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1. Introduction 

Optimization has been an active area of research for several decades. As many real-world 
optimization problems become increasingly complex, better optimization algorithms are 
always needs. Without loss of generally, the unconstrained optimization problem is 
identified with the discovery of the global minimizer of a real valued objective function 

(1)

i.e.   finding a point such that 

(2)

Where is a nonempty compact set. 
There are two main categories for global optimization methods: deterministic and 
probabilistic methods. Traditionally, the deterministic methods need some information to 
determine the optima such as grads etc. However, for many real-world optimization 
problems, the optimization function may be discontinuous. Furthermore, the deterministic 
methods only can be applied into the problems with slow dimension because of the huge 
time-cost for large dimensionality. Therefore, from the 1960's, many researchers pay their 
attentions to the probabilistic methods. All of these rely on probabilistic judgements to 
determine whether or not search should depart from the neighbourhood of a local optimum 
(Forgo, 1988; Hansen, 1992; Rao,  1996). 
Different from adaptive stochastic search algorithms, evolutionary computation (EC) is a 
new kind of probabilistic method. They exploit a ser of potential solutions (called 
population), and detect the optimal problem solution through cooperation and competition 
among the individuals of the population. The well-known EC methods are all inspired from 
the evolution of nature such as: genetic algorithm (GA) (Goldberg, 1989; Michalewica, 1994), 
evolution strategy (ES) (Back, 1996; Schwefel, 1975), evolutionary programming (EP) (Fogel, 
1996), and artificial life methods. 
Recently, particle swarm optimization (PSO) method (Kennedy and Eberhart, 1995) is 
proposed known as a member of the wide category of swarm intelligence methods 
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(Kennedy and Eberhart, 2001). It simulates the animal social behaviour such as birds 
flocking, fish schooling, and animal herding. 
In this paper, the basic concept of particle swarm optimization is explained. Then, a new 
framework for PSO - differential meta-model is proposed. Thirdly, a new modified variants 
— differential evolutionary PSO with PID controller is designed. Finally, we provide a 
conclusion and some future search topic. 

2. Particle Swarm Optimization 

In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each 
solution called a "particle", flies in the problem search space looking for the optimal position 
to land. A particle, as time passes through its quest, adjusts its position according to its own 
"experience" as well as the experience of neighbouring particles. Tracking and memorizing 
the best position encountered build particle's experience. For that reason, PSO possesses a 
memory (i.e. every particle remembers the best position it reached during the past). PSO 
system combines local search method (through self experience) with global search methods 
(through neighbouring experience), attempting to balance exploration and exploitation. 
Each particle maintains two character items: velocity and position. Both of them are updated 
as follows: 

(3)

(4)

where vj (t) denotes the velocity vector of particle j at time t. xj (t) represents the position 
vector of particle j at time t . Vector pj is the memory of particle j at current generation, and 
vector pg is the best location found by the whole swarm. Cognitive coefficient 1 and social 
coefficient 2 are known as acceleration coefficients. 1 and 2 are two random number with 
uniform distribution. To reduce the likelihood, a threshold is introduced to limit the value of 
vjk (t +1) ( kth value of velocity vector) so that 

(5)

The well-known earliest modification is the introduction of inertia weight w (Shi and 
Eberhart, 1998). The inertia weight is a scaling factor associated with the velocity during the 
previous time step, resulting a new velocity update equation, so that 

(6)

Therefore, the original PSO can be obtained by setting w =1. Empirical experiments have 
been performed with an inertia weight set to decrease linearly from 0.9 to 0.4 during the 
course of a simulation. There are still many other variants to improve the convergence 
speed, such as PSO with constriction factor (Clerc, 1999), Spatial neighbourhood 
(Suganthan, 1999), etc. The details please refer to the corresponding references. 

