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Abstract

Cancer immunoediting is composed of three phases: elimination, equilibrium, and es‐
cape. Tumor cells, which successfully navigate these phases, are capable of evading de‐
struction by the immunity system of the host. Furthermore, there are different types of
nonimmune surveillance against tumors, including genetic surveillance, which is based
on DNA repair and checkpoint control, intracellular surveillance related to apoptosis
or type I PCD, intercellular surveillance linked to the tumor microenvironment, and
epigenetic surveillance related to the structure of chromatin, and specifically the strin‐
gency of imprinting. Circumventing immune destruction is one of the hallmarks of
cancer pathogenesis, in addition to evading growth suppressors, deregulating cellular
energetics, enabling replicative immortality, inducing angiogenesis, activating invasion
and metastasis, sustaining proliferative signaling, and resisting cell death, which may
lead to the uncontrollable promotion of tumor burden at the expense of the immune
system. Although immunoediting may eliminate tumor cells with alterations in their
antigenic epitope profile, many immunoresistant variants escape from the immune sys‐
tem of the host by various immunosuppressive molecular and cellular mechanisms.
There are many immunomodulatory effects of targeted therapies that can circumvent
tumor-mediated immunosuppression, improving the effector T-cell function, which en‐
hances eradication of targeted tumors. Another even more efficient antitumor strategy
consists of combining targeted therapies with immunotherapies, which exert many an‐
titumor synergies. The subsequent complex interplay of targeted anticancer agents and
immunotherapy may sensitize tumor cells to immune-mediated eradication with long-
lasting immunotherapeutic effects, which may inhibit induction of tumor dormancy.
These combinatorial immunotherapies with targeted therapies can be used as neoadju‐
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vants and adjuvant treatments with conventional anticancer strategies, such as surgical
debulking, radiation therapy, and chemotherapy. In conventional anticancer treatment,
the chemotherapeutic-induced immunosuppression inhibits the anticancer efficiency of
cell therapies, which are based on activated lymphocytes for eradication of tumor cells,
enhancing susceptibility to infections. The majority of conventional chemotherapeutic
agents interfere with hematopoiesis and subsequently with the immune system, affect‐
ing the surveillance of cancer cells leading to the promotion of tumor development and
growth. Furthermore, cancer surgery causes tremendous alterations in the neuroendo‐
crine, metabolic, and immune systems constituting the stress response, which may lead
to infection and cancer recurrence. Generally by using an integrative medicine immu‐
notherapeutic approach, where alternative medicine practice which follows a multitar‐
geted and bidirectional regulation may compensate for deficiencies of conventional
orthodox western medicine, which is characterized by specificity, we may achieve a
synergistic effect concerning circumvention of tumor-induced immunosuppression
and enhancement of antitumor immunomodulation followed by minimization or elim‐
ination of side effects, prolonging the survival rate of advanced stage and metastatic
cancer patients promoting their quality of life. The key is to treat each cancer patient
under a personalized evidence-based medicine approach, which must rely on clinom‐
ics, including transcriptomics, genomics, immunomics, lipidomics, glycomics, proteo‐
mics, metabolomics, nutrigenomics, and mainly epigenomics whose alterations in their
noncoding RNA genes are reversible especially with immunonutrition. The precise im‐
munotherapeutic approach against cancer may act synergistically with conventional
anticancer therapies, such as surgery, chemotherapy, and radiotherapy combined with
therapies based on molecular targeting, which are tailored for each patient on a phar‐
macogenomic basis, and they can be combined with nanomedicine for specific molecu‐
lar targeting and circumvention of biological milieu interactions, which may enhance
tremendously therapeutic efficacy with simultaneous reduction of systemic toxicity.

