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Abstract

Early detection of irregularity in electrical machines is important because of their diversity
of use in different fields. A proper fault detection scheme helps to stop the propagation of
failure or limits its escalation to severe degrees, and thus it prevents unscheduled down‐
times that cause loss of production and financial income. Among different modes of fail‐
ures that may occur in the electrical machines, the rotor-related faults are around 20%.
Successful detection of any failure in electrical machines is achieved by using a suitable
condition monitoring followed by accurate signal processing techniques to extract the fault
features. This article aims to present the extraction of features appearing in current signals
using wavelet analysis when there is a rotor fault of eccentricity and broken rotor bar. In
this respect, a brief explanation on rotor failures and different methods of condition moni‐
toring with the purpose of rotor fault detection is provided. Then, motor current signature
analysis, the fault-related features appeared in the current spectrum and wavelet trans‐
form analyses of the signal to extract these features are explained. Finally, two case studies
involving the wavelet analysis of the current signal for the detection of rotor eccentricity
and broken rotor bar are presented.

Keywords: Wavelet transform, Line start permanent magnet motor, Induction motor, Ec‐
centricity, Broken rotor bar

1. Introduction

Electrical machines are widely used for many industrial processes and play a non-substitutable
role in a variety of industries [1–2]. In spite of their reliability and robustness, electrical
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machines are still prone to failures due to the exposure to a wide diversity of strict conditions
and environments, incorrect operations, or even manufacturing defects [3]. These faults,
gradual deterioration, and failures can lead to motor interruption, if left undetected, and their
resulting unplanned downtime is very expensive. Early detection of irregularity in electrical
machines with proper fault diagnosis schemes will help prevent high-cost failures, thereby
decreasing the cost of maintenance and preventing unscheduled downtimes. However,
stopping the propagation of the fault limits its escalation to severe degrees, which results in
loss of production and financial income.

The fault identification schemes are basically based on data collection of electrical machines
followed by signal processing. The condition of an electrical machine is examined from data
that are acquired through sensors and supportive equipment methods. By using a suitable
signal processing technique, each fault can be then detected via a specific feature present in
the measured signal of a faulty motor when compared to a fault-free one. Hitherto, a number
of data acquisition techniques, which display a certain parameter of the electrical machine,
have been established. Essentially, the efficiency of a data acquisition method is characterized
by its accuracy, cost, and importantly its capability to quantify the fault. On the contrary,
condition monitoring based on data acquisition techniques requires the user to have adequate
knowledge and proficiency to differentiate a normal operating condition from a potential
failure state. The key step, but a difficult task, in the fault detection of electrical machines is to
extract the fault-related features from the acquired signal and identify the condition of motor.
Fault-related features are parameters derived from the acquired data that specify the existence
of failure in device. The current signal of electrical machine is non-linear and non-stationary
with strong noise interference; hence, the energy of early signal is too low to extract fault-
related features in time domain [4]. Advanced signal processing methods based on analysis of
time–frequency domain have been proposed as effective approaches for fault detection in
electrical machines [5].

The focus of this chapter is on the extraction of features present in the current spectrum of
electrical machine when one of two important rotor faults, eccentricity and broken rotor bar,
exists. To extract features from the current spectrum in the presence of these faults, an
advanced signal processing method, wavelet packet analysis, is used. In this regard, the
fundamentals related to the detection of these two faults using wavelet packet analysis of
current signal are explained in the following sections.

2. Rotor faults

From the investigations on different failure modes in electrical machines, the rotor-related
faults are around 20% of failures may happen in the motor [6]. The rotor is exposed to different
types of stresses that seriously affect its normal condition and subsequently create faults in it.
Bonnett and Soukup explained the stresses that motors are subjected to and their unfavourable
causes [7]. Failures in rotor are classified into eccentricity of rotor, crack and/or breakage of
rotor cage bars, and crack and/or breakage of end rings and rotor bow [8]. These irregularities
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bring specific secondary failures that cause serious faults in electrical machines. Moreover,
these types of faults may not show any symptoms during early stage until propagating to the
next step and leading to the sudden collapse [9–11]. In recent years, rotor faults have been
increasingly studied for developing advanced techniques that permit online early detection
and diagnosis of motor faults to avoid any negative consequences of unexpected shutdowns,
but this area still needs more research because of the complexity of the motor during the
runtime. In this section, a brief description of different rotor faults is provided.