3. Differential Meta-model Particle Swarm Optimization 

In this section, a uniform model -differential meta-model (Zeng and Cui, 2005) is presented 
based on the analysis of the standard PSO and its several variants. Then, the convergence 
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performance is analyzed with linear control theory, and the upper bound estimate of the 
convergence speed is given using Lyapunov function. Finally, an adaptive parameters 
adjusted algorithms is given to improve the global optimality of convergence. 

3.1 Differential Meta-model 

Consider the following differential equations: 

(7)

If Euler numeral integral method is used with step length one, we can obtain the following 
results: 
1. When w = 1 and  = 1 , the original PSO is obtained; 
2. The standard PSO with inertia weight w is obtained with w  1 and  = 1. 

3. When w = 1 and , the PSO with constriction 

factor is obtained. 
4. When w = 0 and  = 1, the stochastic PSO is obtained (Cui and Zeng,2004).  
Therefore, based on the choice of the parameters w and  , the different PSO evolutionary 
model is represented by equation (7). In other words, equation (7) can be used to express the 
meta-model for PSO, called differential meta-model of PSO. For convenience, the following 
symbols are defined as: 

(8)

(9)

(10)

(11)

Then, equation (7) can be expressed as 

(12)

which is the standard form of differentia meta-model of PSO. 
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3.2 Analysis of PSO Evolutionary Behavior 

The first-order approximate for v(t +1) is used to replace v(t + 1), i.e.,  

then resulting the following equation (12): 

(13)

Define:

(14)

The standard state equation of linear system is obtained: 

(15)

and its solution is solved as follows: 

(16)

From linear system theory, if all eigenvalues of matrix A have negative real part, equation 
(16) is convergence. The eigen-equation of matrix A is listed as follows: 

(17)

and its eigenvalues are solved: 

(18)

Therefore, both eigenvalues of matrix A have negative real part if  < 0 is true. 

In other words, if  < 0 is satisfied, the differential PSO evolutionary model 

described by equation (13) is convergent, and the limit is obtained by the follows. 

(19)

that is: 
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(20)

(21)

Equation (21) implies that following conclusion is true: 

(22)

Because of the randomness of  and , the above equation is satisfied if and only if 

    is true. 

It can be seen that all the particles according to the evolutionary equation (13) is convergent 

to the best position pg  discovered by any of the particles when  < 0 is satisfied. In 

other words, if the best position pg  keeps constant within the test generation, the positions 
of all particles will converge to pg.

Meanwhile, from equation (15) and  , the behavior of PSO is actually identical 

to the trajectory of a linear system under the step signal inputs with stochastic disturbance, 
and the amplitude of step signal inputs is increased or not decreased within the evolution of 
PSO.
In following section, the upper bound estimate of convergence speed for equation (15) is 
deduced. A Lyapunov function is defined as follows 

(23)

and

(24)

where P is a positive definite matrix and Q is a positive definite symmetrical matrix, and 
following Lyapunov equation is satisfied: 

(25)

From the view of linear system, the convergence performance of system can be evaluated 
by:

(26)

Evidently, the less is  and the larger for absolute  , the larger value , the faster 

convergence speed, and vice versa. 
Integrate equation (26) with t from 0 to t, resulting: 

(27)
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Further,

(28)

Equation (28) is hard to solve, since then, we suppose 

(29)

 in equation (28) is replaced by , may result 

(30)

It can be seen that when  is determined, the upper bound estimate of  convergent 

time can be evaluated. From equations (23) and (24), we have 

(31)

Then, for linear constant system, 

(32)

where,  (•) is the minimum eigenvalue of ( • ). 

3.3 Adaptive Parameter Adjustment Strategy 

A differential form of PSO is given in equation (12), and the convergence condition is easy to 
satisfy. In order to improve the global convergence performance, an adaptive parameter 
adjustment strategy is discussed in this part. 

From the conducted convergence condition  < 0 , we have the less value 

< 0 , the faster convergence speed it is. By this way, we select the parameter values so that 

the convergence condition  < 0 is always true in the evolutionary iteration. 