Keywords: Immunosurveillance, immunoediting, tumor-induced immunosuppression,
immunoresistance, immunomodulation, immunotherapy, immunonutrition, personal‐
ized or precision cancer medicine, evidence-based medicine, omics

1. Introduction

The strategies to fight cancer are composed of mechanisms including surgery since 1600 BC,
physics including radiotherapy since 1896, chemistry including chemotherapy since 1942, and
biology including immunotherapy since 1976. Although immunotherapy has a long history
that has been evaluated for more than a century, only recently has it entered a renaissance
phase with anticancer biological agents, including the first monoclonal antibody approved in
1997, interleukin-2 (IL-2) cytokine approved in 1998, the first cellular immunotherapy as
therapeutic vaccine approved in 2010, and the first checkpoint inhibitor approved in 2011,
which has been succeeded by many more approved immunotherapeutic agents [1]. The cancer
immunosurveillance hypothesis proposed by Ehrlich in 1909, modified by Burnet and Thomas
in 1957, refers to the immunological resistance of the host against cancer development.
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2. Immunoediting and immunosurveillance

The current term is cancer immunoediting, which is composed of three phases: elimination,
equilibrium, and escape. Tumor cells, which successfully navigate these phases, are capable
of evading destruction by the immunity system of the host [2]. Generally, the main component
of the defensive army of the host’s immune system for fighting tumors is composed of cytotoxic
T cells (CTLs).

The elimination phase is a process, where the immune system components recognize trans‐
formed cells, eliminating them with the use of the innate and adaptive immune system [3].
Elimination consists of four phases, where the first phase of elimination initiates the antitumor
immune response, after the cells of the innate immune system have detected a growing tumor
mass, which has caused damage to the local tissue after it has been through stromal remodel‐
ing. This induces inflammatory signals, which recruit into the tumor-site cells of the innate
immune system, such as macrophages, dendritic cells, and infiltrating lymphocytes such as
natural killer cells and natural killer T cells that release interferon-gamma (IFN-γ). Τhe second
phase of elimination involving IFN-γ induces immunogenic tumor cell death (ITCD), and it
activates the release of chemokines, such as CXCL9, CXCL10, and CXCL11, which inhibit
angiogenesis inducing immunogenic necrotic tumor cell death, whose apoptotic bodies are
phagocytosed by dendritic cells in the draining lymph nodes, as a bystander killing effect
(BKE). The subsequent inflammation releases cytokines and chemokines, which attract
additional immune cells. During the third phase of elimination, the reciprocal release of
cytokines IL-12 and IFN-gamma transactivates macrophages and natural killer cells, expand‐
ing tumor cell death by apoptosis or PCD type I and releasing reactive oxygen and nitrogen
intermediates. Tumor-specific dendritic cells in the draining lymph nodes activate the
differentiation of Th1 cells, which mediate the production of killer T cells or CD8+ T cells. In
the fourth phase of elimination, tumor-specific cytolytic T lymphocytes CD8+ and CD4+ T cells
infiltrate the tumor site after recognition of tumor-specific or tumor-associated antigens, such
as MHC class J and class II molecules, which in synergy with B cells that produce antibodies,
such as IgG, IgA, IgM, IgD, and IgE, facilitate innate and adaptive immune mechanisms, which
mediate release cytokines leading to immunogenic tumor cell death. The cancer cells that are
not eradicated by the elimination phases of the immune system proceed to the equilibrium
phase, where IFN-gamma and lymphocytes prevent expansion of tumor cells that are geneti‐
cally unstable and mutate rapidly. All the tumor cell variants, which have evaded immune
pressure due to acquired resistance to the elimination phases where the balance between the
immune response and the tumor cells is driven toward tumor growth that expands in an
uncontrolled manner with nonimmunogenic transformed cells, may lead to malignancies by
entering the escape phase directly [4–9].

Furthermore, there are different types of nonimmune surveillance against tumors, including
genetic surveillance, which is based on DNA repair and checkpoint control, intracellular
surveillance related to apoptosis or type I PCD, intercellular surveillance linked to the tumor
microenvironment, and epigenetic surveillance related to the structure of chromatin and
specifically the stringency of imprinting [10–13].
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Circumventing immune destruction is one of the hallmarks of cancer pathogenesis in addition
to evading growth suppressors, deregulating cellular energetics, enabling replicative immor‐
tality, inducing angiogenesis, activating invasion and metastasis, sustaining proliferative
signaling, and resisting cell death, which may lead to the uncontrollable promotion of tumor
burden at the expense of the immune system [14].