2.1. Rotor eccentricity

In a fault-free machine, the rotor is centre aligned in the stator bore that results in uniform air
gap between the stator and rotor. In fault-free electrical machines, the rotation centre of the
rotor is the same as the geometric centre of the stator bore. As a result, the rotor symmetrical
axis (Cr), stator symmetrical axis (Cs), and rotor rotational axis (Cg) coincide with each other,
and thus the magnetic forces are balanced in opposite directions. Rotor eccentricity, displace‐
ment of the rotor from its centred position in the stator bore, generates an asymmetric air gap
between the stator and rotor [12]. The rotor eccentricity also produces unbalanced magnetic
pull (UMP), which is a radial magnetic force on the rotor shaft. The UMP also pulls away the
rotor from the stator bore centre, thus causing excessive stress on the electrical machine [13,
14]. Eccentricity commonly presents in rotating electrical machines, and the maximum
permissible level of eccentricity is defined, which is 5 or 10% of the air-gap length [15]. If
eccentricity exceeds the permissible level, it will increasingly damage the winding, stator core
and rotor core in the motor due to rubbing of the stator with the rotor [12, 14]. Three different
types of eccentricity occur in an electrical machine: static eccentricity, dynamic eccentricity,
and mix eccentricity. As an example, static eccentricity is explained next.

Static eccentricity in electrical machines occurs when the rotor symmetrical axis is concentric
with the rotor rotational axis; however, they are dislocated with respect to the stator symmet‐
rical axis; hence, the position of minimum radial air-gap length is fixed. In this state, the mutual
inductances across the stator and rotor as well as the self- and mutual inductances among the
rotor phases are related to the angular position of the rotor [16]. The implication of static
eccentricity fault in motor is depicted in Figure 1.

Static eccentricity can be due to numerous motives such as elliptical stator core, wrong
placement of the rotor or stator at the setup or subsequent of maintenance, incorrect bearing
positioning, bearing deterioration, shaft deflection, housing imperfection, end-shield mis‐
alignment, excessive tolerance, and rotor weight or pressure of interlocking ribbon [17–19].
Static eccentricity leads to second failures which cause drastic harm to the rotor, stator core
and windings. The radial forces in the static eccentricity condition produce a steady UMP in
the radial route across the motor because the reluctance of the magnetic flux path decreases
with the transmission of flux on the side of tiny air gap [20]. Albeit, the winding current induces
more magnetic flux that causes a stronger pull and leads to the expansion of the air gap on the
opposite side where the reluctance increases, thereby decreasing the flux and magnetic side
pull. Therefore, the UMP compels the rotor to move toward the area of the narrowest air-gap
length. During abrasion, the stator core subsequently generates abnormal vibration and
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severely damages the rotor, windings and the stator [7]. Consequently, the static eccentricity
causes acoustic noise, premature failure in the bearing, rotor deflection and bent rotor shaft.

Figure 1. Cross section of motor under static eccentricity fault

The degree of static eccentricity is calculated by the equation based on Figure 2 [16]:

=

uuuuur
s g

SE

C C  
D

g
(1)

where CsCg
→

 is the vector of static transfer which is invariant for rotor angular positions and g
is the uniform air-gap length.

Figure 2. Location of stator and rotor under static eccentricity condition
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2.2. Rotor bar breakage

The breakage of rotor bars is one of the important failures in the rotor cage of electrical
machines. During the operation of electrical machines, rotor bars may be broken partially or
completely. The main reasons for bar breakage include electrical, mechanical, and environ‐
mental stresses during the operation of electrical machines and/or improper design of rotor
geometry. Once a bar breaks, the stress increases and deteriorates the condition of the
neighbouring bars progressively. Such a destructive process can be prevented, if any crack in
the bar is detected early [21]. Typical causes of rotor bar breakage are referred as follows [22]:
high thermal and mechanical stresses, direct online starting duty cycles for which the rotor
cage was not well designed to endure against the stresses, imperfections in design and
fabrication process of the rotor cage bars. Any failure in rotor bars itself causes unbalanced
currents and torque pulsation and, therefore, decreases the average torque [23].

The rotor bars are short-circuited on both sides of the rotor by end rings. Depending on the
type of squirrel cage in the motor, the source of failures in the end ring differs, in die-cast
aluminium rotors caused by porosity of casting and in fabricated rotor cages caused by poor
end-ring joints during manufacturing. Once the preliminary failure occurs, localized heat may
extend to the rotor cage excessively. Therefore, the fault propagation is continued by multiple
start-ups similar to load variations, which create high centrifugal forces. Accordingly, end-ring
faults cause a drastic increase in the current and speed fluctuation [21].

2.3. Rotor bow

Any irregular thermal variation (heating or cooling) and unfavourable thermal distribution of
the rotor during operation of electrical machines may bow the rotor [24]. The bow created in
the rotor prevents sufficient alignment in the motor and generally produces a preload on the
bearings. Bend locations in the rotor cause major failures in other parts of the motor [25]. The
bow in the rotor is classified as local and extended [24]. When an asymmetrical heating is
confined to a part of the rotor, a local bow is generated. For example, rotor-to-stator rubbing
can generate a local asymmetric thermal distribution, which causes the local bow. When an
asymmetrical heating extends along the rotor, an extended bow is generated. Long-lasting
gravity effects on off-line machines generate rotor bow classified as an extended bow, when
unsuitable rotor straightening turning system is not used [24]. Since the rotor is limited by two
bearings, extended bow commonly causes a shaft bow [24].

