We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

6,900

186,000

200M

Download

154
Countries delivered to

Our authors are among the

TOP 1%

most cited scientists

12.2%

Contributors from top 500 universities

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Observation of Fungi, Bacteria, and Parasites in Clinical Skin Samples Using Scanning Electron Microscopy

Ran Yuping, Zhuang Kaiwen, Hu Wenying, Huang Jinghong, Feng Xiaowei, Chen Shuang, Tang Jiaoqing, Xu Xiaoxi, Kang Daoxian, Lu Yao, Zhang Ruifeng, Ran Xin, Wan Huiying, Lama Jebina, Dai Yalin and Zhang Chaoliang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61850

Abstract

This chapter highlights the description of the clinical manifestation and its pathogen and the host tissue damage observed under the Scanning Electron Microscope, which helps the clinician to understand the pathogen's superstructure, the change of host subcell structure, and the laboratory workers to understand the clinical characteristics of pathogen-induced human skin lesions, to establish a two-way learning exchange database with vivid images

Keywords: Fungi, Bacteria, Parasite, Clinical Skin Samples, SEM

1. Introduction

In dermatovereology department, skin infections by fungi, bacteria, and, parasites are very common in routine clinical practice. Differentiation and identification of these pathogens are a huge challenge and very important for the patient's diseases diagnosis and treatment. Scanning electron microscope (SEM) is a very strong tool for detection and observation of pathogens from the clinical samples that helps us obtain a direct proof of the pathogen on the surface of the skin samples of the lesion. Based on the detailed morphologic image, we can recognize the ultrastructural of the pathogen and understand the pathogenesis of the skin-infected diseases. During recent years, we collected a lot of pathogenic microorganisms' photographs taken by SEM. These pathogens include fungi (*Trichophyton violaceum, Microsporum canis, Mucor irregularis, Lichtheimia (Absidia) corymbifera, Alternaria arboresce, Fon-*

secaea pedrosoi, Aspergillus fumigatus and Malassezia), bacteria (Propionibacterium acnes), and parasites (Pediculosis pubis and Demodicid mites) in vivo or in vitro. The diagnosis and clinical manifestation, the kinds of sample and the image of the pathogens are summarized in the Table 1.

Diagnosis	Clinical manifestation	Sample	Image of pathogen by SEM
Tinea capitis	Erythema, scales on the scalp; hair broken and hair loss	Infected hair	Fungus (Trichophyton violaceum)
Tinea capitis	Excessive scales and hair loss on the scalp	Infected hair	Fungus (Microsporum canis)
Malassezia folliculitis	Slightly pruritic, monomorphic follicular papules	Keratotic	Fungus (Malassezia)
	and pustules	plug of	
		pustule of	
		hair follicle	
Pityriasis versicolor	Erythema and scaly, hyperpigmentation or	Scales	Fungus (Malassezia)
	hypopigmentation of skin		
Mucormycosis	Progressive red plaque around the inner canthus	Cultured	Fungus (Mucor irregularis)
		colony	
Mucormycosis	Purulent granuloma of left forearm	Cultured	Fungus (Lichtheimia corymbifera)
		colony	
Cutaneous alternariosis	An ulcer covered with crust on left anterior tibia	Cultured	Fungus (Alternaria arboresce)
		colony	
Chromoblastomycosis	Red plaque in the left knee	Cultured	Fungus (Fonsecaea pedrosoi)
		colony	
Primary laryngeal	Hoarseness, severe paroxysmal coughing and	Biopsy tissue	Fungus (Aspergillus fumigatus)
aspergillosis	tachypnea		
Acne	Recurrent papule and pustule acne	Pustule	Bacteria (Propionibacterium
			acnes)
Pediculosis pubis	Intense itching of the scalp	Parasite	Parasite (Pubic lice)
Demodicid mites	Itching, multiple erythema, papules, pustules	Hair follicle	Parasite (Demodex folliculorum)
		plug	

Table 1. Summary of diagnosis and clinical manifestation, kinds of sample, and the image of the pathogens observed by SEM

2. Methods

All samples for SEM were taken from clinical patients. These samples included infected hair, scales, colony of culture, and tissue of skin biopsy. The samples for SEM were fixed in 2% glutar-aldehyde for 4 h at 4 °C, dehydrated through four gradations of alcohol solutions (50%, 70%, 95%, 100%, progressively) for 15 min each, then soaked in isoamyl acetate for 30 min. The specimens were prepared after critical-point drying method, under which condi-

tion they were gilded in a vacuum chamber and observed under the SEM, FEI Inspect F50, equipped with an FEG gun operated at 30 kV at high vacuum.

3. Results

3.1. Tinea capitis

Tinea capitis is a common superficial fungal infection of scalp hair follicles and surrounding skin. It often affects children rather than adults. Its pathogens are dermatophytes, usually species in the genera *Microsporum* and *Trichophyton*, such as *Microsporum canis*, *Trichophyton tonsurans*, and *Trichophyton violaceum* [1]. The clinical manifestation of tinea capitis is highly variable, depending on the causative organism, type of hair invasion and degree of host inflammatory response. Common features are patchy hair loss with varying degrees of scaling and erythema. However, the clinical signs may be subtle and diagnosis can be challenging. A number of clinical patterns exist [2]. The accurate diagnosis of tinea capitis usually depends on the laboratory investigation, mainly including direct microscopy with 10%–30% potassium hydroxide and fungal culture. It can confirm the diagnosis by detecting or isolating the causal organism by either of these two methods. Tinea capitis always requires systemic antifungal treatment. Topical treatment is only used as adjuvant therapy to systemic antifungals as topical antifungal agents do not penetrate the hair follicle. Recommended drug in systemic treatment include itraconazole, terbinafine, or griseofulvin.

Figure 1. a. A 9-year-old boy, weighing 25kg, presented to our clinic with slightly itching, multiple patchy areas of gray scaling lesions on the scalp and obvious hair loss.

