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Abstract

In processing of multichannel remote sensing data, there is a need in automation of basic
operations as filtering and compression. Automation presumes undertaking a decision on
expedience of image filtering. Automation also deals with obtaining of information based
on which certain decisions can be undertaken or parameters of processing algorithms can
be chosen. For the considered operations of denoising and lossy compression, it is shown
that their basic performance characteristics can be quite easily predicted based on easily
calculated local statistics in discrete cosine transform (DCT) domain. The described meth-
odology of prediction is shown to be general and applicable to different types of noise
under condition that its basic characteristics are known in advance or pre-estimated accu-
rately.

Keywords: Multichannel remote sensing data, automatic processing, denoising, lossy
compression, performance prediction, DCT

1. Introduction

Remote-sensing (RS) data are widely used for numerous applications [1], [2]. Primary RS
images acquired onboard of airborne or spaceborne carriers and intended for Earth surface
monitoring are usually not ready for direct use and, thus, are subject to a certain preprocessing.
This preprocessing can be carried out in several stages and includes the following operations:
geo-referencing and calibration, blind estimation of noise/distortion characteristics, pre-
tiltering, lossless or lossy compression, [1], [2], etc. These operations can be distributed between
onboard and on-land computer means (processors) in different ways depending upon many
factors [3-5].

I NT E C H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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Regardless of the distribution of functions, the operations onboard are usually performed in
a fully automatic manner (although there can be some changes in algorithm parameters by
command passed from Earth). In turn, the operations carried out on land can be, in general,
performed in an interactive manner and labor of highly qualified experts is exploited for this
purpose. However, a certain degree of automation of on-land data processing is required as
well. The need in processing automation is especially high if one deals with multichannel (e.g.,
hyperspectral) RS data [6], where the number of channels (components, sub-bands) can reach
hundreds. Such RS images have become popular and widespread (available) currently due to
their (potential) ability to provide rich information for various applications [6], [7].

Meanwhile, the multichannel nature of RS data results in new problems in their processing [3],
[8]. The main problems and actual questions are the following:

* How to manage large volumes of acquired data with maximal or appropriate efficiency
(here, different criteria of efficiency can be used)?

* Is it possible to skip some operations of data processing if their efficiency is not high and,
consequently, if it is not worth performing them?

The latter question can be mainly addressed as mentioned below. It is strictly connected with
other questions as follows:

* Is it possible to predict the performance of some standard operations of RS data (image)
processing?

* What is the accuracy of such a prediction and is this accuracy high enough to undertake a
decision to skip carrying out an operation or to set a certain value of some parameter used
in the image-processing chain [9]?

This chapter will focus on two typical operations of multichannel RS data processing, namely,
filtering and lossy compression. While considering them, the fact that the acquired images are
noisy is taken into account. One can argue that noise is not seen in many RS images (or
components of these images). This is true, and noise cannot be observed in approximately 80%
of the visualized sub-band images of hyperspectral data. This is explained by the peculiarities
of human vision, which does not see noise if peak signal-to-noise ratio (PSNR) in a given single-
channel (component) image exceeds 32-38 dB. However, recent studies [7], [10-12] have
demonstrated that noise is present in all sub-band images and this is due to the principle of
operation of hyperspectral imagers.

Moreover, it has been shown in [10], [11] that noise is (can be) of quite a complex nature and
the noise acquired in multichannel RS images has specific properties. First, it is signal-
dependent [10], [11], [13]. Second, it is of essentially a different intensity (see Abramov et al.,
2015 in [14]). More precisely, the wide variation of dynamic range and noise intensity in sub-
band images jointly leads to wide limits of signal-to-noise ratio (SNR) in components of
multichannel images. This has led to the use of the term “junk bands” [15] and different
strategies of coping with noisy channels in multichannel data. Some researchers prefer to use
these sub-bands in further processing while others propose to remove them; it is also discussed
whether they can be filtered or not [15]. It has been shown that if filtering of these junk bands
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is efficient, this can improve the classification of hyperspectral data [16]. However, the
aforementioned questions concern the efficiency of image preprocessing and its prediction.

The questions raised can be partly answered with the results obtained in recent research. The
objective is to show that important performance parameters of image denoising and/or lossy
compression can be quickly and quite accurately predicted using simple input parameter(s)
and dependences obtained in advance. The obtained results are divided into two parts. The
first part deals with the prediction of filtering efficiency. This research has started in 2013 [17]
and has its history in a study conducted in [18]. The second part relates to the compression of
noisy images [19], [20]. In fact, the results obtained for predicting the parameters of lossy
compression can be treated as based on the same principle as that for image filtering and for
further research.

Before taking the image performance criteria and preprocessing techniques into consideration,
it is important to note the following: first, there are two hypotheses. It is supposed that noise
typeisknown or determined in advance. Itis also assumed that its parameters are either known
or accurately pre-estimated. It is to be noted that, currently, there are quite a few efficient
methods for estimating the parameters of pure additive noise [8], [21-25], speckle noise [26],
and different types of signal-dependent noise [10-12], [27], [28]. The noise parameters are taken
into account by the most modern filtering techniques that belong to the families of orthogonal-
transform-based filters [29-33] and nonlocal filters, for example, block-matching and three-
dimensional filtering (BM3D) [34]. The same relates to modern methods of lossy compression
of noisy images [19], [35].

Second, we restrict ourselves to consider the image- filtering and compression techniques
based on discrete cosine transform (DCT). This is explained using several reasons. DCT is a
powerful orthogonal transform widely exploited in image processing. Filters and compression
techniques based on DCT are currently among the best [34]. They can be quite easily adapted
to the signal-dependent noise directly [32], [36] or equipped with proper variance-stabilizing
transformations (VST) [19], [32], [37]. This restriction does not mean that the approach to
prediction cannot be applied to other filtering and lossy compression techniques. This
approach should be applicable (with certain modifications) but s yet to be thoroughly checked.