3. Tumor-induced immunosuppression and immunoresistance

Although immunoediting may eliminate tumor cells with alterations in their antigenic epitope
profile, many immunoresistant variants escape from the immune system of the host by the
following immunosuppressive molecular and cellular mechanisms [15]. Not the immunoef‐
fectors but only the immunosuppressive regulators are supported by the heterogeneous tumor
microenvironment, which contains tumor cells, extracellular matrix (ECM) cells, local bone
marrow-derived stromal progenitor cells, pericytes, endothelial cells, proteins, matrix degrad‐
ing enzymes, chemokines, cellular factors, immune cells, tumor-associated fibroblasts, and
angiogenic cells, which may cause desmoplasia after stromal cell infiltration and ECM
deposition [16–18].

Tumors escape eradication from the immune system by mechanisms of the first category,
which consists of the development of tumor immunoresistance, including the promotion of
oncogenicity of tumor stem cells that causes resistance to conventional anticancer treatments
and immune responses of the host due to tumor dormancy that cause tumor relapse by self-
renewal, continuous ability of proliferation, incomplete differentiation, and production of
immunosuppressive factors causing immunoresistance due to inhibition of apoptosis or type
I PCD [19].

Another mechanism of tumor immunoresistance is the loss of abnormal surface antigens on
the tumoral plasma membrane due to mutations and immunoescape of epitope loss tumor
variants, which occurs due to the genetic instability of tumors, leading to continuous altera‐
tions of their surface molecules, hiding their antigenic profile by losing their epitope, especially
after they sense the presence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment.
Thus, the immune system eradicates only the tumor cells that express the specific epitope,
circumventing invisible epitope-negative tumor cells that become extremely resistant to CTL
elimination [20].

One more immunoresistant mechanism exerted by the tumor cells is the lack of susceptibility
to immune effector cells, such as natural killer cells (NK), cytotoxic T lymphocytes (CTL),
macrophages, and dendritic cells (DC), which promote antibody-induced cytotoxicity,
phagocytosis, or vaccine effects in cancer immunotherapy [21].

The second category of tumor immunoescape mechanisms consists of the interference with
the antitumor-induced immune responses, such as reduced expression of costimulatory
molecules on tumor cells or antigen presenting cells (APCs). This downregulation of costimu‐
latory molecules on tumor cells or professional APC may inactivate or eliminate TAA-specific
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CTLs, put in an immature state the dendritic cells conditioned by the tumor cells, and inactivate
T cells leading to tumor tolerance by circumventing productive immune responses against the
tumor cells [22]. Also, the tumor for escaping the immune system of the host alters the T-cell
receptor (TCR) on the tumor infiltrating lymphocytes (TIL), especially in cases with advanced
cancer, leading to reduced mediation of tumor cytotoxicity and decreased production of Th1-
type cytokines [23–25].

The  next  tumor  immunoescape  mechanism  of  this  category  consists  of  death  receptor/
ligand signaling and tumor-induced counterattack on immune cells that induces apopto‐
sis or type I PCD, in the majority of circulating CD8+ effector T cells in cancer patients,
due to the overexpression of Fas (CD95) receptor on the plasma membrane of activated T
cells  cross-linked by  FasL,  which  is  overexpressed on tumor  cells  [26].  The  tumor  cells
release immunosuppressive factors, such as PGE2, which downregulates Jak3, blocking the
IL-2R downstream signaling pathway that downregulates the prosurvival members of the
oncogenic  bcl-2  family,  leading  to  a  defective  signaling  which  inactivates  T  cells  with
subsequent circumvention of tumor cells [27].

Another immunosuppressive mechanism of this category consists of dendritic cell (DC)
dysfunction in tumor-associated antigen (TAA) cross presentation to T cells, which leads to a
deficient immune response against tumor cells, which may deplete dendritic cells (DCs) by
inhibiting the induction of TAA-specific immunity that consists of cytokines and chemokines,
such as interleukins (IL-1, IL-12, IL-15, IL-18, and IL-23), interferons, and costimulatory
molecules, which are required as growth factors, and signals for T-cell proliferation, differen‐
tiation, and memory development [28–30]. The tumor cells may inhibit the maturation of
dendritic cells (DCs) by utilizing VEGF and block their differentiation with exosomes. Also,
tumor-associated gangliosides (TAG) may downregulate proteasomal constituents of antigen
processing machinery (APM) of dendritic cells (DCs) [31–34]. Furthermore, there is another
tumor-induced immunosuppressive mechanism consisting of induction of apoptosis or type
I PCD of dendritic cells (DCs) in the tumor microenvironment (TME), leading to their elimi‐
nation by the downregulation of antiapoptotic oncogene bcl-2, the production of nitric-oxide
(NO), which downregulates cellular inhibitors of apoptotic proteins (cIAPs or cFLIP), the
release of ceramide, which blocks PI3K-mediated survival signals, and alterations in intrinsic
apoptotic pathways [35].

