the recipient should be preferred.

With conflicting data, it is difficult to identify the optimal haploidentical donor. Until further
evidence is available, we recommend the donor decision be based on age, NIMA mismatch,
KIR mismatch, relation to the patient (mother the last choice), presence and level of anti-HLA
antibodies, and ABO mismatch.

5. Outcome comparison with other transplant types

It was just over a decade ago when results from HaploSCT were significantly worse than those
from matched and one-antigen mismatched unrelated donors [86]. Currently, the outcomes of
HaploSCT are reported to be in par with those of transplants from HLA-matched donors.
Among adults with intermediate- or high-risk acute myeloid leukemia in first complete
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remission, Wang et al. did not find any significant difference in survival, relapse rate, and TRM
between transplants from HLA-identical siblings and haploidentical donors [87]. All trans‐
plants were performed with GIAC protocol except that ATG was not used in those from HLA-
identical siblings. In another retrospective analysis, Raiola et al. reported a lower TRM with
HaploSCT compared with cord blood and unrelated transplants and a longer survival
compared with cord blood transplants [88]. In this cohort, Post-Cy and mostly ablative
conditioning were used for HaploSCT. Kanda et al. reported worse survival and higher
incidence of grade III–IV acute GVHD after HaploSCT compared with transplants from HLA-
identical siblings [89]. However, in this study, HaploSCTs were performed with unmanipu‐
lated PB grafts and a GVHD prophylaxis including only alemtuzumab and mycophenolate
mofetil without Post-Cy. Using the Post-Cy approach, Bashey et al. demonstrated similar
outcomes between HaploSCT, transplants from matched related donors, and matched
unrelated donors, with probabilities of disease-free survival of 60%, 53%, and 52%, respectively
[90]. We have recently compared the outcomes of a uniform cohort of 227 patients with myeloid
malignancies treated with the same conditioning regimen (fludarabine and melphalan) and
found similar results. The 3-year disease-free survival for patients in complete remission after
transplants from matched sibling, matched unrelated, and haploidentical donors were 51%,
45%, and 41%, respectively (p = 0.4) with similar immune reconstitution between the three
groups [91].

6. Conclusion

Outcomes of HaploSCT have improved dramatically over the past several years, and its use
has extended transplantation to virtually all patients in need. Although the optimal strategy
to overcome the HLA–histoincompatibility barrier is debated, Post-Cy for GVHD prevention
requires less resources and is associated with low TRM establishing itself as the new standard
in HaploSCT. Novel methods for performing haploidentical transplants will have to be
eventually compared with this approach. HaploSCT with Post-Cy has the potential to be the
preferred transplant option for patients without HLA-matched donors worldwide, especially
in developing countries where the cost of developing and maintaining unrelated donor
registries or acquiring progenitor cells from the international registries might be prohibitive.

Author details

Stefan O. Ciurea1* and Ulas D. Bayraktar1,2

*Address all correspondence to: sciurea@mdanderson.org bv

1 Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas
MD Anderson Cancer Center, Houston, TX, USA

2 Division of Hematology, Memorial Sisli Hospital, Istanbul, Turkey

Progress in Stem Cell Transplantation68



References

[1] Gragert L, Eapen M, Williams E, et al: HLA match likelihoods for hematopoietic
stem-cell grafts in the U.S. registry. N Engl J Med 371:339–48, 2014

[2] Dehn J, Arora M, Spellman S, et al: Unrelated donor hematopoietic cell transplanta‐
tion: factors associated with a better HLA match. Biol Blood Marrow Transplant
14:1334–40, 2008

[3] Passweg JR, Baldomero H, Bader P, et al: Hematopoietic SCT in Europe 2013: recent
trends in the use of alternative donors showing more haploidentical donors but few‐
er cord blood transplants. Bone Marrow Transplant, 2015

[4] Luznik L, Jalla S, Engstrom LW, et al: Durable engraftment of major histocompatibili‐
ty complex-incompatible cells after nonmyeloablative conditioning with fludarabine,
low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood
98:3456–3464, 2001

[5] Falk PM, Herzog P, Lubens R, et al: Bone marrow transplantation between a histo‐
compatible parent and child for acute leukemia. Transplantation 25:88–90, 1978