3. Condition monitoring techniques for rotor fault detection

Condition monitoring programme which can predict a failure in electrical machines has
received considerable attention for many years [2, 8]. Successful detection of any failure in
electrical machines is achieved by using suitable condition monitoring. When a failure occurs,
some machine parameters are exposed to changes that depend upon the fault degree. Any
irregularity in the rotor of electrical machines presents with variation distributed in the rotor
currents. The feedback of these currents to the air-gap field produces specific signatures of
fault in the spectrum of speed, torque, current, and power. Reliable condition monitoring
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techniques depend on the best understanding of the mechanical and electrical characteristics
of the electrical machines in both fault-free and faulty situations. Researchers have used
different condition monitoring techniques that can be categorized as follows [8]:

• Acoustic emission

• Air-gap torque

• Current

• Electromagnetic field monitoring

• Induced voltage

• Instantaneous angular speed

• Motor circuit analysis

• Power

• Surge testing

• Vibration

• Voltage

3.1. Motor current signature analysis

The drowned current signal by an electrical machine contains a single component. Any
magnetic or mechanical asymmetries in the machine generate other frequency components in
the stator current spectrum. These frequency components are diverse according to each specific
fault in the machine.

Motor current signature analysis (MCSA) analyses the stator current signal to identify the
presence of any failure in electrical machines. This analysis method has been introduced as an
effective way for monitoring electrical machines for many years [8]. From all these methods
suggested in the literature, MCSA is a forerunner because of its advantages [10, 13, 26–28]:

• Online monitoring characteristics

• Remote monitoring ability

• Non-invasive feature

• Inexpensive equipment and easy measurement

• Different fault detection capability (such as broken rotor bars, air-gap eccentricity, stator
faults, etc.)

• Early-stage fault detection

• Highly sensitive

• Selective
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When a failure is generated in the electrical machine, depending on the severity of this fault,
some of the machine parameters change. For instance, the current spectrum of an ideal
electrical machine contains a single component corresponding to the supply frequency. Any
asymmetry in electrical machine causes other components to appear in a spectrum of stator
current. When a rotor bar breaks, current does not flow through it, and hence no magnetic flux
is created around the breakage bar. Therefore, there is no non-zero backward rotating field
that rotates at the slip frequency speed with respect to the rotor. This asymmetry in the
magnetic field of rotor induces harmonics in stator windings, which are superimposed on it.
These superimposed harmonics appear at frequency spectrums as described in

é ù= ±ë ûBRB S1 2KS  f f (2)

where f BRB is the harmonic component due to broken rotor bar, S is the slip, fS is the funda‐
mental frequency, and k = 1, 2,... [29].

Any asymmetry caused by static eccentricity produced other components that appear in the
spectrum of stator current. The characteristic frequency component associated with static
eccentricity is located according to Eq. (3) [16]:

é ù
= ±ê ú
ë û

static 1  mf f
p (3)

where f static is the harmonic component due to static eccentricity in line start permanent magnet
synchronous motor (LSPMSM), m is an odd integer value, p is the number of pole pair, and f
is the line frequency.

4. Wavelet

Frequency domain analysis is not reliable for fault detection because some outside parameters
can affect the location and amplitude of fault-related feature. This parameter can be classified
as follows: first, the fault frequency components depend on the slip of the motor; second, the
fault feature amplitude is load dependent; third, the frequencies of the fault components are
affected by voltage fluctuations; and fourth, long sampling interval is needed for a high-
resolution frequency. Therefore, in general, frequency domain analyses are suitable for the
steady-state situation. The problem involved in the analysis of non-stationary signals can be
shunned by time–frequency analysis of the signal, which illustrates the signal in three-
dimensional axis as time, frequency, and amplitude. The most popular time–frequency
representations include Wigner–Ville distribution, short-time Fourier transform, and wavelet
transform.

Wavelet-Based Analysis of MCSA for Fault Detection in Electrical Machine
http://dx.doi.org/10.5772/61532

85



Wavelet transform expresses a signal in oscillatory function series at different frequencies and
time. Wavelet transform divides the original signal into time-scale space, where the dimension
of windows at time and scale (frequency) is not rigid [30]. Therefore, in fault diagnostics
domain, wavelet transform has been used to extract the dominant features from original
signals [31]. Various types of wavelet transforms have been widely used in the condition
monitoring of electrical machine. Among all these techniques, discrete wavelet transform and
wavelet packet transform (WPT) are the most common ones, explained in the following.

4.1. The principle of discrete wavelet decomposition

Discrete wavelet transform is based on signal analyses using a minor set of scales and specific
number of translations at each scale. Mallat (1989) introduced a practical version of discrete
wavelet transform called wavelet multi-resolution analysis [32]. This algorithm is based on the
fact that one signal is disintegrated into a series of minor waves belonging to a wavelet family.