We describe two cases of tinea capitis due to *T. violaceum* [3] and *M. canis* [4]. The first patient is a 9-year-old boy, weighing 25 kg, presented to our clinic because of multiple, slightly itching and patchy areas of gray scales on the scalp associated with hair loss (Fig. 1). The diagnosis of tinea capitis caused by *T. violaceum* was established by direct microscopic examination, culture, and slide-culture. The scanning electron microscope revealed that the infected hairs were destroyed by abundant fungus (Fig. 2). The boy was cured after receiving 4 weeks of systemic treatment with itraconazole 125 mg per day and topical treatment with 1% naftifine–0.25% ketaconazole cream, after wash with 2% ketaconazole shampoo once a day.

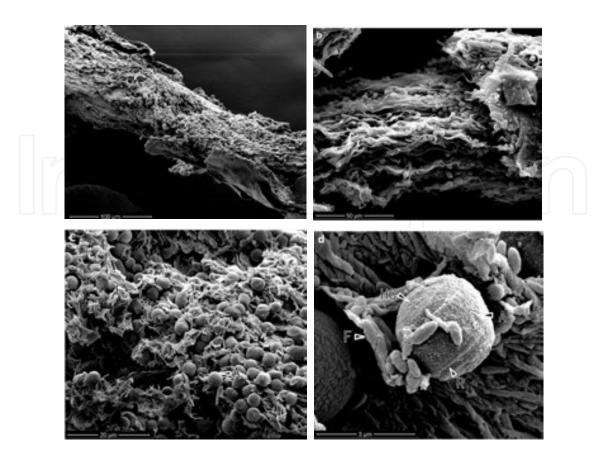
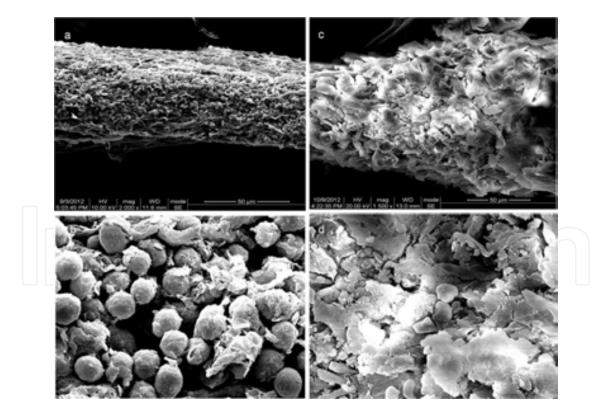


Figure 2. a-b. Figure 2ayers of their shartwest seriously destroyed and a large, part had been flost, exposing the cortex inside which many arthrospores were noted. c. High magnification of "a" showing the cuticle layers completely destroyed with their exidual cortex fully filled with arthrospoids (A) and distorted fibril handless from An arthrospowing the cuticle (A) at high magnification showing irregular convex granules on the chitinous surfaces and the poles bordered by a protruding ring structure (R), bulged by a hemispherical convex (HC). Numerous residual fibril fragments (F) noted around the splayers we drap lately selected with the residual cortex fully filled with arthroconidia (A) and distorted fibril

The second-matientris a 5-years obey in a single health curis sing keeping provented nates on the chitinous clinic with a 1-month history of excessive scales and hair loss on the scalp (Fig. 3a). He had been previously esting mose diesithentine a sopition and good proprietate any drageived promission and convex (HC). zole 100 mg per day for 14 days administered with water. However, the area of hair loss enlarged slightlyer Additionally bribe abachts (history and undirects non-tacker ithorn it peterdog. Direct microscopic examination (with 10% KOH) of broken hair strands showed numerous spores inside as well as outside of the hair strand. Simultaneously, strands were observed under SEM, and there were patient is an action is an action of the second patient is action of the second patient is an action of the second patient is action of the culture revealed yellow filamentous colonies, which were identified as Microsporum canis with ITS1/4-prouch sustant passessive scales and bair dass on the scalar of ign 3am Her. had to be a previously diagnosed diagnosis of tinea capitis caused by Microsporum canis was confirmed. According to his weight, the with time a capitis in a local hospital and received oral itraconazole 100 mg per day for il4 days administered course each dose was administered with whole milk instead with water before. After the 14day course, with waters However the large of hair loss enlarged slightly. Additionally he had a history loss direct contact (Fig. 3b). With the same examinations as before, only a few spores were detectable by direct microscopic examination. The microscopic examination (with 10% KOH) of broken hair strands showed numerous markedly reduced in hair strands, and


spores inside as well as outside of the hair strand. Simultaneously, strands were observed under SEM, and

there were many round spores in and around the hair strand (Fig. 4a, b). Fungal culture revealed yellow

round spores were now very irregular under SEM (Fig. 4c, d). The boy continued therapy for a total of 40 days. Clinical assessment of the treatment showed that there was no apparent hair loss and all of the same examinations now appeared to be normal (Fig. 3c). Upon clinical examination during the follow-up after 3 months, there was no recurrence following the end of the treatment [4].

Figure 3. a. A 5-year-old boy presented with 1-month history of scalp scales and hair loss, who had received oral itraconazole 100 mg per day with water for 14 days; b. The patch with hair loss was smaller and without scale after oral itraconazole 100 mg per day with whole milk for 14 days; c. There was no apparent hair loss on scale after 40 days at end of treatment.

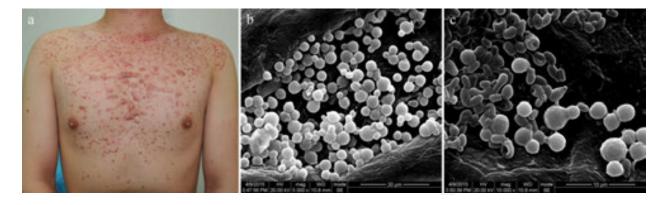


Figure 4. a-b. After oral itraconazole 100 mg per day with water for 2 weeks, broken hair strands with many round spores in and around the hair strands were evident under scanning electron microscopy (SEM); c-d. Oral itraconazole 100 mg per day with whole milk for 14 days, the number of spores were markedly reduced in broken hair strands, and spores appeared very irregular under SEM.

