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Abstract

In this chapter, we attempted to present an overview of the use of remote sensing to mon‐
itor water quality parameters, mainly chlorophyll-a (chl-a) and turbidity. We summarized
the main concepts of bio-optical modeling and presented a case study of the application
of the Hyperspectral Imager for the Coastal Ocean (HICO) for the monitoring of water
quality in a tropical hypersaline aquatic environment. Using HICO, we evaluated a set of
different semi-empirical bio-optical algorithms for chl-a and turbidity estimation devel‐
oped for inland and oceanic waters in the Araruama Lagoon, RJ, Brazil, which is an ex‐
treme environment due to its high salinity values. We also developed an empirical
algorithm for both water quality parameters and compared the performances. Results
showed that for chl-a estimation all models have a low performance with a normalized
root mean square error (NRMSE) varying from 24.13 to 30.46. For turbidity, the bio-opti‐
cal algorithms showed a better performance with the NRMSE between 15.49 and 28.04.
Overall, these results highlight the importance of including extreme environments, such
as the Araruama Lagoon, on the validation of bio-optical algorithms as well as the need
for new orbital hyperspectral sensors which will improve the development of the field.

Keywords: Water quality, chlorophyll-a, turbidity, bio-optical modeling

1. Introduction

Earth Observations from space began in August, 1972, with the launch by National Aeronautics
and Space Administration (NASA) of the Earth Resources Technology Satellite (ERTS-1) [1].
However, the use of remote sensing techniques to monitor inland water quality parameters
such as chlorophyll-a (chl-a), total suspended solids (TSS) and turbidity only started to be
extensively used in the past two decades with the development of bio-optical algorithms as
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well as the new hyperspectral and multispectral sensors. The use of optical remote sensing
enables spatiotemporally comprehensive assessment of optical properties of the water column.

Water column optical properties are grouped into inherent optical properties (IOPs) and
apparent optical properties (AOPs). IOPs are related to those properties that depend only upon
the environment, thus, they are independent of the environment light field. The two most
essential IOPs are the total absorption coefficient (a) and the total scattering coefficient (b) and
the sum of both coefficients is the attenuation coefficient (k). AOPs, on the other hand, are those
properties that depend on the environment and also on the directional structure of the
environment light field. AOPs are also used as descriptors of a water body due to their regular
features and stability. The most common AOPs are the irradiance reflectance (R), the remote-
sensing reflectance (Rrs) and various diffuse attenuation functions [2]. A list of the most
common IOPs and AOPs used in the literature is shown in Table 1.

Quantity Units (SI) Simbology

Inherent Optical Properties

Absorption coefficient m-1 a

Volume scattering function m-1 sr-1 β

Scattering phase function m-1 β∼

Scattering coefficent m-1 b

Backscatter coefficient m-1 bb

Beam attenuation coefficient m-1 c

Single-scattering albedo - ϖ0

Apparent Optical Properties

Irradiance reflectance (ratio) - R

Remote sensing reflectance sr-1 Rrs

Remote sensing reflectance (sub) sr-1 rrs

Attenuation coefficients:

of radiance L(z, θ, φ) m-1 K(θ, φ)

of downwelling irradiance Ed(z) m-1 Kd

of upwelling irradiance Eu(z) m-1 Ku

of Photosynthetic Active Radiation
(PAR)

m-1 KPAR

Table 1. IOPs and AOPs commonly used in optical hydrology
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Based on the interaction among AOPs and IOPs, absorption, scattering and attenuation
properties of the water column are retrieved from proximal, aerial or orbital measurements of
the solar spectrum mainly in the visible and near-infrared (NIR) spectral range. These optical
properties allow the estimation of different water quality parameters such as: primary
production, turbidity, eutrophication, particulate and dissolved carbon contents or the
assessment of currents and algal blooms [3]. The relation among all these optical properties as
well as the equipment to measure them were developed by oceanographers based on the
modeling of downwelling solar and sky radiation spectra with the air–water interface and the
subsurface aquatic absorption and scattering centers. Studies such as [4–8], among numerous
others, established the main theory of the field before or around the launch of ERTS-1.

The first application of the theories of hydrologic optics was described by [9], which used a
Monte Carlo simulation of the radiative transfer equation to relate the AOPs to the IOPs in
oceanic waters containing optically active constituents, molecular water and chl-a. For inland
waters, the first application of the hydrologic optics theories was developed for Lake Ontario,
Canada, by a Monte Carlo simulation of the radiative transfer equation and non-linear
multivariate optimization analyses [10]. These applications started a relatively new area for
remote sensing applications known as bio-optical modeling, which focus on the use of the
radiative transfer theory to derive optical properties or biological activity in the water column
[2]. In [11], a classification of the bio-optical modeling products (algorithms) was proposed by
describing five different types of algorithms: empirical, semi-empirical, semi-analytical, quasi-
analytical and analytical. In this classification, the first two types (empirical and semi-
empirical) and the last one (analytical) are usually used to estimate the biological activity from
AOPs using more statistical methods, while the other two types (semi-analytical and quasi-
analytical) are used to estimate IOPs from AOPs using the radiative transfer theory.