[6] Dupont B, O'Reilly RJ, Pollack MS, et al: Use of HLA genotypically different donors
in bone marrow transplantation. Transplant Proc 11:219–24, 1979

[7] Reisner Y, Kapoor N, Kirkpatrick D, et al: Transplantation for acute leukaemia with
HLA-A and B nonidentical parental marrow cells fractionated with soybean aggluti‐
nin and sheep red blood cells. Lancet 2:327–31, 1981

[8] O'Reilly RJ, Kernan NA, Cunningham I, et al: Allogeneic transplants depleted of T
cells by soybean lectin agglutination and E rosette depletion. Bone Marrow Trans‐
plant 3:3-6, 1988

[9] Aversa F, Tabilio A, Terenzi A, et al: Successful engraftment of T-cell-depleted hap‐
loidentical "three-loci" incompatible transplants in leukemia patients by addition of
recombinant human granulocyte colony-stimulating factor-mobilized peripheral
blood progenitor cells to bone marrow inoculum. Blood 84:3948–55, 1994

[10] Aversa F, Terenzi A, Tabilio A, et al: Full haplotype-mismatched hematopoietic stem-
cell transplantation: A phase II study in patients with acute leukemia at high risk of
relapse. J Clin Oncol 23:3447–54, 2005

[11] Hoffmann P, Ermann J, Edinger M, et al: Donor-type CD4(+)CD25(+) regulatory T
cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow
transplantation. J Exp Med 196:389–99, 2002

[12] Nguyen VH, Shashidhar S, Chang DS, et al: The impact of regulatory T cells on T-cell
immunity following hematopoietic cell transplantation. Blood 111:945–53, 2008

Progress in Haploidentical Hematopoietic Stem Cell Transplantation
http://dx.doi.org/10.5772/61883

69



[13] Trenado A, Charlotte F, Fisson S, et al: Recipient-type specific CD4+CD25+ regulato‐
ry T cells favor immune reconstitution and control graft-versus-host disease while
maintaining graft-versus-leukemia. J Clin Invest 112:1688–96, 2003

[14] Di Ianni M, Falzetti F, Carotti A, et al: Tregs prevent GVHD and promote immune
reconstitution in HLA-haploidentical transplantation. Blood 117:3921–28, 2011

[15] Di Ianni M, Ruggeri L, Falzetti F, et al: HLA-Haploidentical Stem Cell Transplanta‐
tion with Treg and Tcon Adoptive Immunotherapy promotes a Strong Graft-Versus-
Leukemia Effect. Presented at the 2013 Annual ASH Meeting, 12/10/2013, 2013

[16] Vivier E, Tomasello E, Baratin M, et al: Functions of natural killer cells. Nat Immunol
9:503–10, 2008

[17] Ruggeri L, Capanni M, Casucci M, et al: Role of natural killer cell alloreactivity in
HLA-mismatched hematopoietic stem cell transplantation. Blood 94:333–39, 1999

[18] Karre K, Ljunggren HG, Piontek G, et al: Selective rejection of H-2-deficient lympho‐
ma variants suggests alternative immune defence strategy. Nature 319:675–78, 1986

[19] Asai O, Longo DL, Tian ZG, et al: Suppression of graft-versus-host disease and am‐
plification of graft-versus-tumor effects by activated natural killer cells after alloge‐
neic bone marrow transplantation. J Clin Invest 101:1835–42, 1998

[20] Koehl U, Esser R, Zimmermann S, et al: Ex vivo expansion of highly purified NK cells
for immunotherapy after haploidentical stem cell transplantation in children. Klin
Padiatr 217:345–50, 2005

[21] Passweg JR, Tichelli A, Meyer-Monard S, et al: Purified donor NK-lymphocyte infu‐
sion to consolidate engraftment after haploidentical stem cell transplantation. Leuke‐
mia 18:1835–38, 2004

[22] Nguyen S, Béziat V, Norol F, et al: Infusion of allogeneic natural killer cells in a pa‐
tient with acute myeloid leukemia in relapse after haploidentical hematopoietic stem
cell transplantation. Transfusion:no-no, 2011