3.2. Malassezia folliculitis (Pityrosporum folliculitis)

Malassezia folliculitis is most commonly seen in teenagers and adults, which is characterized by pruritic, monomorphic follicular papules and pustules on the upper trunk, arms, neck and occasionally on the face. It is due to excessive growth of *Malassezia* spp. within the hair follicle, with resulting inflammation (from yeast products and free fatty acids produced by fungal lipase). Only yeast forms are observed, no hyphal forms as in pityriasis versicolor [5]. Diagnostic studies include microscopic evaluation of the presence of yeast, cultures, and biopsies. Additionally, Woods lamp can be used to illuminate the lesions, which portray a yellow-green fluorescence. Both topical and oral antifungal agents are effective agents in the treatment of *Malassezia* folliculitis and are commonly combined to hasten resolution and maintain clearance. Topical regimens include daily wash with ketoconazole shampoo 2%, then 1% naftifine-0.25% ketaconazole cream. For severe cases, it needs systemic administration of antifungal agents. Commonly used regimens include oral fluconazole 150 mg weekly for 2–4 weeks, and itraconazole 200 mg daily for 2–4 weeks [6].

The following is a case of *Malassezia* folliculitis due to *Malassezia* spp. The patient is a 25-year-old man, who was presented to our clinic because of slightly pruritic, monomorphic follicular papules and pustules on the upper trunk and neck (Fig. 5a). The diagnosis of *Malassezia* folliculitis was established by direct microscopic examination, culture, and scanning electron microscopy. The scanning electron microscope of the hair follicle from the upper trunk revealed a large number of yeast of two kinds, orbicular-ovate and globular (Fig. 5 b-c). The man was cured after receiving 4 weeks of systemic treatment with itraconazole 200 mg per day and topical treatment with 1% naftifine–0.25% ketaconazole cream after wash with 2% ketaconazole shampoo once a day.

Figure 5. a. A 25-year-old man with complains of slightly pruritic, monomorphic follicular papules, pustules, and secondary keloid on the upper trunk and neck. b-c. SEM of the hair follicle from the upper trunk. These demonstrated a large number of globular or orbicular-ovate yeasts of budding daughter cell, with collar structure around the budding. b. Globular yeast. c. Orbicular-ovate and globular yeast in the same sample.

3.3. Pityriasis versicolor

Pityriasis versicolor is a superficial fungal infection of the skin and caused by *Malassezia*, a lipophilic yeast, which is part of the normal skin flora. Certain environmental, genetic, and

are also susceptible populations [9] d to the development of disease [7]. The prevalence is as high as 50% in tropical areas [8]. Prevalence increases significantly in childhood and adolescence, probably because of increased sebum production, which allows for a more lipid-rich envi-This is a case of pityriasis versicolor due to *Malassezia* spp. A 27-year-old man was presented to our clinic ronment for *Malassezia* to grow. Adolescents and young adults who are physically active are also susceptible populations [9]. with extensive erythema and scaly for 6 months (Fig. 6a). The scaly was scraped and observed through SEM.

This is a case of pityriasis versicolor due to Malassezia spp. A 27-year-old man was presented Honder Stillion winds reactive and the reactive described to be a monath of the scale of the sca and observed through SEM. Under SEM, numerous hyphae and spores that resemble "bana-1% naftifine-0.25% ketoconazole cream after wash with ketoconazole shampoo was effecketoconazole shampoo was effective.



Figure 6a. A 23-27 avent-old manentesented in our vehious with extensive any them and use of the months. b. numerous hyphae (H) went through the scaly, length of which is about 10–20 μm . c. Under SEM, abundant of 3–5 μm in diameter grapes-like spherical *Malassezia* spores (S) with hudding daughter gell, with collar structure around the Under SEM, numerous hypnae (H) went through the scaly, length of which is about 10–20 µm. c. Under SEM, budding, and banana-like haphae (H).

abundant of 3-5 µm in diameter grapes-like spherical Malassezia spores (S) with budding daughter cell, with 3.4. Mucormycosis

collar structure around the budding, and banana-like haphae (H). Mucormycosis is a clinically rare and fatal opportunistic fungal infection, which invades nasal, brain, lung, gastrointestinal tract, skin, and other parts with acute, subacute, or chronic Brocess. The routes of invasion contain respiratory tract, digestive tract, skin, and neonatal umbilical region [10]. Its pathogens are fungi in the order Mucorales, usually species in the genera Mucor, Rhizopus, and Lichtheimia (Absidia), such as Mucor irregularis, Rhizopus stolonifortugen de Verbier de la concentration fare and fare a projection is transferring at emperimental fortuge describing and distance and a fare fortuge of the content of the scribed in China [10]. Amphotericin B and its lipid derivatives are considered as the existed in a structure of invasion and other pasts with acute, subacute, or chronic process. The routes of invasion

The following is a description of two cases of primary cutaneous mucormycosis caused by contain respiratory tract, digestive tract, skin, and neonatal umbilical region [10]. Its pathogens are fungi in the *Mucor irregularis* [10] and *Lichtheimia corymbifera* [11], respectively. One of the cases is of a 47year-old farmer, who presented to our clinic with a history of progressive red plaque order *Mucorales*, usually species in the genera *Mucor*, *Rhizopus*, and *Lichthermia* (*Absidia*), such as *Mucor* around the inner canthus (Fig. 7a), following dacryocystectomy about a year earlier. Linear, aseptate hyphae were seen by direct KOH examination and in biopsy. Fungal culture re-irregularis, Rhizopus stolonifer, and Lichtheimia corymbifera. M. irregularis is a newly recognized fungal presented to our clinic with a history of progressive red plaque around the inner canthus (Fig. 7a), following vealed light-yellow filamentous colonies that were identified as Mucor irregularis by nucleodativing statemy independent a RAAA egitine. ISIRAA r, dasptate this pleace were lockern by diperp KOH texapourating i and inth pronounced columellae and conspicuous collarette at the base of the columella following biopsyr Enggolscultur clispents all (Fligy 7th) w Aitaplantous ciol Bries that exem international converse configuration. ally increasing dosage. The treatment lasted 43 days, and the patient received a total 760 mg nucleophio tenicinc Big Tolie Rosi Alegenev SE Mischargetionel tere ealerdomath a poliphresatten epotra Tigne with a productive control of the control of th smooth, and fungal culture was negative. There was no recurrence for half a year through collected and allowing sporangiospore dispersal (Fig.