The development of bio-optical algorithms usually starts by collecting in situ limnological data
as well as hyperspectral Rrs using a proximal sensor. The use of a hyperspectral sensor is
appropriated to explore absorption peaks, which are very narrow to be identified by a
multispectral one, to develop an algorithm. However, the ultimate goal for a bio-optical
algorithm is to test its applicability on orbital sensors in order to become an important
monitoring tool. Two of the most used satellite sensors to monitor water quality are the
medium resolution imaging spectrometer (MERIS) and moderate resolution imaging spec‐
troradiometer (MODIS); both sensors provide the necessary spectral bands; however, their
coarse spatial resolution makes them suitable only for very large aquatic systems. Despite the
limitation on their spatial resolution, several research focus on the use of these two sensors for
the monitoring of water quality parameters in inland water. Ref. [12] evaluated the perform‐
ance of different chl-a semi-empirical algorithms developed, especially for MERIS on a tropical
reservoir in Brazil, and in [13] the authors developed a series of steps to improve the estimation
of chl-a and cyanobacteria blooms in inland and near-coastal waters based on the MERIS
imagery. For MODIS, empirical [14] and semi-empirical [15–17] algorithms have been
developed for the monitoring of different water quality parameters.
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To overpass the problem of the spatial resolution and to keep a good spectral resolution,
hyperspectral airborne sensors have been used to monitor the quality of inland waters. One
of the most common airborne hyperspectral sensor used to monitor water quality parameters
is the airborne imaging spectrometer for application (AISA), which is a push-broom system
that collect spectral-radiance data (upwelling radiance and downwelling solar irradiance) in
the visible and NIR range of the electromagnetic spectrum (approximately from 392 to 982 nm
with a bandwidth of 7–8 nm). From an altitude of 1,000 m, this sensor has a spatial resolution
of 1 m, surpassing the problems caused by medium to low spatial resolutions found in orbital
sensors. In [18], AISA imagery was used to estimate chl-a and phycocyanin (PC) concentrations
in a mesotrophic reservoir in Central Indiana, USA, based on a series of semi-empirical
algorithms. In [19], the authors used the same imagery from the previous study [18] to apply
a quasi-analytical algorithm and spatialize the chl-a, backscattering (bb) and a. In [20], AISA
imagery was used to measure chl-a, suspended solids, turbidity and other measures of water
clarity from major rivers of Minnesota, USA. Although the use of airborne hyperspectral
sensors showed to be an alternative to the development of bio-optical algorithms, because of
the expenses of the acquisition and low temporal availability, airborne sensors have not been
highly used for water quality monitoring.

An orbital hyperspectral sensor could be the solution for the high costs of flying an airborne
sensor, and this was accomplished by the launch of Hyperion, in 2000. However, this sensor
was not used in a water quality research because of its signal-to-noise ratio which was very
low [21], and also because of its unreliability caused by problems such as radiometric insta‐
bility. An alternative for the acquisition of hyperspectral images with a medium spatial
resolution was the hyperspectral imager for the coastal ocean (HICO), a hyperspectral sensor
with 87 spectral bands covering the visible and NIR range (400–900 nm) on-board of the
International Space Station (ISS). HICO acquired programmed images from September 2009
to September 2014 with a spatial resolution of 90 m, higher than MERIS (300 m) and MODIS
(250, 500 and 1000 m). Since HICO was a sensor developed for the monitoring of aquatic
environments, several researches used it to monitor several parameters such as: seagrass and
algae mapping [22], cloud removal [23], red tide detection [24], improved chl-a detection [25]
and harmful cyanobacteria bloom detection [26]. These studies showed strong relationships
between these aquatic constituents and reflectance data which could be used to monitor water
quality. They also highlight the importance of having an orbital hyperspectral sensor with a
high signal-to-noise ratio to improve the development of bio-optical algorithms for inland and
coastal waters. The bio-optical modeling of water quality parameters can be used as a com‐
plement to conventional monitoring programs which are usually based on sampling and
analyzing of few spots in the aquatic system. Moreover, traditional monitoring programs are
costly and time-consuming [27], while bio-optical modeling can quickly provide a synoptic
view of the environment.