[23] Yoon SR, Lee YS, Yang SH, et al: Generation of donor natural killer cells from CD34+
progenitor cells and subsequent infusion after HLA-mismatched allogeneic hemato‐
poietic cell transplantation: a feasibility study. Bone Marrow Transplant 45:1038–46,
2009

[24] Choi I, Yoon SR, Park SY, et al: Donor-derived natural killer cells infused after hu‐
man leukocyte antigen-haploidentical hematopoietic cell transplantation: a dose-es‐
calation study. Biol Blood Marrow Transplant 20:696–704, 2014

[25] Ciceri F, Bonini C, Stanghellini MT, et al: Infusion of suicide-gene-engineered donor
lymphocytes after family haploidentical haemopoietic stem-cell transplantation for
leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10:489–
500, 2009

Progress in Stem Cell Transplantation70



[26] Di Stasi A, Tey SK, Dotti G, et al: Inducible apoptosis as a safety switch for adoptive
cell therapy. N Engl J Med 365:1673–83, 2011

[27] Zhou X, Di Stasi A, Tey SK, et al: Long-term outcome and immune reconstitution af‐
ter haploidentical stem cell transplant in recipients of allodepleted-T-cells expressing
the inducible caspase-9 safety transgene. Blood, 2014

[28] Kochenderfer JN, Dudley ME, Carpenter RO, et al: Donor-derived CD19-targeted T
cells cause regression of malignancy persisting after allogeneic hematopoietic stem
cell transplantation. Blood 122:4129–39, 2013

[29] Mielke S, Solomon SR, Barrett AJ: Selective depletion strategies in allogeneic stem
cell transplantation. Cytotherapy 7:109–15, 2005

[30] Amrolia PJ, Muccioli-Casadei G, Huls H, et al: Adoptive immunotherapy with allo‐
depleted donor T-cells improves immune reconstitution after haploidentical stem cell
transplantation. Blood 108:1797–808, 2006

[31] Chen BJ, Cui X, Liu C, et al: Prevention of graft-versus-host disease while preserving
graft-versus-leukemia effect after selective depletion of host-reactive T cells by pho‐
todynamic cell purging process. Blood 99:3083–88, 2002

[32] Guimond M, Balassy A, Barrette M, et al: P-glycoprotein targeting: a unique strategy
to selectively eliminate immunoreactive T cells. Blood 100:375–82, 2002

[33] Bastien JP, Krosl G, Therien C, et al: Photodepletion differentially affects CD4+ Tregs
versus CD4+ effector T cells from patients with chronic graft-versus-host disease.
Blood 116:4859–69, 2010

[34] Boussiotis VA, Gribben JG, Freeman GJ, et al: Blockade of the CD28 co-stimulatory
pathway: a means to induce tolerance. Curr Opin Immunol 6:797–807, 1994

[35] Lin H, Bolling SF, Linsley PS, et al: Long-term acceptance of major histocompatibility
complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific
transfusion. J Exp Med 178:1801–06, 1993

[36] Guinan EC, Boussiotis VA, Neuberg D, et al: Transplantation of anergic histoincom‐
patible bone marrow allografts. N Engl J Med 340:1704–14, 1999

[37] Davies JK, Gribben JG, Brennan LL, et al: Outcome of alloanergized haploidentical
bone marrow transplantation after ex vivo costimulatory blockade: results of 2 phase
1 studies. Blood 112:2232–2241, 2008

[38] Sallusto F, Lenig D, Forster R, et al: Two subsets of memory T lymphocytes with dis‐
tinct homing potentials and effector functions. Nature 401:708–12, 1999

[39] Lanzavecchia A, Sallusto F: Dynamics of T lymphocyte responses: intermediates, ef‐
fectors, and memory cells. Science 290:92–97, 2000

Progress in Haploidentical Hematopoietic Stem Cell Transplantation
http://dx.doi.org/10.5772/61883

71



[40] Ahmed R, Bevan MJ, Reiner SL, et al: The precursors of memory: models and contro‐
versies. Nat Rev Immunol 9:662–68, 2009