Third, in the analysis of the prediction approach, traditional quality metrics are employed such
as mean square error (MSE) and peak signal-to-noise ratio (PSNR), as well as some visual
quality metrics such as PSNR human visual system masking metric (PSNR-HVS-M) [38].
Behavior and properties of traditional metrics are understood well by those dealing with image
processing. Although PSNR-HVS-M is less popular, this is one of the best metrics that takes
into account the peculiarities of human visual system (HVS) and that can be calculated for
either one component of a multichannel image or a group of components of a multichannel
image. It is expressed in dB, and it is usually either slightly smaller than PSNR (for annoying
types of distortions like spatially correlated noise) or larger than PSNR (if distortions are
masked by texture). This is important since we assume that the processing of multichannel
images is carried out either component-wise or in groups of channel images, where a group
includes the entire image in marginal case.
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Fourth, other criteria of image-processing efficiency, such as classification accuracy, object
detectability, etc., are important for the preprocessed RS data. We are unable to predict them,
but recent research shows [39] that these criteria are connected with the traditional criteria of
image processing. Thus, it is expected that if good values of conventional and HVS metrics are
provided due to preprocessing, appropriate classification accuracy and other criteria will be
attained.

2. The considered image-performance criteria and preprocessing
techniques

This chapter considers the following model of an observed multichannel image:

[ = [ o (10), i=1,,1,j =1, ]k =1,.., K (1)

kij kij kij \ ki

noisy

where [,"3*Y is ij -th sample of noisy (original) k-th component of a multichannel image, 1, ;
denotes the ij-th value of the noise in k-th component statistic, which is, in general, supposed

to be dependent on the true image value I ktf]-“e in this voxel (3D pixel), I and | define the image

size, and K denotes the number of channels. It is also assumed that the images {I ktfj‘“’} and {1 ,ff}{eij}

are strongly correlated and they have similar dynamic ranges D, and D,,,; determined as
D, =1™™-]™" where [/ and [[™" are maximal and minimal values in k-th channel image,
respectively. It is also possible to assume that noise is of the same type and neighbor channels
have quite close values of input MSEs (equal to noise variance /2 if the noise is pure additive)

as follows:
L
MSE™ =% (I35™ = 1) / (I]), k=1,.., K )
i=1 j=1
and input PSNR
PSNR™ =10log,,(D; / MSE;),k =1,..., K. 3)

The same assumptions are valid for input PSNR - HVS - M, determined similarly to expres-

sion (3) with the difference that MSE,™ is replaced by MSE % ., which is a special kind of
weighted MSE calculated in spectral (DCT) domain considering the masking effects [38]. The
aforementioned assumptions are valid for color red, green, blue (RGB) images [27], multi-
spectral and hyperspectral RS images [14], [40], dual polarization, and multifrequency radar
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images [2]. These properties can be effectively exploited in multichannel image preprocessing
[39].

After applying a considered filter, one obtains a filtered image
{kaij}, i=1, .. 1, j=1,..,], k=1, .., K that is supposed to be closer to
{I ktrl;‘e}, i=1,..,1, j=1, .. ], k=1, .., K according to a chosen metric (a quantitative criterion).

These output metrics are calculated as

rJ

MSEZ™ =% > (Il =I5 1 (), k=1,...K, @)
i=1 j=1

PSNR;™ =10log,,(D? / MSE{"), k =1,..., K. (5)

Output PSNR-HVS -M > is determined similarly to (5).

Then, one has to characterize the efficiency of filtering. One way to do this is to use

x = MSE™ | MSE'™, (6)
IPSNR, = PSNR™™ — PSNR;™, )
IPHVSM, = PSNR-HVS-M" — PSNR-HVS-M™. (8)

Small values of the ratio in expression (6) and large values of expressions (7) and (8), both
expressed in dB, are evidence in favor of efficient filtering.

Similarly, after lossy compression, one obtains {Ikcij}, i=1, .. 1, j=1,..,], k=1, .., K. It is
usually supposed that for a larger compression ratio (CR), the quality of compressed image is
worse. This is true for lossy compression of noise-free images where more distortions are
introduced for a larger CR. However, in lossy compression of noisy images, the situation is
specific [41]. Lossy compression results in certain filtering (noise removal) effect under certain
conditions. Due to this filtering effect, it is possible that

L J
MSE; =% > (Ig; = L5 /() k =1,..., K ©)

i=1 j=1
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specitic (Al-Ohaykh & Mersereau, 1990). Lossy compression results in certain filtering (noise
removal) effect under certain conditions. Due to this filtering effect, it is possible that
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Figure 1. Dependences PSN R €(QS) for the coder AGU (a) and test images Airfield (b) and Frisco (c) corrupted by
AWGN with noise variance equal to 100

The lossy compression in the neighborhood of OOP has obvious advantages. Compressed
images have high quality, and, at the same time, they have CR considerably larger than for
lossless compression [9], [44]. Because of these benefits, the lossy compression of noisy images
in the OOP neighborhood is considered. If OOP does not exist, nevertheless, the recommended
setting QS,op~40 can be considered. If noise is signal dependent and VST is not used, the

setting is QSoop=40,q,;, Where aezquiV=MSEi“p. Then, in OOP, one has parameters
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MSEL", PSN R, PSNR-HVS-M P and it is possible to determine for them the following

metrics (parameters characterizing compression performance):

k= MSE " | MSE™, (11)
IPSNR, = PSNRY®" - PSNR;™, (12)
IPHVSM, = PSNR-HVS-M{°" — PSNR-HVS-M;™, (13)

where MSES°T [ MSE,"P<1 and positive IPSN R, or IPHVS M, mean that OOP exists according

to the corresponding metric.