1.1. Hypothesis

Bio-optical algorithms developed for inland or deep ocean waters are unable to uptake
empirical algorithms developed especially for extreme environments.
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1.2. Objectives

In this chapter, we attempted to present an overview of the application of bio-optical algo‐
rithms to monitor water quality parameters as well as to assess chl-a and turbidity from a
hypersaline tropical lake (Araruama Lagoon) in Rio de Janeiro, Brazil, using HICO imagery
and different bio-optical algorithms. A secondary goal of this chapter was to evaluate the
performance of bio-optical algorithms for the estimation of chl-a and turbidity in an extreme
aquatic system such as the Araruama Lagoon.

2. Study site

The Araruama Lagoon is a hypersaline coastal lagoon located in the central coast of Rio de
Janeiro State, Southeastern Brazil, between latitudes 22°50’S and 22°57’ S and the longitudes
42°00’ W and 42°44’ W. It is situated in a micro-region called “Região dos Lagos”, around 120
km from Rio de Janeiro City (Figure 1a,b). This region is densely populated showing a
population density around 268 habitants per square kilometer [28]. The lagoon area encom‐
passes five municipalities: Araruama, Arraial do Cabo, Cabo Frio, Iguaba Grande, São Pedro
da Aldeia and Cabo Frio (see Figure 1c).

Figure 1. The Araruama Lagoon: (a) Location in Southeastern Brazil, (b) position within the Rio de Janeiro State, and
(c) orbital image of the Araruama Lagoon acquired on 1st August 2015 by the Operational Land Imager (OLI) on-
board Landsat-8 satellite. The satellite images are presented in false color composition R4G5B2.
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From the morphological point view, the Araruama Lagoon consists of a series of elongated
spits and shallow embayment presenting a longitudinal elongated shape with around 35 km
in length and a mean width of 8 km; the maximum width is around 13 km. The surface area
is around 220 km2 and the depth ranges from 1 to 17 m; the mean depth is around 3 m [29].
The only connection between the Araruama Lagoon and sea, the Itajuru Channel, is located in
the Cabo Frio City, Northeastern portion of the lagoon (see Figure 1c). The drainage basin
covers around 320 km2, and permanent sources of freshwater come from Moças River and
Mataruna River, in the Western portion of the Lagoon (see Figure 1c); the two rivers present
a combined discharge of 1 m3/s [30].

The salinity of the Araruama Lagoon ranges from 35 to 43 practical salinity unit (psu) in the
Itajuru Channel and from 46 to 56 psu in the main body of the Lagoon, being the salinity mainly
balanced by the climatology of the area [29]. According to the Köppen-Ginger classification
scheme [31], the climate in the region can be classified as Tropical Monsoon (Am) with rainfall
ranging between 36 (August) and 101 mm per month (December) and the air temperature
ranging from 21 (August) and 25.4°C (February–March) along the year ([32], see Figure 2); the
mean annual precipitation is 771 mm per year and the mean air temperature is around 23°C.

Figure 2. Climatological (1961–1990) monthly rainfall and air temperatures in the Araruama Lagoon region. Data regis‐
tered on Cabo Frio meteorological station (Lat. -22.98°; Long. 42.03°). Source [32].

The water quality in the Araruama Lagoon has changed over the time, showing an increasing
eutrophication along the past few years as a result of the increasing urban growth in the Região
dos Lagos [33]. According to the Trophic State Index (TSI) classification scheme proposed by
[34], the Araruama Lagoon can be classified as eutrophic environment, with an average total
phosphorous concentration around 0.09 mg/L and the average chl-a concentration around 11.7
μg/L [35]. Cyanobacteria (Synechococcus sp, Oscillatoria sp and Synechocystis sp) is the dominant
community in the water column along the year (around 84% of the total cell count), followed
by Diatomaceous (around 7% of the total cell count) and Dinoflagellates (around 5% of the
total cell count) [36].
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3. Materials and methods

3.1. Remote sensing data

HICO imageries of Araruama Lagoon were acquired from HICO's website database at Oregon
State University (OSU) [37]. The acquisition of the images over Araruama Lagoon occurred
from 2011 to 2013, where only images without cloud cover over the lagoon were selected. HICO
images are available with a Level 1B of processing, which corresponds to the radiance in the
top of the atmosphere (LTOA) given in Wm-2μm-1sr-1 after the application of a division factor of
50. Table 2 lists the HICO imagery with clear sky over the Araruama Lagoon.