7b). Amphotericin B and dexamethasone were used in Figure 7. a. A 47-year-old farmer was presented to our clinic with 1-year history of progressive red plaque around the inner canthus. Faint yellow exudation was oozing from the ulceration at the center of plaque. Some scales were also gradually-dinereasing qdosage EM hostroatmentre lasted 143n-dayshyand sthorapatient three involved need to talim to be mgd conspicuous collarette at the base of the columella following sporangiospore dispersal.

amphotericin B. The patient was discharged after 2 months of treatment. The plaque became smooth, and The other case is of a 69-year-old female farmer, who presented to our clinic with the history of a progressive purulent granuloma of her left forearm (Fig. 8a) following a fracture of left fungal culture was negative. There was no recurrence for half a year through telephone follow-up. forearm about 11 months earlier. Broad, nonseparate hyphae were seen in pathologic study with methenamine silver stain (Fig. 8b). Fungal culture revealed white filamentous colonies that were identified as Lichtheimia corymbifera by nucleotide sequencing of rRNA gene. The scanning electron microscope showed that the sporangia are slightly pear-shaped instead of spherical. The sporangiophores of Lichtheimia corymbifera formed a conical apophysis and Figures in grant protested was lipated tween their history of sinteget besine (Fig. psaget). Antimicrobial susceptibility test indicated that *Lichtheimia corymbifera* is most sensitive to terardomidation enand anthorn Faziol y. The catalation was covered after the well-astrofit het he centre of interest and inte intraconazole with surgery [11].

scales were also observed on the plaque. b. SEM observations revealed non-apophysate sporangia with 3.5. Cutaneous alternariosis

pronounced columellae and conspicuous collarette at the base of the columella following sporangiospore Alternaria, an opportunistic fungus, is pigmented (also known as dematiaceous or phaeoid) disfilamentous fungi, which are well-known soil saprophytes and plant pathogens that infrequently cause infection in humans. Although Alternaria usually infects immunocompromised patients [12], in rare cases it infects healthy or immunocompetent individuals as well. The other case is of a 69-year-old female farmer, who presented to our clinic with the history of a progressive

purulent granuloma of her left forearm (Fig. 8a) following a fracture of left forearm about 11 months earlier.

patient was cured after 6 weeks of therapeufil alliance of oral intraconazole with surgery [11].

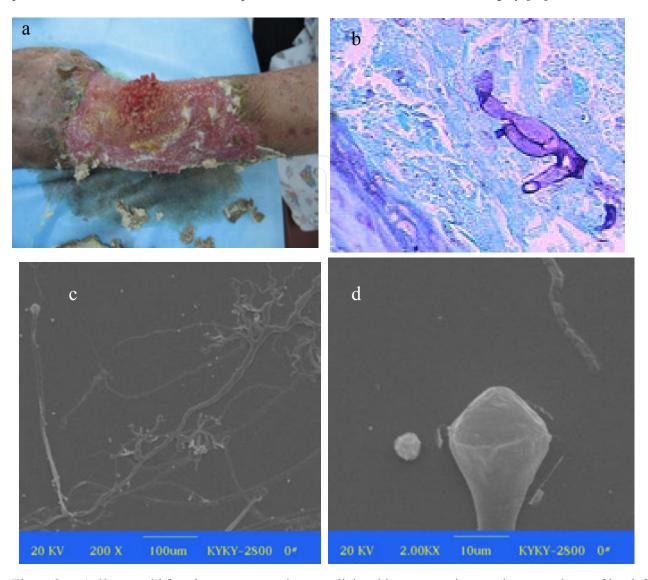


Figure 8. a. A 69-year-old female was presented to our clinic with a progressive purulent granuloma of her left Figure 8. a. A 69-year-old female was presented to our clinic with a progressive purulent granuloma of her left forearm. b. Broad nonseparate hyphae were seen in pathologic study (methenamine silver stain, ×200). c-d. The sporangio-forcers of bic/Broads nonseparate hyphae were seen in pathologic study (methenamine silver stain, ×200). c-d. The sporangio-forcers of bic/Broads nonseparate hyphae were seen in pathologic study (methenamine silver stain, ×200). the stainbet 2000) the d. rhizoid and not opposite them. SEM showed the sporangia were slightly pear-shaped instead of spherical (20kv, ×2000). The sporangiophores of Lichtheimia corymbifera forming a conical apophysis and arising at points on the

The spotangiophores of *Lichtheimia corymotyera* forming a conical apophysis and arising at points on the

There is no standard therapy for cutaneous alternariosis and the patients are usually treated stolon that was between the rhizoid and not opposite them. SEM showed the sporangia were slightly with surgical resection and/or antifungal therapy.

war despribers to a definition with Alternaria arborescens [13]. A 28-year-old man presented at our clinical with a one-month history of ulcers covered with crust on his left anterior tibial (Fig. 9a). For all anterior tibial (Fig. 9a) and the SEM observation of the slide culture revealed beaked conidia (Fig. 9c). Based on the morphological features and molecular identification, the patient was diagalternaria, an opportunistic fungus, is pigmented (also known as dematiaceous or phaeoid) filamentous fungi, nosed as cutaneous alternariosis. He was successfully treated with oral itraconazole and top-

ical wet dressing of amphotericin B. which are well-known soil saprophytes and plant pathogens that infrequently cause infection in humans.