[41] Shlomchik WD: Graft-versus-host disease. Nat Rev Immunol 7:340–52, 2007

[42] Bleakley M, Otterud BE, Richardt JL, et al: Leukemia-associated minor histocompati‐
bility antigen discovery using T-cell clones isolated by in vitro stimulation of naive
CD8+ T cells. Blood 115:4923–33, 2010

[43] Anderson BE, McNiff J, Yan J, et al: Memory CD4+ T cells do not induce graft-versus-
host disease. J Clin Invest 112:101–08, 2003

[44] Chen BJ, Cui X, Sempowski GD, et al: Transfer of allogeneic CD62L- memory T cells
without graft-versus-host disease. Blood 103:1534-41, 2004

[45] Chen BJ, Deoliveira D, Cui X, et al: Inability of memory T cells to induce graft-versus-
host disease is a result of an abortive alloresponse. Blood 109:3115–23, 2007

[46] Zheng H, Matte-Martone C, Li H, et al: Effector memory CD4+ T cells mediate graft-
versus-leukemia without inducing graft-versus-host disease. Blood 111:2476–84, 2008

[47] Bender JG, Unverzagt K, Walker DE, et al: Phenotypic analysis and characterization
of CD34+ cells from normal human bone marrow, cord blood, peripheral blood, and
mobilized peripheral blood from patients undergoing autologous stem cell trans‐
plantation. Clin Immunol Immunopathol 70:10–18, 1994

[48] Bleakley M, Heimfeld S, Jones LA, et al: Engineering human peripheral blood stem
cell grafts that are depleted of naive T cells and retain functional pathogen-specific
memory T cells. Biol Blood Marrow Transplant 20:705–16, 2014

[49] Shook DR, Triplett BM, Eldridge PW, et al: Haploidentical stem cell transplantation
augmented by CD45RA negative lymphocytes provides rapid engraftment and ex‐
cellent tolerability. Pediatr Blood Cancer 62:666–73, 2015

[50] Vantourout P, Hayday A: Six-of-the-best: unique contributions of gammadelta T cells
to immunology. Nat Rev Immunol 13:88–100, 2013

[51] Bonneville M, O'Brien RL, Born WK: Gammadelta T cell effector functions: a blend of
innate programming and acquired plasticity. Nat Rev Immunol 10:467–78, 2010

[52] Godder KT, Henslee-Downey PJ, Mehta J, et al: Long term disease-free survival in
acute leukemia patients recovering with increased gammadelta T cells after partially
mismatched related donor bone marrow transplantation. Bone Marrow Transplant
39:751–57, 2007

[53] Schumm M, Lang P, Bethge W, et al: Depletion of T-cell receptor alpha/beta and
CD19 positive cells from apheresis products with the CliniMACS device. Cytothera‐
py 15:1253–58, 2013

[54] Bertaina A, Pagliara D, Pende D, et al: Removal Of Alpha/Beta+ T Cells and Of
CD19+ B Cells From The Graft Translates Into Rapid Engraftment, Absence Of Vis‐

Progress in Stem Cell Transplantation72



ceral Graft-Versus-Host Disease and Low Transplant-Related Mortality In Children
With Acute Leukemia Given HLA-Haploidentical Hematopoietic Stem Cell Trans‐
plantation. Presented at the 2013 ASH Annual Meeting, 12/8/2013, 2013

[55] Berenbaum MC, Brown IN: Prolongation of homograft survival in mice with single
doses of cyclophosphamide. Nature 200:84, 1963

[56] Jones RJ, Barber JP, Vala MS, et al: Assessment of aldehyde dehydrogenase in viable
cells. Blood 85:2742–46, 1995

[57] Luznik L, Odonnell P, Symons H, et al: HLA-haploidentical bone marrow transplan‐
tation for hematologic malignancies using nonmyeloablative conditioning and high-
dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 14:641–
50, 2008

[58] Brunstein CG, Fuchs EJ, Carter SL, et al: Alternative donor transplantation after re‐
duced intensity conditioning: results of parallel phase 2 trials using partially HLA-
mismatched related bone marrow or unrelated double umbilical cord blood grafts.
Blood 118:282–88, 2011

