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Abstract

Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique
based on atomic emission spectroscopy to measure elemental composition. With the
development of lasers and detection systems, applications of LIBS encompass a broad
range, including physics, engineering, space missions, environment, etc. due to the
unique features of little or no sample preparation, noncontact, fast response, and
multielemental analysis. The fundamental and application have been extensively
studied to improve LIBS technique. This chapter largely targets the engineering fields,
especially practical applications. Laser-induced breakdown spectroscopy will be
discussed in this chapter including its fundamentals, industrial applications, and
challenges.

Keywords: Laser-induced breakdown spectroscopy (LIBS), Industrial applications, Chal‐
lenge

1. Introduction

Laser-induced plasma was introduced as a spectroscopic emission source only two years after
the invention of laser. LIBS is the acronym of “laser-induced breakdown spectroscopy”, and
it is also called LIPS (laser-induced plasma spectroscopy), laser spark spectroscopy (LSS), and
other related names [1]. LIBS is an analytical detection technique based on atomic emission
spectroscopy to measure elemental composition. A laser pulse focuses in or on a sample, which
can be gas, liquid, aerosol, or solid, to form the micro-plasma. The spectra emitted are used to
determine the elemental constituents of measured samples.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1.1. Theory

The initiation, formation, and decay of the plasma are complex physical and chemical proc‐
esses. In the LIBS process, a laser beam is focused on a small area of the sample. When the laser
energy exceeds the breakdown threshold, the plasma with high temperature and high density
is produced in the portion. The core of plasma is firstly produced by the absorption of the
incident laser energy, such as multiphoton ionization. The creation of the plasma core induces
the rapid growth of plasma through the absorption of the laser light by electrons and the
electron impact ionization process in it. After the termination of the laser pulse, the plasma
continues expanding because of its high temperature and pressure gradients compared with
the ambient conditions. At the same time, the recombination of electrons and ions proceeds
due to the collision process and the temperature decreases gradually compared with that in
the plasma generation process. Emission signals arise in the plasma cooling period [2]. In the
plasma, the ions, atoms, and molecules distributed in the different levels transit from the high
energy level to the low energy level, emitting the strong emission spectra. The emission
intensity from the atomized species provides the elemental compositions of the materials. The
light corresponding to a unique wavelength of each element is emitted from excited atoms in
plasma, as shown in Figure 1.

Figure 1. Laser-induced plasma processes

A calibration of the LIBS signal is necessary for quantitative analysis. Despite the fact that the
LIBS processes involved are complex, the emission intensity from the atomized species can be
described by the following equation with the assumption of uniform plasma temperature [2]:
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where Ii is the emission intensity of species i, ni is the concentration of species i, Ki,j is a variable
that includes the Einstein A coefficient from the upper energy level j, gi,j is the statistical weight
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of species i at the upper energy level j, Ei.j is the upper-level energy of species i, k is the
Boltzmann constant, and T is the plasma temperature. Equation (1) is applicable under the
conditions of local thermodynamic equilibrium (LTE). In Eq. (1), there are several factors that
affect the emission intensity Ii, including plasma temperature, plasma nonuniformity, matrix
effects, etc. It is very difficult to solve the LIBS process theoretically because it contains laser–
material interactions, rapid temperature changes over 10,000 K in a nanosecond or picosecond
timescale, and plasma cooling phenomena including the recombination process of ions,
electrons, and neutrals. Therefore, the appropriate correction factors must be contained in Ki,j

to obtain the quantitative results.

The factors that affect the target signal in LIBS process generally include the background noise,
stability of plasma, nonuniformity of plasma, matrix effects, dirt on measurement windows,
etc. The main background noise of LIBS is the continuum emission from plasma itself. Atomic
emissions appear after a certain time delay, which means that LIBS signals appear during the
plasma cooling process. Therefore, it is important to choose the appropriate delay time and
gate width to reduce the effect of the background noise. The fluctuation of plasma signal is an
intrinsic characteristic in LIBS. Use of the intensity ratio and plasma temperature correction
can reduce the fluctuation to some extent. The laser-induced plasma has its structure in it. In
the plasma generation process, the plasma structure depends largely on the laser density
pattern and measured material conditions. The LIBS signal depends on the measurement area
across the plasma. In this sense, the correction method also includes the effects of plasma
nonuniformity. Matrix effects are the combined effects of all components other than the
measured species. The changes of these components may cause the alteration of LIBS signal
intensity even if the number density of the measured species is the same in the measurement
period. Matrix effects are usually corrected by the experimental calibrations. The attenuation
of LIBS signals by the contamination of measurement windows is automatically neglected
because the signal intensity ratio is usually used for the elemental composition analyses.
Considering the measurement stability and soundness of windows, however, the cleanliness
of measurement windows should be maintained, especially in the practical applications.