Year Julian
day

Image Name

2011 220 iss.2011220.0808.120519.L1B.GLT_Habitat_Brazil.v04.7594.20110809180058.100m.hico

2012 037 iss.2012037.0206.112051.L1B.GLT_Habitat_Brazil.v04.9365.20120206182247.100m.hico

2012 040 iss.2012040.0209.100728.L1B.GLT_Habitat_Brazil.v04.9394.20120209193848.100m.hico

2012 094 iss.2012094.0403.122511.L1B.GLT_Habitat_Brazil.v04.9907.20120403190851.100m.hico

2012 282 iss.2012282.1008.094232.L1B.GLT_Habitat_Brazil.v04.11631.20121009174522.100m.hico

2013 152 iss.2013152.0601.114032.L1B.GLT_Habitat_Brazil.v04.13707.20130603175752.100m.hico

2013 215 iss.2013215.0803.110724.L1B.GLT_Habitat_Brazil.v04.14303.20130805151206.100m.hico

2013 279 iss.2013279.1006.094546.L1B.GLT_Habitat_Brazil.v04.14826.20131007170614.100m.hico

Table 2. List of clear sky HICO images over Araruama Lagoon

All these images were atmospherically corrected by the Second Signal in the Solar Spectrum
(6S) implementation of Tafkaa algorithm [38]. Tafkaa is a radiative transfer algorithm devel‐
oped mainly for applications in the field of oceanic hyperspectral remote sensing, and it is
based on an earlier code named ATmospheric REMoval (ATREM) [39]. Tafkaa is available for
processing HICO images online via a web tool [37], with prior registration. For the atmospheric
correction over the Araruama Lagoon, the aerosol model was set to "maritime" and the
atmospheric model was set to "tropical", since these characteristics seem to be the more
appropriate for the study site. The final products of this process are delivered in units of Rrs,
sr-1, and the spectra from the 12 sampling points of the Inter-Municipal Consortium Lagos São
João [35] were obtained for the bio-optical modeling.

3.2. Limnological data

Chl-a (μg/L) and turbidity (NTU) data were acquired from the reports from the Inter-municipal
Consortium Lagos São João, which are available at [35]. This consortium collects monthly data
from 12 sampling points in the Araruama Lagoon and has the goal to propose and execute
actions to recover the environment in the watershed of three different lagoons (Jaconé,
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Saquarema e Araruama) in Rio de Janeiro State, Brazil. Reports matching the HICO imagery
(i.e., field campaigns that were carried out on the nearest date as possible as the images
acquisition, Table 2) were used to acquire chl-a and turbidity data and a total of 87 useful
sampling locations were found. These data were divided into two datasets: calibration (53
sampling points using data from 2011 to 2012) and the validation (34 sampling points using
data from 2013). Figure 3 shows box-plots to access the statistical distribution of the chl-a (μg/
L) and turbidity (NTU) values from Araruama Lagoon that were used to calibrate and validate
the bio-optical algorithms.

Figure 3. Box-plots of chl-a (μg/L) and turbidity (NTU) values used for calibration (2011–12) and for validation (2013)
of the bio-optical algorithms.

3.3. Bio-optical algorithms

Several empirical and semi-empirical bio-optical algorithms for chl-a and turbidity have been
developed in the past decade. Since HICO is a hyperspectral sensor, it is possible to apply
several bio-optical algorithms which use different spectral bands. For the estimation of chl-a
spectral features such low reflectance (troughs) at ~430 nm and ~670 nm caused by the
absorption of chl-a and a phytoplankton scattering peak at ~700 nm are commonly used in the
development of semi-empirical algorithms. The combination of these spectral features makes
the ratio of between Rrs around 700 and 670 nm [40] widely used for bio-optical algorithm for
estimating chl-a concentration in turbid waters. There are other algorithms that employ slight
variations of this ratio, such as the three band algorithm [41] which uses a third band to
minimize the effect of scattering which should be a spectral band with minimal absorption
(usually around 750 nm). Another variation is the four band algorithm [42] which includes a
spectral band located near 700 nm to enhance the minimization of scattering of suspended
matter at the NIR and the absorption by water. Recently, a Normalize Difference Chlorophyll
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Index (NDCI) [43] was proposed to estimate chl-a concentrations in turbid waters and also
used the relationship between 700 and 670 nm. All these algorithms were proposed to estimate
chl-a concentration in turbid waters; however, for deep ocean waters chl-a can also be estimated
by algorithms based on band ratios focusing on the chl-a absorption around 430 nm and the
scattering of particulate matter around 560 nm [44].