[59] Kasamon YL, Bolaños-Meade J, Gladstone D, et al: Outcomes Of Nonmyeloablative
(NMA) Haploidentical Blood Or Marrow Transplantation (haploBMT) With High-
Dose Posttransplantation Cyclophosphamide (PT/Cy) For Lymphoma, 2013

[60] Burroughs LM, O'Donnell PV, Sandmaier BM, et al: Comparison of outcomes of
HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell
transplantation following nonmyeloablative conditioning for relapsed or refractory
Hodgkin lymphoma. Biol Blood Marrow Transplant 14:1279–87, 2008

[61] Symons H, Chen A, Leffell M, et al: HLA-haploidentical bone marrow transplanta‐
tion (BMT) for high-risk hematological malignancies using myeloablative condition‐
ing and high-dose, posttransplantation cyclophosphamide. Blood 116:Abstract 2362,
2010

[62] Raiola AM, Dominietto A, Ghiso A, et al: Unmanipulated haploidentical bone mar‐
row transplantation and posttransplantation cyclophosphamide for hematologic ma‐
lignancies after myeloablative conditioning. Biol Blood Marrow Transplant 19:117–
22, 2013

[63] Pingali SV, Denai M, Di Stasi A, et al: Haploidentical Transplantation For Patients
With Advanced Hematologic Malignancies With Melphalan-Based Conditioning –
Interim Results From a Phase II Clinical Trial, 2013

[64] Raj K, Pagliuca A, Bradstock K, et al: Peripheral blood hematopoietic stem cells for
transplantation of hematological diseases from related, haploidentical donors after
reduced-intensity conditioning. Biol Blood Marrow Transplant 20:890–95, 2014

Progress in Haploidentical Hematopoietic Stem Cell Transplantation
http://dx.doi.org/10.5772/61883

73



[65] Huang X-J, Liu D-H, Liu K-Y, et al: Treatment of acute leukemia with unmanipulated
HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood
Marrow Transplant 15:257–65, 2009

[66] Di Bartolomeo P, Santarone S, De Angelis G, et al: Haploidentical, unmanipulated,
G-CSF primed bone marrow transplantation for patients with high-risk hematologi‐
cal malignancies. Blood, 2012

[67] Ciurea SO, de Lima M, Cano P, et al: High risk of graft failure in patients with anti-
HLA antibodies undergoing haploidentical stem-cell transplantation. Transplanta‐
tion 88:1019–24, 2009

[68] Ciurea SO, Thall PF, Wang X, et al: Donor-specific anti-HLA Abs and graft failure in
matched unrelated donor hematopoietic stem cell transplantation. Blood 118:5957–
64, 2011

[69] Takanashi M, Atsuta Y, Fujiwara K, et al: The impact of anti-HLA antibodies on un‐
related cord blood transplantations. Blood 116:2839–46, 2010

[70] Cutler C, Kim HT, Sun L, et al: Donor-specific anti-HLA antibodies predict outcome
in double umbilical cord blood transplantation. Blood 118:6691–97, 2011

[71] Moretta L, Locatelli F, Pende D, et al: Killer Ig-like receptor-mediated control of natu‐
ral killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation.
Blood 117:764–71, 2010

[72] Ruggeri L, Capanni M, Urbani E, et al: Effectiveness of donor natural killer cell allor‐
eactivity in mismatched hematopoietic transplants. Science 295:2097–100, 2002

[73] Symons HJ, Leffell MS, Rossiter ND, et al: Improved survival with inhibitory killer
immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after
nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood
Marrow Transplant 16:533–42, 2010

[74] Mancusi A, Ruggeri L, Urbani E, et al: Haploidentical hematopoietic transplantation
from KIR ligand-mismatched donors with activating KIRs reduces non-relapse mor‐
tality. Blood, 2015

[75] Huang Xj, Zhao Xy, Liu Dh, et al: Deleterious effects of KIR ligand incompatibility on
clinical outcomes in haploidentical hematopoietic stem cell transplantation without
in vitro T-cell depletion. Leukemia 21:848–851, 2007

[76] Gagne K, Brizard G, Gueglio B, et al: Relevance of KIR gene polymorphisms in bone
marrow transplantation outcome. Hum Immunol 63:271–80, 2002