Certainly, there are also other valuable performance criteria. For image pre-filtering, it is
important to know the computational efficiency of the denoising method and how easily it can
be implemented, especially onboard. For image lossy compression, it is important to know CR
provided and how easily it can be attained. To partly address these issues, the filtering and
compression techniques are briefly described.

DCT-based filtering [18], [30] is performed in a block-wise manner, where 8 x 8 pixels are a
typically set block size. Filtering can be performed with nonoverlapping, partly overlapping,
and fully overlapping blocks. In the latter case, filtering efficiency (expressed in improvement
of PSNR (IPSNR) or improvement of PSNR-HVS-M (IPHVSM)) is the highest but more
computations are needed. Nevertheless, the filter is very fast since it is possible to use fast
algorithms and to parallelize computations.

There are three main steps in processing: direct 2D DCT in each block; thresholding of DCT
coefficients; inverse DCT applied to thresholded DCT coefficients; then, the filtered data from
overlapping blocks are aggregated. Within this structure, different variants of thresholding
are possible but employing hard thresholding is preferred, where DCT coefficient values
remain unchanged if their amplitudes exceed a threshold or are assigned zero values other-
wise. If one deals with AWGN, the threshold is set fixed as

T = fo. (14)

For spatially uncorrelated signal-dependent noise with a priori known or accurately pre-
estimated dependence of local standard deviation on local (block) mean g, = f (I,)), one has to

set a locally adaptive threshold:

Tb1 zﬁf(fm)' (15)
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Finally, for spatially correlated and signal-dependent noise with a priori known or properly

qs
DCT coefficients in blocks [33], the thresholds are locally adaptive and frequency dependent:

pre-estimated normalized DCT spectrum W , q=0, ..., 7, s=0, ..., 7, where gs are indices of

T (9,5) = BF(Iy )y W™, (16)

In expressions (14-16),  is the parameter. Depending upon the image complexity and noise
intensity, its optimal value can vary a little [18], but the recommended choices are f = 2.6 to
provide good filtering according to IPSNR and f = 2.3 to ensure quasi-optimal denoising
according to IPHVSM. In further studies,  =2.6 will be used. A 3D version of the DCT-based
filter [39] performs similarly. The difference is that the blocks are 3D, of size 8 x 8 x K,,, where
K,, < K denotes a channel group size.

gr =

Conventional BM3D [34] is a more sophisticated denoising method. It presumes search for
similar patches (blocks), with their joint processing in a 3D manner using DCT and Haar
transform, and post-processing stage. This filtering principle, originally designed to cope with
AWGN in gray-scale images, has been later adapted to the cases of signal-dependent noise
after a proper VST [37], spatially correlated noise [45] and color (three-channel) images
corrupted by AWGN [46]. The BM3D and its modifications provide a slightly better perform-
ance than the corresponding modifications of the conventional DCT-based denoising by the
expense of considerably more extensive computations.

The lossy compression technique called AGU [42] is based on DCT in 32 x 32 pixel blocks, a
more efficient (compared to JPEG) coding of quantized DCT coefficients and post-processing
to remove the blocking artifacts after decompression. This coder is quite simple but slightly
more efficient than JPEG 2000) or set partitioning in hierarchical trees (SPIHT) in rate/distortion
sense. This coder has 3D version [19] and CR for both 2D and 3D versions is controlled
(changed) by QS.

3. Prediction of filtering efficiency

The main idea of filtering efficiency prediction is the following [17]. Suppose there is some
input parameter(s) able to jointly characterize image complexity and noise intensity and also
there is some output parameter(s) capable of adequately describing the image denoising
efficiency. Assume that there is a rather strict connection between these input and output
parameters that allows predicting output value(s) having input value(s).

An additional assumption (and requirement to prediction) is that input parameter(s) have to
be calculated easily and quickly enough, faster than denoising itself (otherwise, the prediction
becomes useless). If all these assumptions are valid, it becomes possible to determine a
predicted output value before starting image filtering and to decide whether it is worth filtering
a given image (component) or not. Another decision can relate to setting parameter(s) of a used
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filter. For example, if a processed image seems to be textural (having high complexity),
parameter(s) of a used filter can be adjusted to provide better edge/detail/texture preservation.
For example, the parameter f§ for the DCT-based filter can be set equal to 2.3.

Keeping these general principles in mind, we have to address several tasks:
* What is a good (in the best case, optimal) input parameter (or a set of parameters)?

* What is a good (proper, acceptable) output parameter (or a set of parameters) that allows
to characterize the filtering efficiency adequately and to undertake a decision (on using
filtering or not, on setting a filter parameter, etc.)?

* How to get dependence between output and input parameters and how accurate it is?

These questions are partly answered below and the outcomes obtained in design and per-
formance analysis of prediction techniques are described. We believe that a partial answer to
the second question is the following. The ratio in expression (6) as well as the parameters
IPSN R, and IPHVSM, (especially if analyzed jointly) are able to provide the initial insights

(characterization) of filtering efficiency. Note that expressions (6) and (7) are mutually
dependent metrics and IPSN R, =10log,,(MSE;"? | MSE*). Thus, they can be used as output

parameter(s) at the current stage of research.