A discrete signal f[t] could be decomposed as

f y
-

=

é ù é ù é ù= +ë û ë û ë ûå å å
1

0, 0. , ,
0

m

m n m n m n m n
k m m n

f t A t D t (4)

where ϕ is the scaling function (father wavelet) and ψ is the wavelet function (mother wavelet),
A is the approximate coefficient and D is the detail coefficient.

The multi-resolution analysis commonly uses discrete dyadic wavelet, in which positions and
scales are based on powers of two. In this approach, the scaling function is depicted by the
following equation:

( )f fé ù = -ë û
0/ 2 0

0, 2 2m m
m n t t n (5)

that is, ϕm0,n is the scaling function at a scale of 2m0 shifted by n. Wavelet function is also defined
as

( )y yé ù = -ë û
/ 2

, 2 2m m
m n t t n (6)

that is, ψm,n is the mother wavelet at a scale of 2m shifted by n.

Generally, approximate coefficients  Am0,n are obtained through the inner product of the
original signal and the scaling function
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¥

¥

f
-

= ò0, 0.m n m nA f t t dt (7)

The approximate coefficients decomposed from a discretized signal can be expressed as

( ) ( ) ( )f f ++
=

é ù= = ë ûå åò, . 1. ,1 ,
0

.
N

m n m n m n m nm n
n

A A t t dt A g n (8)

In the dyadic approach, the approximation coefficients Am0,n are at a scale of 2m0. The filter,
g[n], is a low-pass filter. Similarly, the detail coefficients Dm,n can be generally obtained through
the inner product of the signal and the complex conjugate of the wavelet function:

( ) ( )
¥

¥

y
-

= ò *
, ,.m n m nD f t t dt (9)

The detail coefficients decomposed from a discretized signal can be expressed as

( ) ( ) ( )f y ++
=

é ù= = ë ûå åò, . 1. ,1 ,
0

. .
N

m n m n m n m nm n
n

D A t t dt A h n (10)

In the dyadic approach, Dm,n are the detail coefficients at a scale of  2m0. The filter, h[n] is a
high-pass filter.

The multi-resolution analysis utilizes discrete dyadic wavelet and extract approximations of
the original signal at different levels of resolution. An approximation is a low-resolution
representation of the original signal. The approximation at a resolution 2−m can be split into an
approximation at a coarser resolution 2−m−1 and the detail. The detail represents the high-
frequency contents of the signal. The approximations and details can be determined using low-
and high-pass filters. In the multi-resolution analysis, the approximations are split
successively, while the details are never analysed further. The decomposition process can be
iterated, with successive approximations being decomposed in turn; hence one signal is broken
down into many lower-resolution components. This process is called the wavelet decompo‐
sition tree as shown in Figure 3. It illustrates the dyadic wavelet decomposition algorithm
regarding the coefficients of the transform at different levels according to the description by
Polikar et al. (1998) [33].
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Figure 3. Dyadic wavelet decomposition algorithm [34].

4.2. The principle of wavelet packet decomposition

The wavelet packet transform is a direct expansion of discrete wavelet transform, where the
details as well as approximation are split up. Therefore, this tree algorithm is a full binary tree
that offers rich possibilities for signal processing and better signal representation in compari‐
son to a discrete one.

A wavelet packet function has three naturally interpreted indices in time–frequency functions:

( )y y= - =2
, 2 2 ,  1,  2,  3,... 

j
ji i

j k t k i (11)

where integers j, k, and i are called the scale, translation, and simulation parameters, respec‐
tively. Scaled filter h(n) and the wavelet filter g(n) are quadrature mirror filters associated with
the scaling function Φ(t) and the wavelet function ψ(t) [32]. The conjugate mirror filters h and
g with finite impulse responses (FIRs) of size k can define the fast binary wavelet packet
decomposition (WPD) algorithm of the signal f(t):
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+
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(12)
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The wavelet packet component signals f j
i(t) are produced by a combination of wavelet packet

function ψ j ,k
n (t) as follows:

( ) ( ) ( )y
=

=å
2

, ,
1

j
i i i
j j k j k

i

f t C t t (13)

where the wavelet packet coefficients C j ,k
i (t) are calculated by

( ) ( ) ( )
¥

¥

y
-

= ò, ,
i i
j k j kC t f t t dt (14)

Provided the wavelet packet functions are orthogonal

( ) ( )y y = ¹, , 0 if m n
j k j kt t m n (15)

As data sets of wavelet packet coefficients increase in size, the energy principle is applied to
current signals after WPT for fault location estimation [35].

4.3. A review of wavelet decomposition for fault detection

Different  types  of  wavelet  transform  techniques  have  been  widely  used  in  algorithms
designed for fault detection in electrical machines. Table 1 presents the common types of
these techniques.

Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

[5] 1996
Current
(start-up)

short time fourier
transform(STFT),
continuous wavelet
transform(CWT),
Wigner distribution

-

To compare individual
signal processing
techniques using both
test and actual data

The CWT has been proven to
be the most efficient technique
for the extraction of the
frequency component of
interest. Limitation: available.
The technique would be of
particular use to industrial
applications where motors are
frequently started on no load,
or have been moved to a
workshop environment where
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Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

fully loaded conditions are
neither practical nor
achievable

[36] 2001

Motor current
signature
analysis
(MCSA)

Discrete wavelet
transform (DWT)

-
To develop current
monitoring procedure
for BRB detection

A new approach in detection
of BRB having only stator
current signal

[37] 2002 MCSA
WT,park
transform(PT)

-

To compare model-
based and signal-based
approaches based on
Park transform for BRB
detection

The spectral decomposition
obtained by the wavelet
transform may be used to
isolate different kinds of faults

[38] 2002
MCSA, voltage,
speed

Wavelet packet
decomposition
(WPD)

Artificial
neural
network

To develop a model-
based diagnosis system
for detection of various
faults including BRB

The proposed system was
shown effective in detecting
early stages of different IM
faults

[39] 2003 MCSA WPD
Artificial
neural
network

To improve MCSA
monitoring procedure
for BRB and air-gap
eccentricity detection

It provides feature
representations of multiple
frequency resolutions for
faulty modes

[40] 2004
Current
(start-up)

DWT -

To improve the start-up
current monitoring
procedure for BRB
detection using a filter
that actively tracks the
changing amplitude,
phase and frequency to
extract the fundamental
from the transient

This method does not require
parameters such as speed or
number of rotor bars. It is not
load dependent and can be
applied to IMs that operate
continuously in the transient
mode

[41] 2005 MCSA
fast fourier
transform (FFT),
WPD

-

To improve MCSA
monitoring procedure
for the detection of
various faults including
BRB

The features of BRB and static
eccentricity yield similar
results in the wavelet analysis,
but are different in Fourier
analysis. Therefore the use of
both types of analysis together
can distinguish the faults
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Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

[42] 2005
Current
(start-up)

DWT -

To develop start-up
current monitoring
procedure for BRB
detection

The method is not load
dependent and can be effective
on small lightly loaded
machines

[43] 2005
Current
(envelope,
start-up)

CWT -

To develop start-up
current monitoring
procedure using
envelope extraction of
current spectrum for
BRB detection

The procedure is not affected
by other factors such as initial
rotor position, phase of the
supply and supply imbalance.
It is able to classify the
different degrees of BRB.
Limitation: A partial BRB
could not be indicated

[44] 2006 MCSA WPD
Adaptive
neuro-fuzzy

To present a novel
online diagnostic
algorithm for BRB and
air-gap eccentricity
detection in variable
speed drive systems

Although the algorithm is able
to detect the fault with high
accuracy, the number of
training iterations and the
CPU processing time were
reduced

[45] 2006
Instantaneous
power

DWT -

To improve IP
monitoring for BRB
detection under various
load levels

Wavelet approach applied to
IP showed superior ability for
BRB detection compared to the
frequency domain analysis

[46] 2006 MCSA FFT, WPD

Fuzzy
entropy–
artificial
neural
network

To improve MCSA
monitoring procedure
for the detection of
various faults including
BRB

An approach was proposed
based on Fourier
transformation and wavelet
transform and neural network
system to classify the faults

[47] 2006
Current
(start-up)

DWT -

To develop start-up
current monitoring
procedure for BRB
detection. To compare
the influence of the
discrete wavelet
transform parameters
(type of mother wavelet,
order of the mother
wavelet, sampling rate

The tests show that if the start-
up transient is not very short,
the reliability of the proposed
method for BRB detection is
similar to that of the classical
approach, based on the
Fourier transform, in the case
of loaded motors. In addition,
the method can detect faults in
an unloaded condition, and it
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Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

or number of levels of
the decomposition) over
the diagnosis

allows a correct diagnosis of a
fault-free machine in some
particular cases where Fourier
analysis leads to an incorrect
fault diagnosis

[48] 2007
Induced
voltage

FFT, WT -

To investigate the
limitations and
harmonics of the
induced voltage after
supply disconnection
harmonics for BRB
detection

Fourier transform did not
provide information about
fault severity and load
variations. A method based on
wavelet analysis of induced
voltage spectrum was
developed for BRB detection
Limitation: Tests need to be
carried out for fault-free motor
to develop a baseline response.
It is sensitive to changes in
load, system inertia, rotor
temperature and supply
voltage

[49] 2007 MCSA WPD -
To detect incipient
bearing fault via stator
current analysis

Cover better analysis under
various conditions and more
tolerant frequency bands with
WPD method

[50] 2007 MCSA WPD -
To detect real-time fault
for various disturbances
in three-phase IM