1.2. Geometric arrangement and measurement species

The LIBS apparatus fundamentally consists of laser, measured materials, lens, spectrometer,
ICCD camera, and related devices. A typical geometric arrangement of LIBS is shown in Figure
2. Lasers such as a pulsed Nd:YAG laser are used as a light source. The output laser beam is
focused onto the measurement area using the focal lens to induce the plasma. The plasma
emission is focused onto the optical fiber. Emission signals are finally detected by the combi‐
nation of a spectrometer, an ICCD camera, and auxiliary equipment. According to the
measured materials of solid, liquid, and gas phases, different measurement chamber or
platform can be employed. It is worth noting that the reflection of a laser light from the
windows must be considered carefully. Its reflection often results in the damages of optics due
to the high-energy laser light. The reflection from plasma is sometimes tricky and malicious
for LIBS systems. Damages of optics by the reflection from plasma cause troubles in some cases,
especially in the analyses of liquids.
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Figure 2. Typical geometric arrangement of LIBS

The basic components of LIBS system are similar but the component specifications are tailored
to the particular applications. These specifications include the equipment types, physical
parameters, and the technical specifications belonging to operational performance.

2. Fundamentals

Since it is the basis of successful application of LIBS technology, the fundamental study is of
great importance. With the development of LIBS, the mechanism of laser–material interaction,
plasma generation, plasma–environment interaction, self-absorption effect, signal enhance‐
ment, and some other fundamental research have been studied extensively to promote LIBS
technique [3-7]. Various quantitative analytical methods have also been studied and improved,
such as traditional calibration method, internal calibration method, calibration-free method,
partial least squares (PLS) method, etc.

2.1. Plasma and its models

Plasma is a local assembly of atoms, ions, and free electrons, overall electrically neutral. Plasma
is characterized by a variety of parameters. The degree of ionization is the most basic param‐
eter. The ratio of electrons to other species is less than 10% in the plasma, called weakly ionized
plasma. On the other hand, highly ionized plasma may have atoms stripped of many of their
electrons, resulting in very high electron to atom or ion ratios. The plasma produced in LIBS
typically belongs to the category of weakly ionized plasma. The goal of LIBS technique is to
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create the optically thin plasma, which is in local thermodynamic equilibrium and whose
elemental composition is the same as that of the sample.

The LIBS plasma features inhomogeneities that can lead to spatial differentiation. This fact is
important in choosing the temporal window in order to accumulate spectroscopic data. The
spatial and temporal evolution of LIBS plasma from a steel target was monitored using time
of flight and shadowgraph techniques [8]. Two regions in the plume were observed, one
characterized by air and continuum emissions produced by shock wave ionization, and the
other one by emissions from ablated material. The sufficiently high laser fluence and acquis‐
ition delay time are necessary to assure the homogeneity for the analytical applications. The
homogeneity of LIBS plasma was investigated using the curve of growth method employing
five Fe(I) lines [9]. In that formalism, the line shapes as a function of temperature and concen‐
tration were modeled. The agreement between modeled and experimental line shapes implied
that the Stark effect was the dominant broadening mechanism in the plasma. The temperatures
obtained from neutral and ion spectral lines were studied [10]. The different temperatures
studied can be obtained from Boltzmann and Saha plots. The difference was explained by the
spatial variation of the plasma temperature and densities leading to a difference in spatial locus
for populations in the upper levels of transitions for neutrals and ions.