3.1. Input and output parameter sets testing and comparison

Based on the outcomes of the study [18], Abramov et al. in 2013 [17] observed that there is
dependence between efficiency of filtering expressed by (6) and simple statistics of DCT-
coefficients determined in 8 x 8 blocks. Two probability parameters have been considered. The
tirst one denoted as P,, is the mean probability that the amplitudes of DCT coefficients are not
larger than 20, where o denotes the standard deviation of additive white Gaussian noise. This
parameter originated from analogies with known sigma filter [47]. The second parameter
denoted as P, ;, is the mean probability that the amplitudes of DCT coefficients are larger than
2.70. Here, there is an obvious analogy with hard thresholding in DCT-based filter, where the
recommended =2.7. At the starting point, Abramov et al., 2013 had no idea on the optimality
of input parameters. The objective was just to check whether the prediction is possible, in
principle, using arestricted set of test gray-scale images (18) and standard deviations of AWGN
(5, 10, 15). The data have been presented as scatterplots, where the Y-axis reflects the ratio in
expression (6) and X-axis corresponds to a considered statistical (input) parameter (either P,,
or P,;,). These scatterplots are represented in Fig. 2. Obviously, the scatterplots’” points are
clustered well along the fitted lines (for easy fitting, second-order polynomials were used).
Interestingly, small P,, and large P,, correspond to complex structure images corrupted by
low-intensity noise. In this case, efficiency of image filtering is low (the ratio in expression (6)
is close to unity, see Fig. 2). Note that this is in agreement with the theory of filtering [48], [49].
It shows that efficient filtering of textural images is problematic for any existing filters
including the most sophisticated nonlocal ones [34].
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Figure 2. Examples of scatterplots and curve fitting into them for P,, (a) and P, ,, (b)
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There are also observations understood later (in two recent vears) First there
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There are also observations understood later (in two recent years). First, there should be some
restrictions imposed on the approximating function. For example, it is clear that the ratio in
expression (6) cannot be negative. Itis also clear that an approximating (fitting) function should
be determined for all possible values of its arguments. Since the probabilities serve as argu-
ments, they can vary from zero to unity. Meanwhile, arguments in both scatterplots in Fig. 2
vary in narrower limits. Besides, it could be good for curve fitting to have point arguments
with approximately uniform density.

These requirements have been satisfied by using considerably more test images (including
highly textural ones) and a wider set of noise standard deviations (including quite small ones).
This has allowed obtaining scatterplot points for small P,, and large P, ,,.

Examples of the obtained scatterplots and fitted curves for the DCT-based denoising are shown
in Fig. 3. As it is seen, fitting is rather good and coefficient of determination is approximately
0.95 (see the details below). We believe these are already good results that allow practical
recommendations. For example, it is clearly seen that there is no reason to carry out filtering
if P, is smaller than 0.5 since the benefit obtained due to denoising is negligible (approximately
1 dB or less). Prediction itself is carried out as follows. Having the fitted curves obtained in
advance as described above, itis needed to calculate P,, or P, ;, for a given image before filtering
and to substitute it as argument into the approximating function to calculate a desired metric

thatgivem dimages betopec filtesingennibite; sffhsiticte it as argument into the approximating

function to calculate a desired metric that characterizes the predicted denoising efficiency.

IPSNE, dB

Fig. 3. Scatterplots of x (a) and IPSNR (b) on P, and the fitted curves

Figuspressieanplbarothe.phtainedrapproximatienster the.DCT filter are as follows (we give only

the functions of P,_, more details can be found in Rubel & Lukin (2014):
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the functions of P, , more details chnbf Qfgyﬁﬁﬁ"'()[ﬁ]s]f) +0.96 (17)
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The values of R? are presented in Table 1. The analysis confirms that it is better to use P2,
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2
P, —1.92
IPSNR= 100 * B [ - Bl I
epr 0.63 U (18)
P, —208Y
IPHVSM= 100* exp| -| —2¢— =" | |,
p[( 0.67 H (19)

The values of R? are presented in Table 1. The analysis confirms that it is better to use P,, than
P, ;.. Prediction of « is slightly more accurate than the prediction of IPSNR. However, the
prediction of IPHVSM is worth improving.

Metric P, P; 7
K 0.978 0.955
IPSNR 0.963 0.935
IPHVSM 0.82 0.78

Table 1. Goodness of fit (R?) of the obtained approximations

It has been discovered that not only the mean of local (block) estimates of probability P,, is
connected with predicted metrics [51], but the other statistical parameters of the distribution
of local estimates can also be exploited to improve prediction. The general framework to obtain
an estimate of a predicted metric by multiparameter fitting is described by the following
formula:

Metric_, = a* exp(z bO,(P )j , (20)
i=1

where a and b; are approximation factors, O,. i = 1,...,n, is some parameter of distribution, n
defines the number of such parameters. As O, it is possible to use the distribution mean,
median, mode, variance, skewness, and kurtosis. The factors a and b, i = 1,...,n have to be
obtained in advance by multidimensional (n-dimensional) regression.

The results of using multidimensional regression are presented in Table 2. The abbreviations
used are the following: M — mean; Var — variance; Med — median, Mod — mode; K — kurtosis; S
— skewness; all calculated for a set of local estimates of probability P,,. The results are given
for both considered filters for the metrics IPSNR and IPHVSM. Only the best sets for n from 1
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to 5 are presented since the joint use of all considered parameters is less efficient than five input
parameters employed together.

Filter Metric Statistical Parameters R?
M 0.963
M, Var 0.971
IPSNR M, Var, Mod 0.974
M, Var, Mod, K 0.976
M, Var, Med, Mod, S 0.977
DCT filter
Med 0.848
M, Var 0.923
IPHVSM M, Var, Med 0.926
M, Var, Med, S 0.927
M, Var, Med, Mod, S 0.928
M 0.95
M, Var 0.955
IPSNR M, Var, Mod 0.959
M, Var, Mod, S 0.961
M, Var, Med, Mod, S 0.961
BM3D
Med 0.845
M, Var 0.905
IPHVSM M, Var, S 0.905
M, Var, S, K 0.909
M, Var, Med, S, K 0.917