Name Algorithm Reference

Chl-a Algorithms

2BDA
Rrs(band54)
Rrs(band47) [40]

3BDA
 Rrs(band62)

Rrs(band47) − Rrs(band54) [41]

4BDA { 1
Rrs(band46) −

1
Rrs(band51) } / { 1

Rrs(band60) −
1

Rrs(band54) } [42]

NDCI
Rrs(band54) − Rrs(band47)
Rrs(band54) + Rrs(band47)

[43]

OC3A
Rrs(band8)
Rrs(band27) [44]

OC3B
Rrs(band16)
Rrs(band27) [44]

OC3C
Rrs(band20)
Rrs(band27) [44]

Turbidity Algorithms

1BDA Rrs(band43) [45]

2BDA
Rrs(band81)
Rrs(band43) [46]

LSBA Rrs(band15) + Rrs(band28) [47]

Table 3. List of bio-optical algorithms for chl-a and turbidity using HICO spectral bands

Turbidity is usually identified by the high reflectance in the red and NIR spectral bands and
is usually correlated to the total suspended solids concentration. Therefore, bio-optical
algorithms for TSS can be used to estimate turbidity. The simplest algorithm uses the Rrs at 645
nm to estimate turbidity [45]; however, other algorithms were also proposed to estimate
turbidity using the relationship between NIR and red spectral bands, such as the band ratio
proposed by [46]. Another algorithm to estimate turbidity is based on the sum of Rrs in the blue
and green spectral bands [47]. However, most of the algorithms were developed for inland,
coastal or oceanic waters and have not been applied in extreme environments such as the
hypersaline Araruama Lagoon. Table 3 lists the published semi-empirical bio-optical algo‐
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rithms for chl-a and turbidity evaluated in this chapter. The algorithms in this list are expressed
according to the 87 HICO’s spectral bands.

3.4. Bio-optical algorithm development

Since the Araruama Lagoon is a hypersaline aquatic system, and the bio-optical algorithms
listed in the previous section were develop for fresh or oceanic waters, we developed two
empirical algorithms for the estimation of chl-a and turbidity. The development of these
empirical algorithms was conducted by calculating the correlation among different band ratios
and the concentrations of chl-a and turbidity values. To perform this analysis, we used a web
tool named Interactive Correlation Environment (ICE) described by [48] and available at [49].
This web tool builds a two-dimensional correlation plot of the HICO’s Rrs and its relation to
the interested limnological parameter (i.e., chl-a or turbidity). The two-dimensional color
correlation plot can cover all possible band ratios, which in the HICOs case is equal to 7,569
possible combinations, making it a useful tool for the analysis of hyperspectral measurements
with a large number of spectral bands.

3.5. Bio-optical algorithms comparison

As described in Section 3.2, the data were divided in calibration (2011–12, 53 sampling points)
and validation (2013, 34 sampling points) datasets. For the calibration dataset, a linear
regression analysis was computed by the values of slope and intercept for each of the algo‐
rithms listed on Table 3 plus the two empirical algorithms developed by the use of ICE. The
determination coefficient (R2) was also computed and the algorithms that had the highest R2

values were used for validation.

The validation process was computed by analysing a scatter plot between the measured and
the estimated values of chl-a and turbidity. For chl-a, the concentration values were trans‐
formed to log (chl-a) and for the turbidity, no transformation was needed. We also used errors
estimators such as the root mean squared error (RMSE in μg/L or NTU, equation 1) and the
normalized root mean squared error (NRMSE, equation 2) to evaluate the performance of the
bio-optical algorithms after their calibration.

( )
=

= -å
2

1

1 
n

i i
i

RMSE y x
n

(1)

( )
=

-, ,

 
i max i min

RMSENRMSE
y y (2)

where: yi and xi are the measured and predicted chl-a/turbidity values, respectively. In the i-
th sample, yi,max and yi,min are the maximum and minimum chl-a/turbidity values, respectively.
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4. Results and discussions

4.1. ICE’s results

To compute the two-dimensional color correlation plot, the Rrs spectra were extracted from
HICO imagery over the sampling locations in the Araruama Lagoon (Figure 4). Figure 4
presents the Rrs spectra of the calibration (Figure 4A) and validation (Figure 4B) datasets. Both
datasets presented spectral features of an eutrophic water, with a high reflectance peak in the
green range around 550 nm, a trough near 620 nm, another trough around 665 nm and a peak
in the NIR around 700 nm. The reflectance peak around 550 nm represents the minimal
absorption of all algal pigments and the scattering of non-organic suspended matter and
phytoplankton cell walls [50]. The trough around 620 nm occurs due to the absorption of
phycocyanin, a phycobillin presented in inland water cyanobacteria [51–52]. The trough
around 665 nm is due to the absorption of chl-a in the red range of the spectrum and the peak
around 700 nm is also dependable of the chl-a since it represents the scattering of the suspended
matter which includes algal biomass [53]. The two-dimensional color correlation plot was
computed using the Rrs from the calibration dataset as well as the limnological dataset
presented in Section 3.2.

Figure 4. Rrs spectra from HICO imagery after atmospheric correction. A) Rrs spectra from 2011 and 2012 used for the
calibration; B) Rrs spectra from 2013 used for the validation.