Plasma models are becoming more comprehensive and detailed. A radiative model of LIBS
plasma expanding into a vacuum was validated by the experiments [11]. The inverse problem
was specifically addressed, which means finding the initial conditions by the comparison of
the calculated synthetic spectra and the experimentally measured ones. The composition of
the material was effectively deduced from the calculated spectra. The plasma was considered
to be characterized by a single temperature and electron density. The combination of the
original modeling work on laser-evaporated plasma plume expansion into a vacuum and
ablation leading to vaporization and particle formation was studied [12]. The interaction of a
nanosecond pulse with a copper target was modeled in vacuum. Some of the parameters were
studied including the melting and evaporation of the target, the plume expansion and plasma
formation, the ionization degree and density profiles of neutral; once-ionized; and doubly
ionized copper and electrons, and the resultant plasma shielding.

2.2. LIBS detection ability

Most fundamental studies focused on signal enhancement to improve the detection limit. The
measured results showed that the spatial confinement and fast discharge would be able to
enhance the signal from several times to dozens of times, while dual pulse is able to enhance
signal 100–1000 times [13-15]. Besides signal enhancement, there were also some other studies
worth mentioning. The self-absorption in laser-induced plasma was studied. The results
suggested that the self-absorption effect could be alleviated by the selection of suitable atomic
line, operating at higher pulse energy and detecting with longer delay [16]. The pressure effect
on the plasma emission from fundamental 0.1 to 40 MPa in bulk seawater was investigated
[17]. The time-resolved LIBS emission results demonstrated that plasma emission is weakly
dependent on the ambient pressure during the early stage of plasma and the pressure has a
significant influence on the plasma form during plasma evaluation at a later stage of plasma.
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The detection ability of trace species using LIBS has been improved with the development of
LIBS devices. The utilization of short pulse laser for plasma generation has been extensively
studied [18,19]. Short pulse irradiation allowed for a specificity of excitation that could yield
LIBS signals more tightly correlated to particular chemical species and showed significantly
lower background emission. A new method to control the LIBS plasma generation process is
necessary for the enhancement of detection limit, i.e., low pressure and short pulse LIBS
[20-22]. Because of the pressure, volatility, and quenching effects of liquid, the plasma lifetime
of liquid sample is shorter compared with that of solid and gas phases. Meanwhile, sputtering
of liquid sample by LIBS plasma often raises the problem of the measurement windows. The
sensitivity, stability, and repeatability of LIBS signal are much lower, leading to the increasing
difficulty of its analyses. Numerous papers have reported LIBS measurement of different forms
of liquid phase materials including the solidification, liquid bulk, liquid surface, and others
[23-28], which shows different detection features and detection limit.

2.3. Quantitative analysis

The ultimate goal of LIBS technique is to provide a quantitative analysis with high precision
and accuracy. Usually, a quantitative analysis begins with determining the response of a
system for a given concentration or mass of the analyte of interest, which usually takes the
form of a calibration curve. The calibration is usually strongly dependent on the analysis
conditions,  such  as  the  stability  of  the  laser  pulse  energy,  the  sample  and  sampling
procedure,  the  physical  and chemical  properties  of  the  sample,  etc.  The  dependence  of
elemental signals of LIBS on the plasma temperature attributes to a very complex process
in plasma. Several studies have reported the LTE condition of plasma in several types of
plasmas [29]. The plasma temperature is a very important factor for the quantification of
the  LIBS  measurement.  There  are  several  calibration  methods  to  analyze  the  measured
species  quantitatively,  including  the  traditional  calibration  method,  internal  calibration
method, calibration-free method, etc. [30,31].

As for the simple samples, the emission intensity of the measured species is linear with the
species content under the ideal condition. The traditional calibration model is relatively simple
and convenient. However, the influences of matrix effect and element interference are not
considered in the model. The accuracy becomes worse when the complex samples are
measured or the experimental parameters fluctuate. The internal calibration method is a
commonly used spectral analysis model with strict conditions. The elements with the features
of high content, low detection limit, and good stability are mainly selected as the internal
calibration elements. Usually, the compositions of the calibration sample and measured
sample are not entirely consistent. When the measured samples contain various elements, the
accuracy will be affected due to the matrix effect.