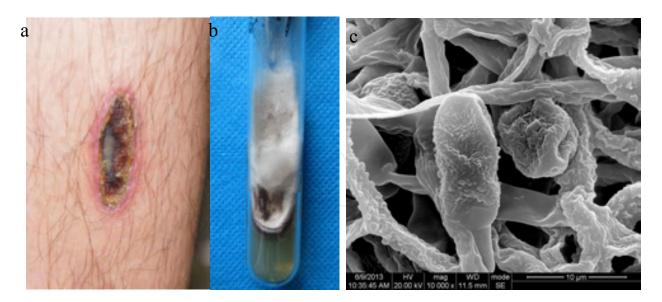
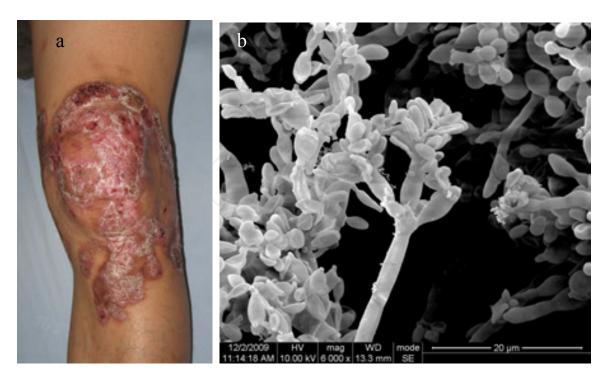


Figure 9. a. Ulcer with an overlying crust on the patient's skin of left anterior tibia. b. Fungal culture of the tissue re-Figure 19 tark lylegrownith automore hying acrust on othe patient deskin RM left can tetroor of biatebour magabour limit of the conidia.


tissue revealed dark grey-white colonies with a dark-brown underside. c. SEM observation of slide culture **3.6. Chromoblastomycosis**

revealed beaked conidia.

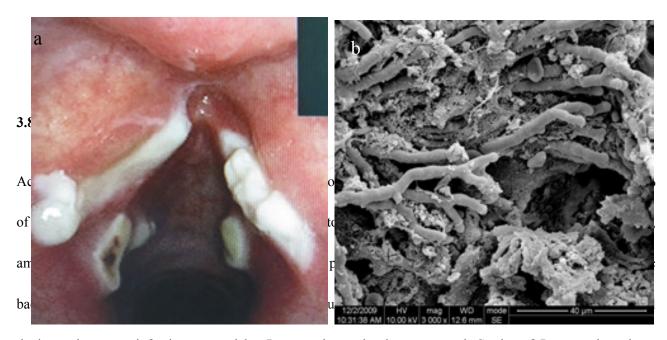
Chromoblastomycosis is a chronic fungal infection of the skin and subcutaneous tissue caused by dematiaceous fungi. Common pathogenic fungi are Fonsecaea pedrosoi, Phialophora 3.6. Chromoblastomycosis verrucosa, Cladophialophora carrionii, among others. These fungi exist in the natural environment in soil, water, vegetation, or wood splinters, and usually are inoculated in the skin tis-Chromoblastomycosis by chronicmfatigalnjutection highter iskindende sistemanters instropianted thy subtropical countries. Cutaneous lesions can be nodules, papules, and/or ulcerations and demastilyeoffsecfutige. lowerniumbpatilogediagnosis of schromoblastopycosis is linatophora directicosa, amination, culture, and histopathology. On treatment, long courses of antifungal agents Charlophoralisty formazolastistic phialophoralisty constitutes and physical treatments (cryotherapy or, mostly, thermotherapy). However, long duration vegetation on this odes planteny duration after the oditated is the vellations of human body by a traumatic

In this part we describe a case of chromoblastomycosis due to Fonsecaea pedrosoi. A 34-year-injury. A higher incidence is reported in tropical and subtropical countries. Cutaneous lesions can be nodules, old male presented at our clinic with a 12-year history of red plaque in the left knee (Fig. 10a). The patient's left knee was punctured by a fragment of a brick 12 years ago. The pathopapules, and/or ulcerations and mostly affect the lower limbs. The diagnosis of chromoblastomycosis is based genic fungus was isolated and identified as Fonsecaea pedrosoi. SEM observation: dematiaceous hyphae with many well-defined septa, conidiophores and oval brown spores of arranged in a clump could be seen. The surfaces of conidiogenous cells were smooth. Oval spores were arranged around conidiophores (Fig. 10b). The patient was diagnosed as chroitraconazole terbinafine can be used alone or in combination with surgical excision, and physical treatments mobiastomycosis and was treated with oral terbinafine 250 mg twice a day and thermother apy with a small electronic heating pad (42°C, more than one hour per day) after applying (crotherapy or mostly thermotherapy) of higher hydrochionide and 0.25% ketoconazole. The otal course was 61 weeks. The crust and pruritus had disappeared and the erythema and plaque disage is mooth and soft.

In this part we describe a case of chromoblastomycosis due to *Fonsecaea pedrosoi*. A 34-year-old male presented at our clinic with a 12-year history of red plaque in the left knee (Fig. 10a). The patient's left knee

Figligure al (A 34-) Aa 34 is easield imale 2 with aist 2 years history of an rad interprete in the deficience sets denoted SEM dematiaceous hyphae with many well-defined septa, conidiophores, and oval brown spores arranged in a clump could be seen. The surfaces of conidiogenous cells were smooth. Oval spores were arranged around conidiophores. observation: dematiaceous hyphae with many well-defined septa, conidiophores, and oval brown spores

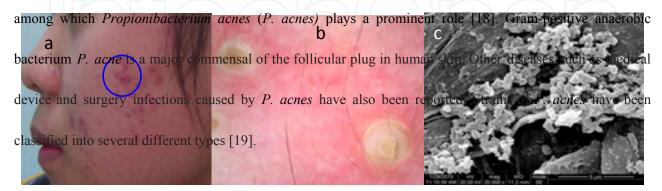
3.7 Primary laryngeal aspergillosis The surfaces of conidiogenous cells were smooth. Oval spores were