The use of ICE generates two different two-dimensional color correlation plots, one for chl-a
(Figure 5A) and one for turbidity (Figure 5C). Using the filtering tool implemented in ICE, it
was possible to select the band ratio that gives the highest R2 for each of the parameters. Figure
5B shows the filtered plot for chl-a estimation which highlights only the band ratios with high
R2, Figure 5D shows the same filtered plot for the turbidity. Since the choices of spectral bands
are only based on the statistical estimators among all possible band ratios, the algorithms
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derived from this web tool can be classified as empirical, and does not have a biophysical
background to support the spectral bands used in each band ratio.

Figure 5. Two-dimensional color correlation plots produced by the web tool. (A) For chl-a estimation; (B) After the fil‐
tering the chl-a plot; (C) For turbidity estimation; (D) After the filtering the turbidity plot.

For chl-a the best R2 was found in correlation to the ratio between band 26 and band 25 which
in wavelengths are around 547 and 541 nm, respectively. This relationship is totally empirical
and since both bands are very close to each other, the value from this ratio is probably close
to 1. For the turbidity band ratio, ICE selected the ratio between band 36 and band 87, which
respectively corresponds to 604 and 896 nm. Although it is an empirical model, these two bands
can be justified by the fact in both wavelengths the suspended matter will have a high
scattering, and if the suspended matter is high, the turbidity will also be high. The formulation
and name of these two empirical bio-optical algorithms were described in Table 4.
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Name Parameter Algorithm

EMPC Chl-a
Rrs(band26)
Rrs(band25)

EMPT Turbidity
Rrs(band36)
Rrs(band87)

Table 4. Empirical algorithms for chl-a and turbidity developed using ICE

4.2. Algorithms performances

4.2.1. Calibration

Calibration was conducted using the semi-empirical (Table 3) and empirical (Table 4) bio-
optical algorithms. Linear regressions were computed between bio-optical algorithms and chl-
a and TSS values; the R2, slope and intercept from each of the regressions were shown in Table
5. For the calibration of chl-a algorithms, all the algorithms showed a poor performance with
the highest R2 value of 0.087 found by applying EMPC to the calibration dataset. The other
high values of R2 were found by using OC3C (0.065), OC3B (0.037) and 4BDA (0.011), which
showed that algorithms developed for deep ocean (OC3B and OC3C) have better performance
than algorithms developed for inland waters (4BDA). If compared to other Brazilian tropical
inland water aquatic systems, the performance of 2BDA, 3BDA and NDCI showed R2 values
higher than 0.9 during the calibration step [12]. However, for the Araruama Lagoon, the R2

values from these three algorithms were lower than 0.003. This difference in the performance
could be related to the fact that Araruama Lagoon is a hypersaline environment and the high
concentration of salt in the water could be masking the results, although the Rrs spectra show
the features of a reservoir dominated by cyanobacteria. This poor performance in the calibra‐
tion of all algorithms highlights the importance of having an extreme environment as a study
site in bio-optical modeling studies, since one of the goals of this field is to have an algorithm
that can perform well in different aquatic systems.

The poor performance of all algorithms could be associated to the fact that none of these
algorithms were developed for hypersaline aquatic systems, which make their calibration
difficult in this type of environment. Another source of error could be associated to the
temporal window between the image acquisition and field sampling. Since we are using
ground truth data that are collected as part of a routine monthly monitoring, we could not find
an exact match with temporal windows ranging from 2 to more than 10 days. This can lead to
erroneous interpretations since the dynamics of parameters, mainly the biotic ones such as
phytoplankton, in the water column can change within days according to the environment
dynamics. Adopting a 3-days window, the calibrations showed in Table 5 improved mainly
for the chl-a algorithms. Table 6 shows the calibrations using only the images within the 3-
days window from the field campaign, which shows that EMPC got a R2 value of 0.43, while
using the entire dataset the R2 value was around 0.08. For the turbidity estimations, the
improvement was not big as for the chl-a estimations varying from an R2 of 0.574 for the 1BDA
using the entire dataset to an R2 of 0.596 using only the 3-days window data. These results
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showed that the calibration is most affected by the temporal window when a biotic parameter
is being analysed.