A new procedure is proposed for calibration-free quantitative elemental analysis of materials
using LIBS technique. The method based on an algorithm developed and patented overcomes
the matrix effects. The precise and accurate quantitative results on elemental composition of
materials can be acquired without the use of calibration curves. Some applications of the
method have been illustrated, e.g., the quantitative analysis of the composition of metallic
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alloys [32]. This model of CF-LIBS is applicable under the conditions of LTE and optically thin,
as well as the assumed conditions without the element interference and self-absorption.
Research recently focused on the correction for self-absorption. Multivariate analysis (MVA)
is an effective mathematical and statistical approach for LIBS data analysis, since it can utilize
much quantitative information from the complex LIBS spectra. Partial least squares (PLS) is
such an MVA method and has shown great potential for LIBS quantitative measurement. The
model utilizes the multiline spectral information of the measured element and characterizes
the signal fluctuations due to the variation of plasma characteristic parameters, such as plasma
temperature, electron number density, and total number density, for signal uncertainty
reduction [33,34]. LIBS can be used to provide the quantitative analysis of a variety of samples
in the laboratory and in the field. However, each application has some unique characteristics
that must be dealt with in order to optimize performance. In the real applications of LIBS, the
procedures for obtaining quantitative results reproducibly will be developed.

A much deeper understanding of LIBS fundamental physics is the key to overcome the
bottlenecks for wide applications of LIBS, such as the relatively low measurement repeatability
due to the plasma property and morphology fluctuations, the relatively low accuracy suffered
from matrix effects, etc. The plasma generation and evolution processes are complicated
processes. Much more work is still required to improve the qualitative and quantitative
analyses, as well as the applications of LIBS technique.

3. Applications

LIBS has attracted great attention in various industries as a qualitative and quantitative
analytical detection technique due to its noncontact, fast-response, and multidimensional
features. With the development of laser and detection systems, LIBS has been applied in
various fields, including combustion, metallurgy, food, human, the Mars project, and so on.
Especially, the advantages of this method are more significant in the areas of combustion,
metallurgy, and harsh environments. Many applications have successfully demonstrated the
monitoring of plant control factors using LIBS. LIBS has been actively applied to commercial
plants such as iron and steel making, thermal power, waste disposal, and so on. Environmental
monitoring and safety applications are also the growing fields for LIBS. Applications of LIBS
have covered all industry fields, including analyses from food, plant to space missions, which
will be discussed in detail in the next section. In these cases, ruggedness and reliability become
important requirements.

3.1. Applications for plants

LIBS, with the features of excellent temporal and spatial resolutions, appears to be a very
promising analysis method in steel industry where element distribution measurements of
materials at all stages of production provide the information of material quality and production
process. By the continuous monitoring of element distribution, the raw materials with narrow
composition tolerances can be available ahead of further processing. LIBS measurement of
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geological materials on the conveyor belts was studied and discussed preliminarily [35,36]. A
multispectral line calibration method was proposed for the quantitative analysis of elemental
compositions. Its feasibility and superiority over a single-wavelength determination have been
confirmed by comparison with the traditional chemical analysis of the copper content in the
ore. Two iron ore samples were employed to complete the mineralogical classification using
a combination of LIBS and principal components analysis (PCA)/principal components
regression (PCR) [37,38]. The combined method of LIBS and PCR was applied to determine
the elemental compositions of a series of run-of-mine iron ore samples, which exhibited the
potential for in situ determination of ore composition. The calibration models of LIBS have
also been studied and discussed in the measurement of ores. The different data-driven
multivariate statistical predictive algorithms, such as Principal Components Regression (PCR),
Partial Least Squares Regression (PLSR), Multi-Block Partial Least Squares (MB-PLS), and
Serial Partial Least Squares Regression (S-PLSR), were compared for the quantitative analysis
in iron ore measured using LIBS to improve the performance of the quantitative measurements
[39,40]. The on-line measurement system of LIBS has been discussed for the real applications.
Figure 3 shows a LIBS system for on-line measurement using extractive sampling. For example,
an analytical instrument based on LIBS technique was developed to operate on-line in the
harsh environment of iron-ore pelletizing plants. The detection system was successful for the
measurements of Si, Ca, Mg, Al, and graphitic C contents in different iron ore slurries prior to
filtration and pelletizing [41]. A method for automated quantitative analysis of ores was
developed using a commercial LIBS instrument fitted with a developed computer-controlled
auto-sampler [42]. The preparation and analysis time for each sample was less than 5 min. The
similar method was suitable for a range of ores and minerals.