Further, we let  < 0 has little absolute value in the earlier stage, while in the later 

stage of evolution,  < 0 has a larger absolute value. In other words, there is a slow 

convergence speed and a powerful global exploration capacity in the earlier period of 
evolution, as well as in the later period of evolution, the local exploitation capacity is 
addressed and convergence speed is faster. In order to balance the ability of the global 
exploration and the local exploitation, an adaptive parameter adjustment strategy is 
proposed.

With the definition of   , 

(33)



Differential Meta-model and Particle Swarm Optimization 107

The convergence condition implies . Evidently, the differential PSO algorithm 

has three parameters ,  and . From the experiment results,  +  =4 can make a 

better performance. Therefore, the parameters are adjusted as follows: 

(34)

(35)

(36)

Where t is evolutionary generation, a and /? are two adjusted parameters to control the 
change rate. Generally, =0.01~0.001, =0.01~0.005.

4. Differential Evolutionary Particle Swarm Optimization with Controller (Zeng 
& Cui, 2005) 

With the same model (7), we suppose 

then euation (7) can be changed as follows: 

(37)

The PSO algorithm described by differential evolutionary equations (37) is called differential 
evolutionary PSO (DEPSO). The analysis of the evolutionary behavior of DEPSO is made by 
transfer function as follows. The first order difference approximation of vi (t + 1) is vi (t + 1) 

= —, then equation (37) will be 

(38)

Laplace transformation is made on equation (38), and suppose the initial values of vi (t) and 
xi (t) are zero, we have 

 (39) 

(40)

From equation (39), it is known that 
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(41)

Substituting (41) into (40) yields 

(42)

Suppose  and  are two input variables,  is output variable, then the system 

structure reflecting by equation (42) can be shown as in Fig.l. 

Figure 1. The System Diagram of DEPSO 

The open-loop transfer function from  to  is 

(43)

And the eigenequation is 1 + GK (s) = 0, thus results in 

(44)

the two eigenvalues are 

(45)

DEPSO will converge when 1 and 2 have negative real parts. This is obtained with 

(46)

So, the convergence of DEPSO with  as input can be guaranteed if 

(47)
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By the same way, the convergence of DEPSO with  and  as input and output 

respectively can be guaranteed if  > 0 . Therefore, the convergence condition of 

DEPSO is 

(48)

From Fig.l, it is obvious that  

(49)

From (48), we have 

 (50) 

it means 

(51)

Since 1 and 2 are stochastic variables, it is obviously that the above equation is satisfied 

only if 

(52)

To improve the dynamic evolutionary behaviour of DEPSO, the evolutionary function of 
DEPSO is considered as a control plant and PID controller is introduced. The parameter of 
PID controller can be dynamically adjusted in the evolutionary process, and the new 
algorithm is called PID-DEPSO. 
The system structure is showed in Fig.2. 

Figure 2. The System Diagram of PID-DEPSO 
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From Fig.2, we have 

(53)

Where .

The open-loop transfer function taking  as input is : 

(54)

its eigenequation is , then 

(55)

According to  Routh's  stability criteria, the stability condition of the  system with  and 

 as input and output respectively are 

(56)

As a result, the stability of PID-DEPSO is stability if 

(57)

Similarly, if (57) is satisfied, . From Fig.2, we have 

(58)

Thus

(59)

The evolutionary equation of PID-DEPSO is deduced as follow: 

(60)
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it means: 

(61)

Suppose

(62)

then , substituting it into (61), we have 

(63)

Let

(64)

then  , substituting it into (63), we have 

(65)

Let , and the 

Laplace inverse transformation of  are zero, then 

(66)

Let , then the evolutionary equations of PID-DEPSO 

are

(67)

(68)

(69)
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5. Conclusion 

This chapter introduces one uniform differential meta-model, and a new variant 
development for PSO combined with PID controller is proposed. The current results show it 
is an interesting area with the control theory to improve the performance. The future 
research includes incorporating some other controllers into the PSO methodology. 
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