Chl-a algorithms

Name R2 Slope Intercept

4BDA 0.049 19.022 15.061

OC3A 0.223 -33.516 29.576

OC3B 0.186 -23.12 23.798

EMPC 0.430 159.3 -164.79

Turbidity algorithms

Name R2 Slope Intercept

1BDA 0.596 1031.2 3.054

2BDA 0.211 -3.193 10.512

LSBA 0.509 437.33 2.757

EMPT 0.304 0.890 5.550

Table 6. R2, slope and intercept of the linear regression from the bio-optical algorithms tested using a 3 days temporal
window

Chl-a algorithms

Name R2 Slope Intercept

2BDA <0.001 -0.026 14.369

3BDA 0.002 -0.256 14.270

4BDA 0.011 9.806 14.097

NDCI 0.003 7.878 12.561

OC3A 0.006 -4.510 15.753

OC3B 0.037 -16.635 21.911

OC3C 0.065 -29.037 28.519

EMPC 0.087 101.760 -98.513

Turbidity algorithms

Name R2 Slope Intercept

1BDA 0.574 1145.1 1.1929

2BDA 0.127 -3.5418 8.2162

LSBA 0.385 453.18 0.3646

EMPT 0.450 1.2385 3.518

Table 5. R2, slope and intercept of the linear regression from the bio-optical algorithms tested (shaded areas represents
the algorithms that were used for validation)
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If compared to the performance of 2BDA and 3BDA for the estimation of chl-a in Taganrog
Bay [25] the calibration for Araruama is poor, since the R2 values found by [25] were 0.84 and
0.87 for the 2DBA and 3BDA, respectively. However, if compared to another hypersaline
environment, such as Mono Lake, CA, USA, the results are equivalent since an R2 of 0.49 was
found to correlate chl-a and a bio-optical algorithm developed for the airborne visible/infrared
imaging spectrometer (AVIRIS) sensor [54]. These results highlight the current need for a
global database of bio-optical modeling data for inland waters, as well as the development of
more semi- and quasi-analytical algorithms. Although few attempts have been proposed to
create a global database of bio-optical modeling data for inland waters [55–56], we still need
an organization such as the International Ocean Colour Coordinating Group (IOCCG) to
coordinate the protocols, products and database of algorithms and bio-optical modeling data.
Thus, the global bio-optical modeling of inland waters will only be achieved when we have
algorithms developed and tested for all different types of environments.

4.2.2. Validation

The validation of the bio-optical algorithms with the best R2 in the calibration was computed
using two different methods: validation plots between the measured and the estimated values
of chl-a and turbidity and error estimators. Figure 6 showed the validation plots for the four
bio-optical algorithms analysed in this chapter: 4BDA (Figure 6A), OC3C (Figure 6B), OC3B
(Figure 6C) and EMPC (Figure 6D). The dashed red line represents the 1:1 line where the points
of the scatter plot should be over that line. In Figure 6A, we observed that the points are
vertically distributed showing that there is no variation in the estimated values of log (chl-a);
however, the error estimator showed that 4BDA has the lowest NRMSE of 24.13% among the
tested algorithms. This fact showed that error estimators are only statistical and do not
represent well the reality of the distribution of the data. Figure 6B and 6C showed the results
for the algorithms proposed for ocean color remote sensing, OC3B and OC3C, the NRMSE for
these bio-optical algorithms were 27.37% and 30.80%, respectively. The validation plots for
both bio-optical algorithms showed a better distribution than the 4BDA since they showed a
better distribution over the 1:1 line. However, both of the ocean color algorithms showed to
underestimate (Figures 6B and 6C) the high values of log (chl-a). Figure 6D showed the scatter
plot for the empirical algorithm (EMPC), which showed a NRMSE of 30.46%. This validation
plot showed a similar pattern to the previous semi-empirical models and also underestimate
the values of log (chl-a).

Based on these results for the chl-a bio-optical algorithms, we observed that although the
lowest NRMSE was found in the 4BDA, the validation plots showed that the other algorithms
showed a better distribution and can explain better the estimation of the log (chl-a). Therefore,
OC3B showed the best performance with a NRMSE of 27.37% and a validation plot that
underestimates the high values of chl-a. This underestimation was expected since for the ocean
color bio-optical modeling the concentration of chl-a is not high and in the case of Araruama
Lagoon the concentration can reach 130 μg/L of chl-a. As discussed in the calibration results,
if compared to another tropical inland water body, the NRMSE are higher. In [12] the NRMSE
founded for 2BDA, 3BDA and NDCI were 18.32%, 19.68% and 17.85%, respectively, for bio-

Bio-Optical Modeling in a Tropical Hypersaline Lagoon Environment
http://dx.doi.org/10.5772/61869

249



optical models calculated using proximal hyperspectral sensor. These differences can be
related to the atmospheric correction, which is not needed for the proximal hyperspectral
sensor [12], but also for the fact that Araruama Lagoon has a very unique biogeochemical
cycling, which could lead to different composition of the water column. Overall, more studies
should be conducted in Araruama Lagoon to better understand the optical properties in this
aquatic system.