Selecting the optimal levels of
decomposition and optimum
mother wavelet

[51] 2008 MCSA STFT, WT -

To improve MCSA
monitoring procedure
for BRB and stator
shorted turns detection

Wavelet decomposition is
superior to STFT. Power
spectral density for wavelet
details was introduced as a
merit factor for fault diagnosis.
The proposed method can
diagnose shorted turns and
BRB in non-constant load–
torque IM applications

[52] 2008
Current
(start-up)

DWT
Principle
component

To develop transient
current monitoring

Feature reduction and
extraction using component
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Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

analysis
(PCA), kernel
PCA, support
vector
machine

procedure; uses
intelligent system for
detection and
classification of various
faults including BRB

analysis via PCA and KPCA
are highlighted. The
performance of WSVM is
validated by applying it to
fault detection and
classification of induction
motor based on start-up
transient current signal.
Limitation: A proper pre-
processing for the transient
current signal is needed to
improve the emerging salient
differences between conditions
in induction motors

[35] 2008 MCSA WPD
Artificial
neural
network

To estimate
transmission line fault

A powerful and reliable
method by applying the
energy criterion after wavelet
packet transform (WPT) for
reducing the data size

[53] 2009 MCSA WPD
Artificial
neural
network

To propose a novel
online diagnosis
algorithm for BRB
detection

The diagnosis can be
performed with reduced load
condition. An accurate
measurement of the slip speed
is not necessary

[54] 2009
Current
(start-up)

DWT -

To develop start-up
current monitoring
procedure for
distinguishing various
faults including BRB
and other phenomena,
such as load–torque
oscillations

The proposed methodology
showed promising ability for
the reliable discrimination of
simultaneous
electromechanical faults and
the diagnosis of faults
combined with other
phenomena

[55] 2009
Current
(envelopes)

DWT -

To propose a new
technique, slip
independent, for BRB
detection under
different load levels

The proposed method gives
the same reliable results for
BRB detection under different
load levels when applying to
the stator-current space–vector
magnitude and the
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Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

instantaneous magnitude of
the stator-current signal

[56] 2009 Vibration WPD
Artificial
Neural
Network

To optimize gear failure
identification using GAs
and ANNs

The technique determines the
best values ’mother
wavelet’, ’decomposition level’
and ’number of neurons in
hidden layer’

[57] 2009 Vibration WPD
Hybrid
support
machine

To propose an
intelligent method to
diagnose rotating
machinery failures

An accurate and quick fault-
type estimation method by
applying hybrid SVM to the
energy criterion after WPA

[58] 2009 MCSA DWT -
To compare a different
wavelet family for BRB
fault detection

The technique determines the
best mother wavelet

[59] 2010 MCSA WT,PSD -
To develop BRB
detection methods
based on MCSA

The method has the ability to
detect BRB for both constant
torque and for variable load
torque

[60] 2011 MCSA FFT,WT -
To propose a new
method for early fault
detection

The approach has been proved
to be effective to detect failures
in its very early stages

[4] 2012 Vibration WPD,EMD
Artificial
neural
network

To integrate the fine
resolution advantage of
WPD with the self-
adaptive filtering
characteristics of
empirical mode
decomposition (EMD) to
early fault diagnosis

Ability to extract weak signals
and early fault detection of
rotating machinery

[61] 2013 MCSA Stationary WPD
Multiclass
support vector
machines

BRB feature extraction
by SWPT under lower-
sampling rate

Lower computation and cost
without any effect on the
performance of SWPT to
detect BRB

[62] 2013 Vibration WPD,FFT
Artificial
neural
network

To classify fault and
predict remaining useful
life

To deal with complex
problems and non-linear
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Ref Year

Diagnostic
Monitoring
Techniques

(MTs)

Signal Processing
Classifier and

Decision-
making Tool

Purpose Achievement and Limitation

systems and predict remaining
useful life

[63] 2014 Vibration WPD -

To improve the accuracy
and rectify the
distortion of WPT
coefficients

Magnifying the amplitude of
the fault characteristic
frequency

[34] 2014 MCSA DWT -

To investigate the ability
of different types of
wavelet functions for
early BRB detection

The reliability of the fault
detection depends on the type
of wavelet function applied for
decomposition of the signal

[64] 2014
Apparent
power

DWT -

To develop air-gap
eccentricity fault
detection methods
based on apparent
power

The energy evaluation of a
known bandwidth permits to
define a fault severity factor
(FSF)

[65] 2014 MCSA DWT

Fuzzy support
vector
machine,
principal
component
analysis,
kernel neural
network

To develop eccentricity
fault detection methods
and degree precisely
based on MCSA in
PMSM

The novel index for
eccentricity fault diagnosis is
introduced based on energy,
peak, head angle of the peak,
the area below the peak, the
gradient of the peak and
coefficients of the
autoregressive (AR) model

Table 1. Summary of published paper with the aim of using wavelet transform for broken rotor bar and eccentricity
fault detection

5. Case study 1

The detection of static eccentricity in three-phase LSPMSM using motor current signature
analysis is studied. A detailed description of experimental test rig used in this study and the
method used for signal measurement and analysis is provided in the following.