Figure 3. A LIBS system for on-line measurement using extractive sampling

Operating characteristics of coal-fired boilers are heavily influenced by factors such as the
differences in fuel properties and combustion conditions. In order to achieve the optimal
operation of multiple coal-fired boilers, it is necessary to accurately understand the coal quality
and the state of combustion, and to adjust the control parameters. LIBS technique has been
widely applied to analyze the compositional characterization of coal [43-45]. A nonlinearized
multivariate dominant-factor-based partial least-squares (PLS) model was applied to coal
elemental concentration measurement using LIBS [46]. Unburned carbon in fly ash is an
important factor to estimate the combustion efficiency of boiler. Fly ash and bottom ash
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resulting from the coal combustion in a coal-fired power plant were analyzed using binders.
Once the experimental conditions and features are optimized, application of LIBS may be a
promising technique for combustion process control even in on-line mode [47,48]. Software-
controlled LIBS systems including LIBS apparatus and sampling equipment have been
designed for possible application to power plants for on-line quality analysis of pulverized
coal and unburned carbon in fly ash [49,50], which shows the capability of reliable and real-
time measurement using LIBS. LIBS has been applied for detection of unburned carbon in fly
ash, char, and pulverized coal without any sample preparation. Figure 4 presents the examples
of LIBS spectral lines obtained from fly ash. The calibration difficulty of aerosol sample was
surpassed by using the correction factors for quantitative measurement. This automated LIBS
apparatus was applied in a boiler-control system of a power plant with the objective of
achieving optimal and stable combustion [51,52], which enabled real-time measurement of
unburned carbon in fly ash, as shown in Figure 5. The boiler control in the real power plant
was demonstrated to achieve an optimized operation without time consumption.

 

(a) High‐resolution spectrum                         (b) Wide‐range spectrum 

           

 

 

                     

  ‐              

 

Figure 4. Fly ash LIBS spectra [52]

The safe and rational utilization is very important for nuclear power application. The radio‐
active contamination is a serious problem for the environment and human health. The
radioactive materials released from the nuclear power plant are one of the main sources.
Simultaneously, nuclear weapons testing fallout, some industry waste discharge, and radio‐
active substances employed for research also contribute to the issue [53,54]. The atmosphere,
water and soil are polluted by these released radioactive materials. There are several serious
pollutions to environment and human not only in the surrounding area of the nuclear power
plant but also in the outlying regions [55-57]. LIBS has been investigated as a potential
analytical tool to improve operations and safeguards for electrorefiners such as those used in
processing spent nuclear fuel [58]. Detection of uranium and other nuclear materials is very
important for nuclear safeguards and security. The spatial and temporal evolutions of uranium
species in laser-produced plasmas were investigated. A set of optimal operating conditions
was determined based on the experimental results, which is important for obtaining the
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optimal spectral intensity from samples containing very small amounts of uranium [59]. LIBS
can be applied to monitor radioactive elements, which is of utmost importance in case of
leakage of radioactive materials from a nuclear power plant [60,61]. Figure 6 shows a schematic
of the imaging observation using the imaging fiber, which was equipped for additional electric
delivery. A transportable fiber coupled LIBS instrument was developed, which is feasible for
the material analysis of underwater debris under a high-radiation field.

 

  ‐                               ‐    

           

 

 

(a) Optimal boiler control system               (b) Photograph of the measurement apparatus 

  ‐              

 

Figure 5. Unburned-carbon measurement in thermal power plant [52]

Figure 6. Image of the inside of the post-accident Fukushima Daiichi nuclear power plant and the inspection technique
using optical fiber [60]
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3.2. Applications for food, humans, and archaeology