Primary laryngeal aspergillosis is a rare opportunistic infection caused by Aspergillus. All caused supportunity of the control of the contro

immunocompromisation are generally due to etiological factors [15]. For immunocompetent patients, oral sex We describe in the following a case of primary laryngeal aspergillosis due to *Aspergillus fumigatus*. The patient was a 23-year-old female undergraduate student, who presented with (fellatio) may be the primary cause [16]. Airborne spore colonizes in the larynx through inhalation, then white hoarseness, severe paroxysmal coughing, and tachypnea. Laryngoscopy revealed obvious white plaques on the swollen vocal cords and laryngeal ventricle (Fig. 11a). The diagnosis of colony grows on vocal cords or/and laryngeal ventricle. It is characterized by chronic hoarseness, with or laryngeal aspergillosis was established by the clinical manifestations and the hyphae branching at 45° angles under microscopy, SEM (Fig. 11b), and pathology. She was cured with oral hyperacterized by the clinical manifestations are cured with oral hyperacterized by the clinical manifestations. It is usually diagnosed by with oral hyperacterized by the clinical manifestations.

3.8 aryngoscopy and biopsy. Systemic antifungal treatment is often effective.

Active is a chronic inflormatory disease of the year spices applications are switched to the global population [17]. Acne is closely related to the combination of genetic and environmental factorise among the strength of the global population [17]. Acne is closely related to the combination of genetic and environmental factorise among the strength of the global population [17].


coughing, and tachypnea. Laryngoscopy revealed obvious white plaques on the swollen vocal cords and laryngeal ventricle (Fig. 11a). The diagnosis of laryngeal aspergillosis was established by the clinical

device and surgery infections caused by *P. acnes* have also been reported. Strains of *P. acnes* have been **Figure 11.** aa AA322 expealed and tachypnea. Laryngoscopy revealed obvious white plaques on the swollen vocal cords and laryngeal ventricle. b. classified that bis exertistic fierce at expension of tachypnea. Laryngoscopy revealed obvious white plaques on the swollen vocal cords tissue. coughing, and tachypnea. Laryngoscopy revealed obvious white plaques on the swollen vocal cords and

Lapyopain potetrole [18] For amprositive range revial bacterium Paneting is a major consineval left the I The following is a description of a case of acne in a 24-year-old girl. She suffered recurrent papule and follocular plug in human skin. Other diseases such as medical device and surgery infections consisted by P. acnes have also been reported. Strains of P. acnes have been classified into sevpustuleache for 6 months (Fig. 12a-b). We removed the follocular plug with sterile hemostatic forceps and eral different types [19].

obschweroid ohvoinghis and estimated to fire the state of a dapalene gel was effective, of the global population [17]. Acne is closely related to the global population [17]. Acne is closely related to the global population [17]. Acne is closely related to the global population [17]. Acne is closely related to the global population [17]. Acne is closely related to the combination of genetic and environmental factors,

The following is a description of a case of acne in a 24-year-old girl. She suffered recurrent papule and Figure 12. a. A 24-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old pinlewhich suffered outcoment papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered outcoment papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and pustule acne for 6 mouths. b. Under the dermosco-Figure 12 ap A124-year-old girl who suffered recurrent papule and girl who suffered recurrent p

dermoscopy, the papule was semisphere with tawny follicular plug inside. c. Under SEM, rod-shaped bacteria observed it through SEM. Under SEM, abundant rod-shaped bacteria were closely spaced in follicular plug

were closely spaced in follicular plug tissue. tissue (Fig. 12c). Treatment with oral minocyline 50 mg twice a day and topical use of adapalene gel was

3.9. Pediculosis

Pediculosis is a skin disease caused by arthropods. Its pathogens are three lice species including head louse,

3.9. Pediculosis

Pediculosis is a skin disease caused by arthropods. Its pathogens are three lice species including head louse, crab or pubic louse, and body louse, which cause the *Pediculus humanus capitis*, *Phthirus pubis*, and *Pediculus humanus corpus*, respectively. These three insects are obligate human parasites. They are transmitted by person-to-person contact [20]. Itching in various levels of severity is the primary symptom of pediculosis. Crab louse is about 0.8–1.2 mm in length. Its legs are clawed, except for the first pair, which is shortened and vestigial. In contrast to the oval shape of head and body lice, the crab louse is almost as wide as its length, allowing it to grasp widely spaced pubic hairs [21]. Its crab appearance accounts for its name. Patients with pubic lice may be instructed to launder clothing and bedding and to avoid sexual or other intimate contact until their infestations are cured [22]. In case of infestation of head with pubic lice, the head can be shaved totally and then treated with an occlusive agent such as Vaseline petroleum jelly.

We describe a case of pediculosis on the scalp of a 6-year-old boy caused by the crab louse [23]. The boy was presented to our clinic with the complaint of intense itching of the scalp. There were some small pieces of erythema (in the circle) and a brown dot-like substance on his scalp (Fig. 13a). The dermoscopy revealed a brown parasite (0.9 mm in horizontal axes and 1.2 mm in vertical axes) with two crab-like feet adhered to the scalp (Fig. 13b). Microscopic examination and scanning electron microscope showed the detail of this insect (Fig. 13c-d). Based on these morphological findings, the diagnosis of *Pediculus humanus capitis* caused by crab louse is confirmed. Generally, pediculus humanus capitis is caused by head louse, rarely by crab louse. Where could this pathogen, crab louse, be from? After a detailed inquiry, his father was found to have pediculosis pubis that had been cured. Therefore, the boy was instructed to shave the head totally and then treated with an insecticidal tincture, which was administered to his parents as well. The boy was cured after 15 day of treatment.