5.1. Experimental set-up

The experimental test rig is shown in Figure 4. The tested motor for both fault-free and faulty
(with static eccentricity) cases is a three-phase LSPMSM with the specification as mentioned
in Table 2. The motor is directly fed by the grid power supply, while the stator windings are
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Y connected, and the current nominal value is 1.28 A. The LSPMSM is coupled to torque/speed
sensor in order to measure the torque value in different operation conditions. On the other
side, a mechanical load is provided by a DC-excited magnetic powder brake (MPB) coupled
to torque/speed sensor. The specific load torque level could be furnished to the motor shaft by
controlling the input dc voltage of MPB. This system is used to sample the stator current non-
invasively when the motor is operated in the steady-state condition. Notably, only one phase-
current signal is required to be recorded for the detection process in this study. The recorded
signals are analysed by a computer-based signal processing program.

Figure 4. Experimental test rig

5.2. Method

The method proposed in this study for the creation of eccentricity fault in LSPMSM, by
changing the original bearings of motor with a new set of bearing with larger inner diameter
and smaller outer diameter, results in the creation of free space between the shaft and bearings
and also between the bearings and the housing of end shields. Static eccentricity is created by
fixing concentric inner rings between the new bearings and shaft on both ends of LSPMSM
and non-concentric outer rings between the new bearings and housings of both end shields.
The aforementioned strategy is used to create 33% and 50% static eccentricity in the motor
discussed in the case study.

The current spectrum is stored with the sampling frequency ( f S) of 5 kHz over a total sampling
period of 6.5 s, which allows the analysis of the signals with a minimum frequency of 0.15 Hz.
Daubechies-24 (db24) is used as the mother wavelet in discrete wavelet transform (DWT)
analyses. Since the four-pole, three-phase LSPMSM is considered, the characteristic frequency
component associated with static eccentricity is located at 25 Hz, according to Eq. (3) [16].
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The number of decomposition levels (ld) can be determined using Eq. (16) which is ld =7 in this
case.

( )
( )= S static

d

log /
 

log 2
f f

l (16)

The frequency bands of wavelet signals are summarized in Table 3. Energies of the detail
coefficient E (Dj) are calculated using the following formulas [45]:

( ) ( )
=

é ù= ë ûå
l 2

1l

1  
N

j j
i

E D D i
N

(17)

where j =1,  2,  ...,  ld and N l is the data length of the decomposition level.

Signal Frequency band
(Hz)

A7 0–19.53

D7 19.53–39.06

D6 39.06–78.13

D5 78.13–156.25

Table 3. The frequency bands of wavelet signals

5.3. Results and discussion

Figure 5 shows the stator current signal (original signal) and D5, D6, and D7 are the detail signals
obtained by db24 at level 7 for fault-free LSPMSM. The fault-related components ( f static) are
visible at 25 Hz, which confirm the productivity of D7 signal for the detection of static eccen‐

Rated output power (HP) 1

Rated voltage (V) 415

Rated frequency (Hz) 50

Number of poles 4

Rated speed (RPM) 1500

Connection Y

Air-gap length (mm) 0.30

Table 2. Specification of three-phase LSPMSM
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tricity. The original and detail signals of LSPMSM with 33% and 50% static eccentricity are
indicated in Figures 6 and 7, respectively.

Figure 5. DWT analysis of current signal of fault-free LSPMSM
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A comparison between Figures 5, 6, and 7 shows that the signals of D7 are clear from any
distortion in a fault-free motor while the high distortions are manifested in D7 in the presence
of static eccentricity that demonstrates the faulty condition of LSPMSM. The source of these
distortions is due to the increase in the amplitudes of fault-related frequency components
based on Eq. (3).

Figure 6. DWT analysis of current signal of LSPMSM under 33% static eccentricity
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Figure 7. DWT analysis of current signal of LSPMSM under 50% static eccentricity

An effective static eccentricity detection index is introduced for three-phase LSPMSM based
on the energy of D7 for the stator current signal. The proposed index is examined for fault-free
and eccentric LSPMSM with 33% and 50% static eccentricity as shown in Figure 8. The energy
variation of D7 (index) for stator current signal using db24 is provided in Table 4.
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Figure 8. Static eccentricity severity versus proposed index (energy of D7)

Index Static eccentricity degree (%)

0 33 50

Energy of D 7 193 320 378

Table 4. Evaluation of proposed index due to fault degree

5.4. Conclusion

Discrete wavelet transform is employed to analyse the stator current signal of three-phase
LSPMSM in order to propose an effective index for static eccentricity fault detection. The
energy of detail signal (D7) is introduced as eccentricity index. The achieved results confirm
the productivity of the proposed method for the motor discussed in the case study.