Table 2. Goodness of the best multiparameter fit for P,,

The conclusions are the following. The use of more input parameters leads to larger (better)
R? for both filters and both metrics. The benefit of using several input parameters instead of
one is quite small for [IPSNR, where R* for one-parameter prediction is already quite high.
Meanwhile, for the visual quality metric IPHVSM, the improvement is quite large. Interest-
ingly, the use of median of local estimates instead of the mean considerably improves predic-
tion (compare the data in Tables 2 and 1) for IPHVSM for the DCT-based filter and P,,.
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Filter Metric a b, b,
IPSNR 0.023 6.338 7.459
DCT filter
IPHVSM 2.225%10* 10.81 37.14
IPSNR 0.019 6.591 6.849
BM3D
IPHVSM 5.324*10°° 12.42 41.36

Table 3. Coefficient values of the obtained approximations for P,,

More input parameters provide better prediction. At the same time, more time is needed for
calculation of input parameters (although their calculation is not difficult). Then, a compromise
solution could be the use of the dependence of the type

Metric_ = a* exp(b1 mean(ls%loc) +b, Var(lA?zUloc)), (21)

N
where P, .. denotes the local estimates of probabilities obtained in blocks. The approximation

coefficients for all cases are presented in Table 3.

The expression (20) is not the only way to combine several input parameters into a joint output.
Neural networks (NN) are known to perform this task rather well and to be good approxima-
tors [52]. This property has been used by us in [53] to make the neural network predict the
considered metrics based on multiple input parameters. The obtained results are practically
the same as in Table 3. Therefore, there is no need to use a more complex NN approximator
instead of expression (20).

A more reasonable solution is to look for better input parameters. Such a study has been
conducted in [51]. It has been shown that the probability P, 5, is more informative than P,,, that
Py, is the mean probability where the magnitudes of DCT coefficients in blocks are smaller
than 0.50. Theoretically, for Gaussian distribution, this probability does not exceed 0.38.
Gaussian distribution takes place for DCT coefficients of AWGN. Thus, the mean P,
approaches to 0.38 only if a considered image is “very homogeneous” and noise is intensive.
This is postulated in further studies.

The obtained results for multiparameter fitting are presented in Table 4. The abbreviations are
the same as in Table 2. The first observation is that even for one parameter (mean of local
probabilities), the values R? are sufficiently better than the corresponding values for P,,. Again
the results for the BM3D filter are slightly worse than for the DCT-based filter and the results
of predicting IPHVSM are worse than for predicting IPSNR. Again the use of only two input
parameters, mean and variance of local estimates, seems to be a good practical choice. Thus,
the best parameters of the function (21) are presented for this case in Table 5. Besides, we give
an example of scatterplot fitting by 2D surface (function) for two-parameter case of using mean
and variance of local estimates of the considered probability for predicting IPHVSM (see Fig. 4).
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Filter Metric Statistical Parameters R?
M 0.986
M, Var 0.989
IPSNR M, S, K 0.989
M, Med, S, K 0.989
M, Var, Med, Mod, S 0.99
DCT filter
Mod 0.844
M, Var 0.944
IPHVSM M, Var, Mod 0.949
M, Var, Mod, S 0.951
M, Var, Med, Mod, S 0.952
M 0.975
M, Var 0.977
IPSNR M, Var, S 0.978
M, Var, Med, S 0.978
M, Var, Med, Mod, S 0.978
BM3D
Mod 0.852
M, Var 0.935
IPHVSM M, Var, Mod 0.939
M, Var, Mod, S 0.941
M, Var, Med, Mod, S 0.941

Table 4. Goodness of the best multiparameter fit for P,

Filter Metric a b, b,
IPSNR 0.168 10.8 19.28
DCT filter
IPHVSM 0.01 15.66 144.3
IPSNR 0.148 11.33 17.7
BM3D
IPHVSM 0.004 18.25 161.7

Table 5. Approximation coefficients values of obtained approximations for Py,
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TPHVSM, dB

Varof P, . * 10t Mean of P_
Figure 4. Scatterplot of IPHVSM for the DCT-based filter efficiency on statistics of P 5, and the fitted surface

3.2. Analysis for signal-dependent and spatially correlated types of noise

Let us define the models of signal-dependent noise used. According to a first model [7], [11],
the expression (1) transforms to

Inmse Itrue +NSI + NSD (22)

kij kij kij 7

where N5/ g kl] P denote signal-independent (SI) and signal-dependent (SD) noise components.

Both the noise components in expression (22) are assumed zero mean, spatially uncorrelated

true

and Gaussian. Then, the model for the noise variance is ak%]- =ak2 +yI ki where o,f is the SI noise

variance and y is the SD noise parameter (which is usually between zero and unity). A second

ise=T ki My Where ;. denotes unity

model [2] presumes purely multiplicative noise with I’
mean random factor with variance %k that is within the limits from 0 to 1. It is supposed for

both the models that the noise is spatially uncorrelated.

As mentioned in Section 2 (expression no. 15), the local threshold is set as T, =gy + y I, for
signal-dependent noise (expression no. 22) and as Ty;= ﬁo#f p; for pure multiplicative noise. In

addition to modifying the filtering algorithm, we need to modify the algorithm of input
parameter calculation. Then, the local probability estimate has to consider the local variation
of noise standard deviation. For instance, the local estimate of probability P,, is obtained as

R 7 7
szclr = zzé‘qs /63’ (23)

q=0s=0

where 6, =1, if | D, | <20,;and 0 otherwise (0}, is equal to /o +y Iy, or to o, I, depending upon
a model used). DC component of DCT coefficients in blocks is not taken into account as it
always exceeds the local threshold.
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Some of the results of studies in our papers [54], [55] are presented next. One aspect that was
specially addressed in these studies was to check the influence of an image set used in forming
a scatterplot. In fact, two scatterplots have been formed separately: for the set of standard
images used in optical image processing as Baboon, Barbara, Lena, etc., and for the set of
images called “Remote Sensing” as Frisco, Diego, etc. The reason for such study was the
following fact. Some people from RS community are categorically against using standard gray-
scale test images in their studies although there are no commonly accepted sets of test RS
images.