3.10. Demodiciosis

Demodiciosis is a kind dermatitis caused by *Demodex*. It often presents some rosacea-1ike lesions. *Demodex* is a genus of tiny parasitic mites that live in or near hair follicles of mammals. Currently, about 65 species of *Demodex* are known [24]. Two species living on humans have been identified: *Demodex folliculorum* and *Demodex brevis*, both frequently referred to as eyelash mites [25]. The adult mites are 0.3–0.4 mm long, and 0.012–0.016 mm in diameter, with *D. brevis* slightly shorter than *D. folliculorum* [26]. Each has a semitransparent, elongated body that consists of two fused segments. Eight short, segmented legs are attached to the first body segment. The body is covered with scales for anchoring itself in the hair follicle, and the mite has pin-like mouth for eating skin cells and sebum, which accumulate in the hair follicles. The mites can leave the hair follicles and slowly walk around on the skin, at a speed of 8–16 mm per hour, especially at night, as they try to avoid light [26]. In most of the cases, the mites go unobserved, without any symptoms, but in certain cases (usually related to a disordered immune system) mite populations can dramatically increase, resulting in a condition known as *demodicosis* or *demodex mite* bite, characterized by itching, inflammation, and other skin disorders.

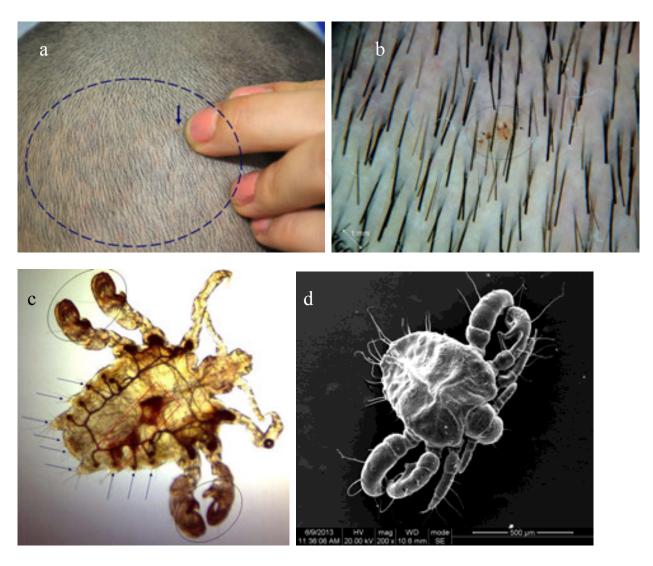


Figure 13.3a. an There were some is mall pieces to fray them a fine the circle), and a like window detalks substance on the row). b. The dermoscopy revealed a brown parasite (0.9 mm in horizontal axes and 1.2 mm in vertical axes) with two crab-like feet adhered to the scalp. c. Under the microscope, the parasite was characterized by a flat body like a crab scalp (arrow). b. The dermoscopy revealed a brown parasite (0.9 mm in horizontal axes and 1.2 mm in vertical and three pairs of feet in different sizes. There was an area (red box) full of blood in the middle part of the parasite. A large number of short setae (arrow) were noted at the edge of the parasite abdomen. d. The SEM showed a vivid threedirespointed two stab-time fether anneasity to the volation of the stable of the stabl chest, and elliptical abdomen; a pair of feelers was noted on the head; the three pairs of feet were in shaped section and curved serrated claws were noted at the end of foot; short setae in different length were not only at the edge of the ab flambody tilks worth fand three pairs of feet in different sizes. There was an area (red box) full of blood in the

middle part of the parasite. A large number of short setae (arrow) were noted at the edge of the parasite The following is a description of a case of demodicosis due to Demodex nates. The patient is a 28-year-old man, who came to our clinic because of itching, multiple erythema, papules, abdomen d. The SEM showed a vivid three-dimensional ultrastructure of the parasite: the whole body was pustules lesions on the nose and cheek (Fig. 14a). The diagnosis of demodicosis caused by Demodex mites was established by direct microscopic examination. The observation of SEM composed of three parts including spherical head, chest, and elliptical abdomen: a pair of feelers was noted on revealed that the parasite consists of two segments. There were four pairs of feet on the side of the head of the parasite and its abdomen was characterized by annular striae on the surthe head; the three pairs of feet were in shaped section and curved serrated claws were noted at the end of foot; face (Fig. 14b). The man was cured after receiving 6 months of topical treatment with 7% albendazole cream once a day.

short setae in different length were not only at the edge of the abdomen but also on the feet.

3.10. Demodiciosis

Demodiciosis is a kind dermatitis caused by *Demodex*. It often presents some rosacea-like lesions. *Demodex*

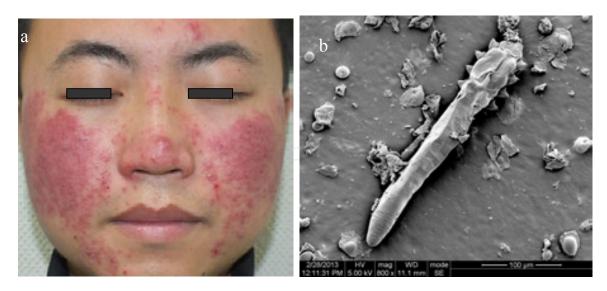


Figure 14. a. A 28-year-old man came to our clinic because of itching, multiple erythema, papules, pustules regions on the nose and cheek. b. SEM revealed a *Demodex folliculorum*, approximately 0.33 mm in length, in the infected skin. Its elon**gsions** book the nose and cheek. b. SEM revealed a *Demodex folliculorum*, approximately 0.33 mm in length, in the infected skin. Its elon**gsions** book theoretical demonstration of the constant of the

the infected skin. Its elongated body consisted of two segments. There were four pairs of feet on the side of

the head of the parasite and its abdomen was characterized by annular striae on the surface.

Author details

Ran Yuping^{1*}, Zhuang Kaiwen¹, Hu Wenying¹, Huang Jinghong¹, Feng Xiaowei¹, Chen Shuang¹, Tang Jiaoqing¹, Xu Xiaoxi¹, Kang Daoxian¹, Lu Yao¹, Zhang Ruifeng¹, Ran Xin¹, Wan Huiying¹, Lama Jebina¹, Dai Yalin² and Zhang Chaoliang³

- *Address all correspondence to: ranyuping@vip.sina.com
- 1 Department of Dermatovereology, West China Hospital, Sichuan University, Chengdu, China
- 2 Department of Medical laboratory, West China Hospital, Sichuan University, Chengdu, China
- 3 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China

References

[1] Ellabib MS, Agaj M, Khalifa Z, Kavanagh K. *Trichophyton violaceum* is the dominant cause of tinea capitis in children in Tripoli, Libya: Results of a two year survey. *Mycopathologia*. 2001; 153: 145-147.