6. Case study 2

The detection of broken rotor bar in three-phase squirrel cage induction motor using motor
current signature analysis is studied. A detailed description of experimental test rig used in
this study and the method used for signal measurement and analysis is explained in the
following.

6.1. Experimental set-up

Figure 9 illustrates the experimental test rig used in this study. Table 5 presents the parameters
of the three-phase squirrel cage induction motor used for both fault-free and faulty motors.
The faulty motor is with three broken rotor bars. The motor is directly fed by the grid power
supply, while the stator windings are Y connected and the current nominal value is 2.2 A. In
order to measure the torque and speed value of the squirrel cage induction motor in different
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operation conditions, a torque/speed sensor is coupled to it. A generator is used as a load and
the specific load torque level can be furnished to the motor shaft by controlling the resistor
connected to the generator. Recall that only one phase current signal is required to be recorded
for the detection process in this study. The recorded signals are then analysed by a computer-
based signal processing program.

Figure 9. Experimental set-up

Rated output power (HP) 1

Rated voltage (V) 415

Rated frequency (Hz) 50

Number of poles 6

Rated speed (RPM) 1000

Connection Y

Number of rotor bars 28

Table 5. Specification of a three-phase squirrel cage induction motor

6.2. Method

The architecture of the proposed system for broken rotor bar detection is shown in Figure 10,
and the procedure used in this study is as follows: First, to force a real bar breakage in the
rotor, a hole is drilled artificially in it. The original stator current was recorded from a three-
phase induction motor. The stator current is sampled at 20 kHz lasting four seconds for both
fault-free and faulty motors (three-rotor bar breakage) at 80% full load. The measured current
signals are then decomposed using wavelet packet transform with two different purposes: One
as a pre-processing of signal for FFT analysis and the frequency of ((1–2s)fS) obtained is used
as a fault feature for broken rotor bar detection. The other purpose of using WPT is for feature

Wavelet Transform and Some of Its Real-World Applications102



extraction, where some statistical features determined by wavelet packet coefficients are used
for broken rotor bar detection. For both purposes, Daubechies-44 (db44) is applied as a mother
wavelet in 12 levels of decomposition. To extract the fault-related feature, those nodes are taken
that involve fault frequency (fBRB). Figure 11 shows the process explained above, called the
wavelet packet tree. In this work, the signal energy, root mean square (RMS), and kurtosis are
obtained as selected features for the diagnosis of the broken rotor bar.

Figure 10. The architecture of the proposed system for broken rotor bar detection

Figure 11. Approximations and details in wavelet packet decomposition
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6.3. Results and discussion

In order to obtain the differences between fault-free and faulty conditions under 80% full-load
conditions, WPD was used for the feature extraction. The WPD gives distinguishable signa‐
tures from stator current signal in a specific frequency band. After WPD of the current signal,
two procedures for failure feature extraction using WPD are used (Figure 10). One procedure
includes using FFT for the determination of amplitude of fault frequency and the other includes
the statistical analysis of coefficients extracted by WPD.

The amplitude of fault frequency in the current spectrum for fault-free motors and for motors
with three broken bars achieved in the first procedure is presented in Table 6. The results
indicate that the amplitude of harmonic components ((1–2s)fS) in both nodes, presented in
Table 6, increase the faulty condition. However, the degree of increase is not significant, and
it cannot be used to differentiate the conditions.

Node Frequency Band Amplitude (1-2s)fs

Fault-free Faulty

[10, 6] (39.06–48.83) 0.43 0.43

[11, 13] (46.39–48.83) 0.42 0.42

fBRB = (1–2s)fS = 47.604 Hz

Table 6. Amplitudes of harmonic components for fault-free and faulty motors

In the second procedure, three statistical parameters including RMS, kurtosis and energy are
calculated using the statistical analysis of coefficients determined by WPD of current signal.
Table 7 presents these statistical parameters in three different nodes [10, 6], [11, 13] and [12,
26]. These parameters are compared to define the most appropriate frequency band that
represents the frequency components from the broken rotor bar. According to Table 7, the
nodes [11, 3] (46.39–48.83 Hz) in wavelet packet tree are the most dominant bands that can
differentiate between fault-free and faulty motors under full load.

Feature Condition [10, 6] [11, 13] [12, 26]

RMS Fault-free 11.82 15.93 40.36

Faulty 12.96 17.78 22.06

Kurtosis Fault-free 2.94 2.97 2.16

Faulty 3.3 3.61 3.09

Energy Fault-free 14,816 24,375 172,684

Faulty 17,814 30,343 44,277

Table 7. Statistical features for fault-free and faulty motors
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6.4. Conclusions

This case study proposes a feature extraction system for broken rotor bar detection using
wavelet packet coefficients of the stator current. It is shown that in a faulty case, the amplitude
in specific side bands increases and dominant features of signals can be extracted for fault
diagnostics. The results of this study indicate that the energy, kurtosis and RMS value of WPD
coefficients are the appropriate features for detecting broken rotor bar in particular bands.
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