The methodology of obtaining scatterplot was modified a little. For the noise expression model
(22), three different cases were modeled: prevailing influence of SI noise, dominant influence
of SD noise, and comparable contribution of both components. As a result, a wide range of
mean P, has been provided. Scatterplot points that belong to different image sets are indicated
by different signs (and different colors). There are also two fitted curves. We believe there is
no essential difference between the scatterplots and fitted curves. Thus, it can be concluded
that the prediction is quite universal and suitable for conventional gray-scale optical images
and component-wise (single-channel) RS images. Moreover, it has been shown in a study [55]
that prediction is valid for single-look SAR images corrupted by fully developed spatially
uncorrelated speckle. It is also possible to compare the results in Fig. 5 with the data in Fig.
3(b). They are very similar. Fig. 4 shows that IPSNR is approximately 1 dB or less for P,,
approximately 0.5 and then denoising is practically useless. Meanwhile, if IPSNR is approxi-
mately 4 dB for P,, approximately 0.8, then the use of filtering is expedient. The parameter R?
for both fitting curves in Fig. 5 is approximately 0.96, that is, the prediction is approximately
as good as for AWGN case. Again, the results for P,, are better than for P, ,,; fitting for IPSNR
is more accurate than for IPHVSM. Improved fitting by means of using multiple input
parameters has not been investigated yet.

IPSNE, B

b

0.5
P

)

0.4 0.6 07 0.3 0. 1

Figure 5. Scatterplots of IPSNR for the DCT-based filter efficiency on statistics of P,,
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Two examples of image processing are presented here. Fig. 6(a) represents the noisy image
Frisco, where noise parameters are 0,>=100; o 22100, and y=0.2. The output image for the DCT-
based filter is presented in Fig. 6(b). The effect of denoising is obvious. Actual provided
improvement of PSNR is equal to 9.77 dB. The predicted value for mean P,,=0.92 is approxi-
mately 9.5 dB (see the blue fitted curve in Fig. 5), that is, there is good agreement of attained
and predicted values. Prediction shows that it is worth applying denoising in this case.

For a real-life data, it is impossible to determine true values of the considered metrics charac-
terizing filtering efficiency. However, it is possible to analyze the predicted values and
denoising results visually. For fragments of sub-band images of hyperspectral sensor, Hyper-
ion, such analysis was done. For example, noise parameters of the expression model (22) have
been blindly estimated [11]. The noisy image for the 13th sub-band of the set
EO1H1800252002116110KZ is depicted in Fig. 7(a). Noise is clearly seen. The prediction of
IPSNR is approximately 8.5 dB and IPHVSM is approximately 5.7 dB. Thus, it is expedient to
perform denoising. The denoised image is presented in Fig. 7(b). As can be seen, its quality
has very much improved due to filtering.

Fig. 6. Noisy (a) and output (b) images Frisco

Figure 6. Noisy (a) and output (b) images Frisco

(@) (b)
Fig. 7. Noisy (a) and output (b) images of 13th sub-band images of Hyperion sensor
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Fig. 6. Noisy (a) and output (b) images Frisco
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Fig. 7. Noisy (a) and output (b) images of 13th sub-band images of Hyperion sensor

Figure 7. Noisy (a) and output (b) images of 13th sub-band images of Hyperion sensor

Considering certain benefits achieved due to using P, 5, as input parameter, the analysis similar

to the one presented in Fig. 5 has been performed. The results are presented in Fig. 8. The noise
is signal-dependent and most scatterplot points correspond to the expression model (22). The
curve is fitted employing all points (although they relate to optical and RS subsets). Obviously,
titting is very good and, according to quantitative criteria, it is better than for the parameter
P, (Fig. 5). Four black points at the scatterplot in Fig. 8 correspond to one-look SAR images.
They fit the curve well and have the arguments close to the maximal potential limit (0.38),
where IPSNR attains very large values (approximately 10 dB and more).

IPSNR, dB

Figure 8. Scatterplots of IPSNR for the DCT-based filter efficiency on the statistics of Py, (two sets of images and two
fitted curves)
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Additional studies concentrated on the multi-look SAR images that were corrupted by pure
multiplicative noise [57]. Analysis has been done for speckle variance GHZ=0.273 [L , where L
denotes the number of looks. Scatterplot points are presented in Fig. 9 for different number of
looks. An obvious tendency is that mean P, 5, becomes larger and IPSNR increases for smaller
number of looks. Other conclusions that can be drawn from analysis in a study in [57] are the
following. Prediction is possible for filtering techniques with and without VST, where the
prediction quality is better in the latter case. Prediction using different types of functions
(polynomial, power, exponential) produce fitting of approximately equal accuracy. Mean-
while, accuracy of prediction is worth improving (RMSE is approximately 1 dB) since it is
sufficiently worse than for the case of AWGN.