As for LIBS applications to food, composition and contamination measurements of flours of
wheat, barley, etc., have been demonstrated. The feasibility of quantifying trace elements in
powdered food samples by spatially resolved LIBS has been demonstrated under a reduced
argon atmosphere. The selection of the location in the plasma is crucial for obtaining the best
signal-to-background ratio of analytical signal and to avoid background continuum and line
broadening. The operating parameters affected the plasma property were optimized and used
for further analysis of trace elements in starch-based food samples. Spatially resolved LIBS has
been shown to be an accurate technique for determining trace elements of ppm level in starch-
based food samples directly with an acceptable precision without any tedious digestion and
dilution procedure [62]. A procedure for the analysis of K, P, Mg, and Ca in crop plant samples
using a commercially available LIBS spectrometer was also developed. Real plant samples
employed as the calibration standards were analyzed by ICP-OES or AAS after microwave
digestion. A satisfactory agreement between LIBS and AAS/ICP-OES results was achieved [63].
The trace and ultra-trace element detection and qualitative analysis in fresh vegetables have
been demonstrated using LIBS technique [64]. For a typical root vegetable such as potato,
spectral analysis of the plasma emission reveals more than 400 lines emitted by 27 elements
and 2 molecules, C2 and CN. Many elements such as Mg, Al, Cu, Cr, K, Mn, Rb, Cd, and Pb
have been measured by LIBS, as shown in Figure 7. These results demonstrate the potential of
an interesting tool for botanical and agricultural studies as well for food quality/safety and
environment pollution assessment and control.

Figure 7. Typical LIBS spectrum of a fresh potato [64]

The application of LIBS to the analysis of important minerals and the accumulation of
potentially toxic elements in calcified tissue has been reported [65], which exemplified for
quantitative detection and mapping of Al, Pb, and Sr in representative samples, including teeth
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and bones. In order to identify and quantify the major and trace elements in the tissues, one-
and two-dimensional profiles and maps were generated. The state of the tooth has also been
diagnosed using prominent constituent transitions in laser-excited tooth [66]. The spectro‐
scopic observations in conjunction with discriminate analysis showed that calcium attached
to the hydroxyapatite structure of the tooth was affected severely at the infected part of the
tooth. It is possible to distinguish the healthy and caries infected tooth using emission
spectroscopy and ICCD imaging of the expanding plasma.

Advancement in LIBS technique has led to its increased use in the fields of conservation, art
history, and archaeology [67,68]. A prototype LIBS system was used to determine the elemental
composition of multilayer structures in a metal jug from the mid-twentieth century [69]. The
piece was highly deteriorated due to environmental damage. The LIBS technique was used as
part of a historical investigation that required the determination of the material employed. The
jug was selectively sampled at different points on the surface using the stereoscope. By
sampling at different points, the surface composition was determined. Furthermore, the
presence of two layers of Pb and Cu and their thicknesses were determined through in-depth
analysis.

3.3. Applications for space and underwater explorations

One of the more exotic and exciting applications of LIBS instrumentation is for space missions
to planet surfaces. Current technological developments of lasers, spectrometers and detectors
have made the use of LIBS for space exploration feasible. Figure 8 shows the LIBS schematic
diagram for measurements from a distance. LIBS technique greatly increases the scientific
return from new missions by providing extensive data relating to planetary geology, which is
one of the main goals of space exploration. Meanwhile, the geologic analysis can provide some
information of a planet’s history, e.g., whether earlier conditions were favorable for life. Several
studies have addressed the feasibility of LIBS for space exploration [70-72]. The feasibility of
LIBS for stand-off analysis of geological samples under Martian atmospheric conditions has
been demonstrated. Under Martian conditions, the analyzed signals appear to be somewhat
enhanced compared to that recorded at atmospheric pressure due to the increased ablation.

It is a big challenge to apply LIBS to ocean in situ detection, which has been studied with the
development of LIBS. In order to apply LIBS to in situ elemental analysis in the deep ocean,

Figure 8. LIBS schematic diagram for measurements from a distance
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the multielemental analysis of high-pressure aqueous solutions has been studied. The affected
factors, such as pressure, laser energy, and so on, have been discussed [73,74]. The potential
of LIBS for the underwater chemical characterization of archaeological materials has been also
demonstrated [75,76], which involves the delivery of a focused laser pulse toward the distant
target through the aqueous media and then the transmission of the light emitted by the laser-
induced plasma back to the detection system. Figure 9 shows the LIBS spectra corresponding
to different submersed materials obtained in laboratory. The performance of the remote LIBS
system was evaluated in a measurement campaign in the Mediterranean Sea. The pictures
taken during the on-site trials using LIBS are illustrated in Figure 10. The seashell as the
biomineralization product records the growth development and the ocean ecosystem evolu‐
tion. Therefore, the seashell has been studied as a representative for marine research [77]. LIBS-
Raman combination was introduced to obtain the compositional distribution of scallop shell
on the surface and also in the shallow layers, which suggested that the micro-chemical
diagnostics of LIBS-Raman was a potential way to construct a 3D analysis for the shell research.
There are also other techniques that combine LIBS and other methods for the 3D surface
analysis.