- [2] Yu J, Li R, Bulmer G. Current topics of tinea capitis in China. *Jpn J Med Mycol.* 2005; 46: 61-66.
- [3] Zhuang K, Ran X, Lei S, Zhang C, Lama J, Ran Y. Scanning and transmission electron microscopic observation of the parasitic form of *Trichophyton violaceum* in the infected hair from tinea capitis. *Scanning*. 2014; 36: 465-470.
- [4] Chen S, Ran Y, Dai Y, Lama J, Hu W, Zhang C. Administration of oral itraconazole capsule with whole milk shows enhanced efficacy as supported by scanning electron microscopy in a child with tinea capitis due to *Microsporum canis*. *Pediatric Dermatology*. 2015; 32:e312–e313
- [5] Rubenstein RM, Malerich SA. *Malassezia (Pityrosporum)* folliculitis. *J Clin Aesthet Dermatol.* 2014; 7: 37-41.
- [6] Hald M, Arendrup MC, Svejgaard EL, Lindskov R, Foged EK, Saunte DM. Evidence-based Danish guidelines for the treatment of *Malassezia*-related skin diseases. *Acta Derm Venereol*. 2015; 95: 12-19.
- [7] Renati S, Cukras A, Bigby M. Pityriasis versicolor. BMJ. 2015; 350: 1394-1400.
- [8] Kaushik A, Pinto HP, Bhat RM, Sukumar D, Srinath MK. A study of the prevalence and precipitating factors of pruritus in pityriasis versicolor. *Ind Dermatol Online J.* 2014; 5: 223-224.
- [9] Kyriakis KP, Terzoudi S, Palamaras I, Pagana G, Michailides C, Emmanuelides S. Pityriasis versicolor prevalence by age and gender. *Mycoses*. 2006; 49: 517-518.
- [10] Kang D, Jiang X, Wan H, Ran Y, Hao D, Zhang C. *Mucor irregularis* Infection around the inner canthus cured by amphotericin B: A case report and review of published literatures. *Mycopathologia*. 2014; 178: 129-133.
- [11] Lu W, Lu J, Ran Y, Lin Z, Wan H, Cui F, Cao L, Pan N, Song X, Chen J, Wanf Y, Yu M. Cutaneous and subcutaneous coinfection by *Lichtheimia corymbifera* and *Candida parapsilosis*: a case report. *Chin J Dermatol*. 2012; 45(10):727-730. (in Chinese)
- [12] Anaissie EJ, Bodey GP, Rinaldi MG. Emerging fungal pathogens. *Eur J Clin Microbiol Infect Dis.* 1989; 8: 323-330.
- [13] Hu W, Ran Y, Zhuang K, Lama J, Zhang C. *Alternaria arborescens* infection in a healthy individual and literature review of cutaneous alternariosis. *Mycopathologia*. 2015; 179: 147-152.
- [14] Krzyściak PM, Pindycka-Piaszczyńska M, Piaszczyński M. Chromoblastomycosis. *Adv Dermatol Allergol/Postepy Dermatologii i Alergologii*. 2014;31(5):310-321. doi: 10.5114/pdia.2014.40949.
- [15] Ran Y, Yang B, Liu S, Dai Y, Pang Z, Fan J, Bai H, Liu S. Primary vocal cord aspergillosis caused by *Aspergillus fumigatus* and molecular identification of the isolate. *Med Mycol*. 2008; 46: 475-479.

- [16] Ran Y, Li L, Cao L, Dai Y, Wei B, Zhao Y, Liu Y, Bai H, Zhang C. Primary vocal cord aspergillosisand scanning electron microscopical observation of the focus of infection. Mycoses 2011;54:e634-637.
- [17] Ran Y, Lu Y, Cao L. Primary laryngeal aspergillosis related to oral sex? A case report and review of the literature. *Med Mycol Case Rep.* 2013; 2: 1-3.
- [18] Tan JK, B Ran Y, Lu Y, Cao L.hate K. A global perspective on the epidemiology of acne. *Br J Dermatol*. 2015; 172; Suppl 1: 3-12.
- [19] Antiga E, Verdelli A, Bonciani D, Bonciolini V, Caproni M, Fabbri P. Acne: a new model of immune-mediated chronic inflammatory skin disease. *G Ital Dermatol Vene-reol*. 2015; 150: 247-254.
- [20] Yu Y, Champer J, Garbán H, Kim J. Typing of *Propionibacterium acnes*: a review of methods and comparative analysis. *Br J Dermatol*. 2015; 172: 1204-1209.
- [21] David C, Flinders, Peter DS. Pediculosis and scabies. *Am Fam Physician*. 2004;69: 341-348.
- [22] Ko CJ, Elston DM. Pediculosis. J Am Acad Dermatol. 2004, 50: 1-12.
- [23] Gunning K, Pippitt K, Kiraly B, Sayler M. Pediculosis and scabies: treatment update. Am Fam Physician. 2012; 15: 535-541.
- [24] Ran Y, Feng X, Zhuang K, Zhang C. Dermatoscopy, microscopy and scanning electron microscopy diagnosed scalp pediculosis pubis in a child. *J Clin Dermatol*. 2014;43(12):725-726. (in Chinese)
- [25] Rusiecka-Ziółkowska J, Nokiel M, Fleischer M. Demodex an old pathogen or a new one? *Adv Clin Exp Med*. 2014; 23: 295-298.
- [26] Elston CA, Elston DM. Demodex mites. Clin Dermatol. 2014; 32: 739-743.
- [27] Rufli T, Mumcuoglu Y. The hair follicle mites *Demodex folliculorum* and *Demodex bre-vis* biology and medical importance: a review. *Dermatologica*. 1981;162:1-11.

IntechOpen

IntechOpen