Understanding that, in practice, noise can be spatially correlated [33], the case of spatially
correlated noise — additive in [45] and multiplicative in [57] — are also studied. A difficulty of
dealing with spatially correlated noise is that there are numerous shapes (and parameter sets)
of 2D auto-correlation function or spatial spectrum of such a noise. Thus, studying a particular
case of spatially correlated noise gives only limited information on general dependences.
Hence, two models of spatially correlated noise (called middle correlation and strong corre-
lation) have been considered [45]. A peculiarity of prediction is that the local estimate of
probability P,, is obtained according to expression (23), where, in the general case,
04s=1, if | D, | <20,(W (g, 5))"* and 0 otherwise (g, is the local standard deviation in a
considered block; expressions for its derivation depending upon noise model are given above).
If the probability Py 5, is used, the conditionis 6,,=1, if | D, | <0.50,(W (g, s))Y2and 0 otherwise.
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Figure 9. Scatterplot for IPSNR vs. mean P, 5, for a part of test images corrupted by spatially uncorrelated speckle

The scatterplots and fitted curves are presented in Fig. 10. The fitted curves are similar and
they clearly show that there is no reason to filter images if P5, is smaller than 0.15. The
difference in the scatterplots for IPHVSM and IPSNR is that the latter one is more compact and,
thus, IPSNR can be predicted more accurately. An additional distinctive feature of the plot for
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Finally, a preliminary research has been carried out for denoising color images corrupted by
AWGN with equal variance values in channels [58]. There are two differences in prediction.
First, all DCT coefficients in 3D block are subject to analysis for estimating the local probabil-
ities. Second, the metric PSNR-HMA [59], which is a color extension of PSNR-HVS-M, and
improvement of this metric due to filtering similar to expression (8) have been used. In
addition, instead of BM3D, its color version called C-BM3D has been analyzed [46].

The scatterplots have been obtained and curves were fitted to them (see examples in Fig. 11).
As mentioned earlier, filtering is useless for P 5, <0.15. However, this happens rarely (only for
highly textured images when noise standard deviation is small). Another observation is the
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same as earlier — visual quality can be predicted worse than IPSNR. The prediction accuracy
for C-BM3D is worse than for 3D DCT filter.

Taking into account our previous experience, the multiparameter input was analyzed with
exponential function expressed in (20). Considerable improvement has been reached, espe-
cially for IPHVSMA, for the 3D DCT filter. For the C-BM3D filter, the positive effect is less.
One has R? equal to 0.8481 for one input parameter and 0.8555 for four parameters. Again, a
reasonable practical solution is to use the mean and variance of local estimates of probability.
One more important observation for color image filtering is that P, 5, for 3D filter is larger than
for DCT filter applied to components of a processed color image. This again proves that 3D
processing of color and multichannel images iiis are potentially more efficient compared to
their component-wise denoising.

4. Prediction in lossy compression of noisy images

In this section, the compression of images corrupted by AWGN is considered. Lossy com-
pression is carried out by the aforementioned coder AGU with QS =40. In this case, OOP may
exist or be absent. The task is to predict [IPSNR and IPHVSM and to decide whether OOP exists
as well as to predict what CR is.

4.1. Prediction of OOP existence and metrics’ values in it

This section shortly describes how the scatterplots were obtained. As in the filtering case, a set
of gray-scale test images of different content and complexity was used. AWGN of different
intensity has been added and then the obtained images have been compressed by AGU. After
this, the parameters (12) and (13) have been calculated as well as P,, for each compressed image.
Clearly, all these actions are done off-line before applying the prediction approach in practice.

The obtained scatterplot is presented in Fig. 12. A specific feature of this scatterplot is that it
has negative values and they seem to be approximately -3.5 dB for P,, approaching to zero.
Therefore, not all fitting functions can be used. The study carried out by Zemliachenko et al.
in [44] has shown that the polynomials of the fourth and fifth order usually allow approxi-
mating the dependence very well (with R* almost equal to unity and RMSE approximately 0.25
for IPSNR). As can be seen from the analysis of the scatterplot in Fig. 12, there are quite many
images and/or noise variances when OOP does not exist (IPSNR is negative). OOP exists with
high probability if P,, exceeds 0.82. This can be used as a basis for predicting OOP existence.

The scatterplot for the metric IPHVSM is presented in Fig. 13. In some sense, behavior of the
titted polynomial is similar to the one in Fig. 12. There are many values about -4 dB showing
that due tolossy compression the visual quality becomes worse. However, this mainly happens
for small P,, that corresponds to high-complexity images and/or low level of the noise. The
visual quality improves for P,, exceeding 0.9 and this takes place for low-complexity images
and rather intensive noise.
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Although prediction has been studied by simulations only for images corrupted by AWGN,
it can also be applied to images corrupted by a signal-dependent spatially uncorrelated
noise under condition that a proper VST is applied to them before compressing. Such VST (a
generalized Anscombe transform in this case) provides approximately constant noise
variance that usually equals to unity. Thus, QS = 4 is used. This approach has been used for
Hyperion data and the results are presented in Fig. 14. There are two groups of sub-bands
that are usually not analyzed in Hyperion data since they are too noisy. Thus, the prediction
values are not given for all sub-bands. Analysis of the presented values shows that there are
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Although prediction has been studied by simulations only for images corrupted by AWGN,
it can also be applied to images corrupted by a signal-dependent spatially uncorrelated noise
under condition that a proper VST is applied to them before compressing. Such VST (a
generalized Anscombe transform in this case) provides approximately constant noise variance
that usually equals to unity. Thus, QS =4 is used. This approach has been used for Hyperion
data and the results are presented in Fig. 14. There are two groups of sub-bands that are usually
not analyzed in Hyperion data since they are too noisy. Thus, the prediction values are not
given for all sub-bands. Analysis of the presented values shows that there are only a few sub-
bands where it is worth expecting OOP. For most other sub-bands, IPSNR is about -3 dB and
the ways of dealing with them are considered in a study [44]. One proposition is to set less QS
but this leads to smaller CR.