 

(a) Archaeological pottery (b) Bone sample (c) Precious metals (d) Calcareous deposit 

                 

 

                               

          ‐              

Figure 9. Underwater LIBS spectra of different submersed materials [75]
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(a) Remote LIBS instrument on the research       (b) Diver working at a 30 m depth 
 vessel  

          ‐              Figure 10. Pictures taken during the on-site trials on the Mediterranean Sea [75]

3.4. Other applications

Applications of LIBS have covered all industry fields, including analyses from food, plant, to
space missions. Apart from the applications mentioned above, there are a variety of other
applications of LIBS. In engine applications, LIBS has been used to measure the fuel–air ratios
in combustion. If the fuel composition does not change, the fuel–air ratio can be inferred from
the elemental analysis of unburned and burned gases. It is useful to know that the equivalence
ratio can be inferred from burned gas measurement because the elemental composition does
not change during reactions [78]. LIBS can be also used for the elemental analysis of particles,
such as soot, which contain not only carbon but also metallic elements [79,80]. Tighter
environmental regulations recently have focused on global limit of harmful substances
released from industry, traffic, and domestic waste. Due to the sensitive and fast analysis
features, LIBS has the capability to be used as a continuous-emission monitor for toxic metals,
such as Be, Cd, Cr, Hg, and Pb. The sampling methodology and signal processing have been
improved [81-83]. The utilization of LIBS technique has been extensively studied in different
phase conditions, i.e., solid, liquid, and gas materials, which show different laser-induced
plasma processes. The wide pressure dependence and various atmospheric compositions have
been studied to understand the LIBS phenomena [84]. One of the challenging targets of LIBS
is the enhancement of detection limit of gas phase materials. A new method to control the LIBS
plasma generation process has been proposed for the enhancement of detection limit, i.e., low
pressure and short pulse LIBS.

LIBS is a promising technique for in situ elemental analysis. The advancement of portable LIBS
systems becomes a key technique. There have been a growing number of applications using
LIBS in life science, medical fields, and so on. A new mobile instrument for LIBS analysis was
developed, which is based on double-pulse LIBS and a calibration-free LIBS technique. Some
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applications have been presented including the analysis of cultural heritage, environmental
diagnostics, and metallurgy [85]. Laser-induced breakdown spectroscopy and Raman spec‐
troscopy have several features that make a combined instrument for remote analysis. These
two techniques are very useful and feasible as the combination of elemental compositions from
LIBS and molecular vibrational information from Raman spectroscopy strongly complement
each other. Remote LIBS and Raman spectroscopy spectra were taken together on a number
of mineral samples [86,87]. Figure 11 shows the Raman spectra, the combined Raman and LIBS
spectra, and the LIBS spectra of calcite (CaCO3) in air in the 534–699 nm wavelength range.
The Raman lines in Figure 11(b) are marked with the letter “R.” On the other hand, an approach
to further increase the sensitivity of LIBS for the determination of traces is the combination of
LIBS and laser-induced fluorescence, which has been studied. The combination of LIBS and
LIF allows linking the multispecies capability of LIBS for a broad range of analytes with the
high sensitivity of LIF for individual selected species [88].