[77] Kasamon YL, Luznik L, Leffell MS, et al: Nonmyeloablative HLA-haploidentical
bone marrow transplantation with high-dose posttransplantation cyclophosphamide:
Effect of HLA disparity on outcome. Biol Blood Marrow Transplant 16:482–89, 2010

Progress in Stem Cell Transplantation74



[78] Wang Y, Chang YJ, Xu LP, et al: Who is the best donor for a related HLA haplotype-
mismatched transplant? Blood 124:843–50, 2014

[79] Tamaki S, Ichinohe T, Matsuo K, et al: Superior survival of blood and marrow stem
cell recipients given maternal grafts over recipients given paternal grafts. Bone Mar‐
row Transplant 28:375–80, 2001

[80] van Rood JJ, Loberiza FR, Jr., Zhang MJ, et al: Effect of tolerance to noninherited ma‐
ternal antigens on the occurrence of graft-versus-host disease after bone marrow
transplantation from a parent or an HLA-haploidentical sibling. Blood 99:1572–77,
2002

[81] Harris DT, Schumacher MJ, LoCascio J, et al: Immunoreactivity of umbilical cord
blood and post-partum maternal peripheral blood with regard to HLA-haploidenti‐
cal transplantation. Bone Marrow Transplant 14:63–68, 1994

[82] Claas FH, Gijbels Y, van der Velden-de Munck J, et al: Induction of B cell unrespon‐
siveness to noninherited maternal HLA antigens during fetal life. Science 241:1815–
17, 1988

[83] Randolph SS, Gooley TA, Warren EH, et al: Female donors contribute to a selective
graft-versus-leukemia effect in male recipients of HLA-matched, related hemato‐
poietic stem cell transplants. Blood 103:347–52, 2004

[84] Carlens S, Ringden O, Remberger M, et al: Risk factors for chronic graft-versus-host
disease after bone marrow transplantation: a retrospective single centre analysis.
Bone Marrow Transplant 22:755–61, 1998

[85] Ciurea SO, Champlin RE: Donor selection in T cell-replete haploidentical hemato‐
poietic stem cell transplantation: knowns, unknowns, and controversies. Biol Blood
Marrow Transplant 19:180–84, 2013

[86] Drobyski WR, Klein J, Flomenberg N, et al: Superior survival associated with trans‐
plantation of matched unrelated versus one-antigen-mismatched unrelated or highly
human leukocyte antigen-disparate haploidentical family donor marrow grafts for
the treatment of hematologic malignancies: establishing a treatment algorithm for re‐
cipients of alternative donor grafts. Blood 99:806–14, 2002

[87] Wang Y, Liu QF, Xu LP, et al: Haploidentical- versus identical-sibling transplant for
AML in remission: a multi-centre, prospective study. Blood, 2015

[88] Raiola AM, Dominietto A, di Grazia C, et al: Unmanipulated haploidentical trans‐
plants compared with other alternative donors and matched sibling grafts. Biol
Blood Marrow Transplant 20:1573–79, 2014

[89] Kanda J, Long GD, Gasparetto C, et al: Reduced-intensity allogeneic transplantation
using alemtuzumab from HLA-matched related, unrelated, or haploidentical related
donors for patients with hematologic malignancies. Biol Blood Marrow Transplant
20:257–63, 2014

Progress in Haploidentical Hematopoietic Stem Cell Transplantation
http://dx.doi.org/10.5772/61883

75



[90] Bashey A, Zhang X, Sizemore CA, et al: T-cell-replete HLA-haploidentical hemato‐
poietic transplantation for hematologic malignancies using post-transplantation cy‐
clophosphamide results in outcomes equivalent to those of contemporaneous HLA-
matched related and unrelated donor transplantation. J Clin Oncol 31:1310–16, 2013

[91] Di Stasi A, Milton DR, Poon LM, et al: Similar transplantation outcomes for acute
myeloid leukemia and myelodysplastic syndrome patients with haploidentical ver‐
sus 10/10 human leukocyte antigen-matched unrelated and related donors. Biol
Blood Marrow Transplant 20:1975–81, 2014

Progress in Stem Cell Transplantation76