Figure 6. Validation plots for the chl-a bio-optical algorithms: (A) 4BDA; (B) OC3C; (C) OC3B; (D) EMPC

The validation for the turbidity bio-optical algorithms showed a better agreement between the
validation plots and the error estimators. Figure 7 showed the validation plots for the four bio-
optical algorithms analysed in this chapter: 1BDA (Figure 7A), 2BDA (Figure 7B), LSBA (Figure
7C) and EMPT (Figure 7D). The lowest NRMSE was 15.49% and was achieved by applying the
1BDA to the Rrs data (Figure 7A); the validation plot also showed most of the points close to
the 1:1 line, but as well as for the chl-a algorithms for high values of turbidity the algorithms
underestimated the values. The empirical algorithm (EMPT) had the second best NRMSE
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(17.87%) among the turbidity bio-optical algorithms analysed and the validation plot showed
to be similar to the previous algorithm. 2BDA and LSBA showed a NRMSE of 22.37% and
28.04%, respectively, which are higher than the 1BDA and EMPT algorithms. The validation
plot for 2BDA and LSBA also showed a worst distribution of the scatter points and also showed
an underestimation of the high values of turbidity. Overall, the performance of 1BDA showed
the best validation plot and NRMSE value among the four bio-optical algorithms analysed in
this chapter.

Figure 7. Validation plots for the turbidity bio-optical algorithms: (A) 1BDA; (B) 2BDA; (C) LSBA; (D) EMPT

4.3. Spatial distribution

Applications of bio-optical modeling to monitor water quality in inland waters have been
increasing in the past decade, and this increase is also noticed in the public and private sector
investments on remote sensing technologies to monitor water quality and quantity. The
advantages of using remote sensing technologies over traditional methods to monitor water
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quality parameters were already discussed in the introduction of this chapter; however,
another advantage of using remote sensing is in the spatial distribution of the data. While using
traditional methods of water quality monitoring computes the spatial assessment of the water
quality by performing spatial interpolations or by geostatistical methods of few sampling
points, remote sensing images can provide different values for each pixel within the aquatic
system. The difference is that the few sampling points used to interpolate the data for the
aquatic system area is now replaced for several pixels values in the image, where the interpo‐
lation is not needed; therefore, it does not have the error caused by data interpolation methods.
Figure 8 shows the spatial distribution of chl-a and turbidity in the Araruama Lagoon where
we observed that the west part of the lagoon has the highest values of chl-a and for the turbidity
regions close to the bays have highest turbidity values. These spatial patterns are related to
the hydrodynamic of the aquatic system, and the combination of bio-optical and hydrody‐
namic modeling [57] is a powerful tool to understand the spatial dynamics of the environment.

Figure 8. Application of the bio-optical algorithms to the HICO image from Araruama Lagoon acquired on August 3,
2013. (A) Application of calibrated OC3C; (B) Application of calibrated 1BDA

5. Final considerations

Based on the case study of Araruama Lagoon, we observe the need for calibration and
validation of bio-optical algorithms in different inland waters since the variability of water
column constituents from region to region is big. We also observe that the use of orbital
hyperspectral sensors is important for the development of bio-optical modeling due to the
number of spectral bands which allow us to study small features, such as the absorption peak
of PC around 620 nm. Thus, narrow spectral bands can highlight specific absorption features
which can be used in the development and improvement of bio-optical algorithms, mainly the
semi- and quasi-analytical algorithms which are based on the radiative transfer theory.
Therefore, future hyperspectral missions such as the Hyperspectral Imager SUIte (HISUI), the
PRecursore IperSpettrale della Missione Applicativa (PRISMA), and the Environmental
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Mapping and Analysis Program (EnMAP) are important for the development of bio-optical
modeling.

Moreover, these new hyperspectral missions will support a global mapping of inland water
quality which is only possible through multispectral sensors such as Landsat, MODIS and
MERIS. However, not all water quality parameters are possible to be measured only using
multispectral sensors, for example, the Landsat series which have a poor spectral resolution
that does not detect the spectral features such as peaks and trough of chl-a. MODIS, on the
other hand, have a narrow band moderate spectral resolution; however, its spatial resolution
makes the monitoring of small and medium inland water bodies difficult. Therefore, the
development of new global hyperspectral sensors will make the assessment of water quality
through remote sensing possible because of the high spectral and spatial resolution.

Finally, our case study showed that even by developing an empirical algorithm, the semi-
empirical algorithms outperform them. The best performance for chl-a bio-optical algorithms
was found by applying OC3B (NRMSE of 27.37%) and for turbidity, the 1BDA showed the best
performance with a NRMSE of 15.49%. Although the lower errors estimators validation plots
(Figures 6 and 7) showed that all algorithms underestimated the high values of chl-a and
turbidity, highlighting the need of different calibrations for different water types. This chapter
showed a very small set of methods used in bio-optical modeling and also highlighted the
need for development and improvement of bio-optical algorithms.
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