 

(a) Raman spectra (b) Combined Raman and LIBS spectra (c) LIBS spectra 

                             

 
Figure 11. Combined remote Raman and LIBS spectra of calcite in the 534–699 nm range [86]
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4. Challenges

LIBS  features  various  merits  of  the  noncontact,  fast  response,  and  multidimensional
detection and has been widely studied and applied in different fields as the qualitative and
quantitative analytical detection technique. However, one of the major drawbacks of LIBS
is the difficulty of quantitative analysis. There are numerous correction methods for LIBS
to achieve the quantitative information, which are usually application-dependent. On the
other hand, it has become increasingly important to monitor factors in plant conditions in
order to improve the operation of  industrial  plants.  Furthermore the long-term continu‐
ous  use  of  LIBS  system is  a  considerable  factor  for  industrial  applications.  As  a  conse‐
quence,  the  improvement  of  measurement  accuracy,  quantitative  analysis,  and real-time
measurement is very necessary for the operation of the overall plants using LIBS system.

4.1. Accuracy and durability

The  laser-induced  plasma  processes  are  different  from  the  phase  samples  in  various
applications. The measurement methods and parameters should be determined according
to the specific conditions. There are several important factors that need to be considered
when obtaining quantitative information using LIBS. Choosing the appropriate experimen‐
tal  parameters,  therefore,  is  important  to  make  the  theoretical  treatment  applicable  for
quantitative  measurements.  On  the  other  hand,  data  processing  and  modeling  play  an
important  role  in LIBS for  the analytical  results  of  the measured spectra.  An ideal  data
processing method should be based on a deep understanding of plasma physics and should
be capable of minimizing the noise effects, compensating for the signal fluctuations, and
reducing  the  matrix  effects.  There  have  been  several  calibration  methods  such  as  the
Boltzmann plot method using many emission lines to increase the correction precision. The
calibration  methods  should  be  developed  to  realize  the  quantitative  analyses  with  the
precision and accuracy of a measurement. As for the on-line application in the industry,
the system simplicity and real-time measurement capability are also significant factors to
be considered. The methods for quantitative analyses should be workable and satisfacto‐
ry for practical applications.

The real advantage of LIBS technique is that the results are delivered continuously and in
real time compared with periodic sampling and standard analytical methods with the time
consumption. Consequently, LIBS gives a more representative reading of the state of the
process, particularly when rapid perturbations occur, and allows process optimization and
quality  improvement.  Current  research  aims  to  develop  the  commercial  equipment  for
continuous industrial applications. However, in these applications the long-term stability
and durability of  LIBS devices,  especially lasers,  is  one of  the challenges.  LIBS employs
pulsed  lasers  and  their  lifetime  often  limits  the  plant  applications,  especially  the  long-
term continuous use for plant monitoring and control. In a harsh environment, actually, all
the devices should be paid attention to, including lasers.
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4.2. Instrument development

The applications of LIBS technique have recently been proposed in the fields of materials
science,  industrial  process  control,  environmental  protection,  cultural  heritage  conserva‐
tion, etc. All of these applications would benefit from a mobile instrument. Therefore, the
availability  of  affordable  commercial  instrumentation,  the  standardization  of  measure‐
ment procedures, and the calibration standards are required for reproducible and reliable
quantitative LIBS analysis in situ.

The focus of a laser beam of LIBS, for instance, is one of the most important factors to be
considered when applying LIBS to industrial processes with the change of a target profile.
3D profile information of the object is required for the positioning of a focused laser beam.
The noncontact-type profile  measurement systems,  in general,  can be divided into three
categories, including a measurement machine integrated with a triangulation laser probe
[89], a measuring machine integrated with a laser line projector and one/two CCD cameras
[90-92], and a measurement machine integrated with a structured fringes projector and two
CCD cameras [93]. To digitize small complex objects with dimensions smaller than about
30 mm, using a measurement machine integrated with a triangulation laser probe is a good
strategy due to its small spot size. In general, phase shifting algorithm is applied to calculate
the phase map and the 3D profile of an object using the structured fringes projection system
[94]. If a 3D profile measurement system can be integrated with a LIBS system, the measured
3D profile information of the object can be used for the real-time positioning of a focused
laser beam in a LIBS system.

It has become increasingly important to monitor factors in plant conditions in order to improve
the operation of industrial plants. As a consequence, improved on-line monitoring techniques
for plant control factors are necessary to enhance the capability of maintaining the overall plant
operation. The associated monitoring and control techniques are necessary for the continued
operational improvement. Emphasis is placed mainly on instrument development for appli‐
cations as well as fundamental scientific investigations.
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