Fig. 15 shows the original and the decompressed images in 110-th sub-band, where decrease
of visual quality according to quantitative criteria is predicted. Noise is not seen in the original
image and the compression practically does not influence the image quality (in our opinion,
both images look the same).
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() (b)
Fig. 15. The 110-th sub-band images before (a) and after (b) compression

Figure 15. The 110-th sub-band images before (a) and after (b) compression
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Two lossy compression methods, namely, the coders AGU and ADCT, have been studied.
Their scat lots age presepted in Fig. 16. Contrary.to qth s considered above, fitting is
j.ﬁ?FeégIC{lgn com Ee sion r. nebasls &

perfordiéd using a sum of two welgm ed exponen U MLISE A can be seen, fitting in both
cases s ver d with R? exceeding0.99. Slightly.lar lueg of CR are provide the,, . e
more 16 EEHOA0 o BEPIICE ER i TIOR e pafie T gt foy Hitering It i
0.93, SeRtterR 9k P LAINING ANd.SURYEfit I8 The onliditference is that the vertical
CR, while ’ﬁ e horizontal axis, as earlli r, CO esgonds to mean_ probability
We did not haye real-life mutcijanne images corrupte AWGN. But the hyperspectral dtob
date BFARARHIGIES D20and Lozabiaye pesmsonsistsred. whers dhedatidrgegurred to be
were 1EEefOTeithe okbainedresubis dok the meap prababibitynloenlipare presented
model (22). The parameters of this noise were estimated in an automatic manner [11] and, thus,
it becqip Jesddly teonrpr¥sdicrperrsthieds) meambhyraiowo dérsP ety addsADCT, have
parameiRts) WURRIPISRS AP PPABRICA I F & 16 EOYHAR to other cases considered
Lossyisoperfotinned @shirgighborroot tawbesweizitd dfex yShentia i foanationonAs can be s
nvergs SRR 1S YERFRINEH E@éﬂwwl&%@é&fﬁgj&w BHEREN Tt GRItes of CR are
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There are some chanhels w]here preghc e%rd%s are sl h?ll}-fl?arge.r %I‘}m at?ained’ ones. This 1s y &
of CR are provided for P, > 0.93, that'is, for simple structure images corruptec

noise.

We did not have real-life multichannel images corrupted by AWGN. But the
data for the sensors Hyperion and airborne visible/infrared imaging spectrom
were available. Noise in them is signal dependent (Abramov et al., 2015) with

P > 4/~ om\ e ~ .1
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]It is demonstrated that it is possible to predict the efficiency of image filtering as well as the
(parameters of lossy compression of a noisy image in OOP neighborhood. As opposed to the
carlier known approaches that allow predicting potential efficiency of filtering, the present
approach predicts practically a reachable performance and makes this very rapidly, by one

or more orders faster than filtering or compression itself.
It 10 GLIULIO U GvoT LAt 1t 10 t,wgugle w tueR aw cinaency of image filtering as well as the

ponmarantare mf lncorr cammnenccinn nfin nnicrr imaca i OND naichhavhand Ao Aannmnca A+ thaA

Certamly, a limited number of quality metrics, filtering, and compression techniques have
jpeen considered. However, it is important that a general methodology of prediction is
proposed, and it is shown there are somewhat strict connections between simple input
parameters (that can be easily and quickly calculated) and output parameters that are able to
adequately characterize the efficiency of filtering or lossy compression techniques. In favor
of this methodology, there are certain facts. First, there are many modern filters that have
filtering efficiency of the same order as the DCT-based filter and BM3D. Thus, predicting
denoising efficiency for the filters mentioned above, it is possible to approximately predict
performance for other modern filters (although such prediction would be less accurate).
Second, the same holds for lossy compression methods. For example, AGU and JPEG2000
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Certainly, a limited number of quality metrics, filtering, and compression techniques have
been considered. However, it is important that a general methodology of prediction is
proposed, and it is shown there are somewhat strict connections between simple input
parameters (that can be easily and quickly calculated) and output parameters that are able to
adequately characterize the efficiency of filtering or lossy compression techniques. In favor of
this methodology, there are certain facts. First, there are many modern filters that have filtering
efficiency of the same order as the DCT-based filter and BM3D. Thus, predicting denoising
efficiency for the filters mentioned above, it is possible to approximately predict performance
for other modern filters (although such prediction would be less accurate). Second, the same
holds for lossy compression methods. For example, AGU and JPEG2000 provide similar
performance characteristics. Then, by predicting compression parameters for AGU, they are,
in fact, estimated for JPEG2000 as well.

Concerning the decision making, whether to perform filtering or not, strict recommendations
have been given for probabilities P,, and P,5,. Filtering can be expedient if P,, exceeds 0.5 or
P, 5, exceeds 0.15. Similarly, OOP is quite possible if P, is approximately 0.85 or larger. A very
important fact is that these rules for filtering are valid for different types of noise (pure additive
and signal-dependent, additive white Gaussian and spatially correlated). This generalization
can be considered as one of the main contributions of this chapter. Meanwhile, the case of
spatially correlated noise requires more attention in future. In prediction of filtering efficiency,
general prediction approximations for spatially correlated noise with a priori known or pre-
estimated properties (e.g., 2D spectrum) have not been obtained yet. It can only be expected
that the scatterplots for spatially correlated noise with other (not analyzed yet) shapes and
parameters of spatial power spectrum behave similarly. The studies for lossy compression of
images corrupted by spatially correlated noise are yet to be started. This opens a very wide
field for future research.

The results of this research show that although sometimes the prediction of performance
characteristics based on one input parameter is appropriately accurate, there are several means
to improve the prediction accuracy. One way that deals with multiparameter input has been
already used for particular cases. The use of mean Py5, has shown itself a good solution,
although it has not yet been tried for all possible applications. In particular, mean P, 5, has not
been tested for lossy compression. It is hoped that performance can be improved due to this
reason. Neural networks or other approximators of multidimensional functions (surfaces) can
be useful.

There are also other possible directions for future research. 3D filtering warrants a more
thorough study, at least, for the case of more than three channels. The same relates to 3D lossy
compression performance, which has not been tried to predict yet. Compression parameters
for QS other than the one recommended for OOP is also of sufficient interest in DCT-based
lossy compression. Influence of errors in a priori information on noise parameters or their blind
estimates on prediction accuracy has to be studied as well.
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