One more tumor-induced immunosuppressive category consists of insufficient function of
effector cells in the tumor microenvironment (TEM). Its first mechanism consists of suppres‐
sion of T-cell immune responses by regulatory T cells (Treg), such as CD4+CD25 highFOXP3+,
which accumulate in tumors, and in the peripheral circulation of cancer patients [36]. They
downregulate the immune response of the effector T cells by releasing TGF-b1 and IL-10 and
involve the Fas/FasL and pathways linked to granzyme/perforin, and enzymatic ATP degra‐
dation to adenosine exerting immunosuppressive effects, which create tumor resistance
[37,38]. The second mechanism of this immunosuppressive category consists of suppression
of immune cells by bone marrow myeloid-derived immature suppressor cells (MDSC), such
as CD13+, CD33+, and CD34+, which are located in the peripheral circulation of cancer patients,
and they are recruited to the tumors after they release soluble immunosuppressive factors,
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such as PGE2, IL-6, GM-CSF, IL-10, VEGF, and TGF-b1, which produce the arginase-1 enzyme
that metabolizes L-arginine, activate iNOS, and control the tumor release of indoleamine-2,2-
dioxygenase (IDO), which catabolizes the essential for the differentiation of T-cell amino acid
tryptophan, leading to the immunosuppression of T-cell responses that promotes the survival
of tumor cells [39–41]. The third immunosuppressive mechanism of this third category consists
of tumor-derived microvesicles (MV) or exosomes, which express TAA, HLA class I molecules,
and death ligands, which exert their immunosuppressive action by the induction of apoptosis
or type I PCD in activated CD8+ effector T cells, eradicating their antitumor action. Also, these
tumor-derived exosomes exert an additional immunosuppressive action by blocking the
differentiation of monocytes to dendritic cells. Subsequently, the monocytes are transformed
by the tumor-induced exosomes (MV) into CD14-negative HLA-DR low TGF-b+ myeloid
suppressor cells (MSC), blocking the differentiation of immune cells, which inactivates their
antitumor properties by releasing TGF-b, downregulating HLA class II molecules, and
inhibiting the proliferation of lymphocytes [42].

The fourth mechanism of this immunosuppressive mechanism consists of induction of
apoptosis or type I PCD in effector T cells in the tumor and its periphery. Tumor cells may
cause apoptotic DNA fragmentation in a proportion of activated CD8+ T lymphocytes and
their effector subpopulations, such as CD8+CD28– and CD8+CD45RO+CD27–, in the tumor
site, and the peripheral circulation of cancer patients may lead to tumor progression due to
apoptotic death of effector T-cell functions, which compromises significantly the antitumor
immune responses [43–46].

The last tumor-induced immunosuppressive category consists of insufficiency in tumor
recognition signals consisting of four mechanisms. The first one consists of the downregulation
of expression of HLA molecules on the surface of tumor cells. As the tumor progresses, it
downregulates all HLA class I allospecificities, HLA-A, HLA-B, and HLA-C loci [47,48]. The
tumor cells may cause alterations in the expression of the APM components and defects in the
b2-microglobulin, and HLA class I heavy chain synthesis due to the deregulation of mecha‐
nisms involving the expression of HLA class I antigen and epigenetic alterations in the HLA
class I heavy chain loci, creating resistance to adoptive T-cell-based immunotherapy due to
defects into HLA class I which circumvents immune recognition, leading to tumor progression
that reduces significantly survival rates of cancer patients [49]. The second mechanism consists
of the downregulation of antigen processing machinery (APM) components in tumor cells or
antigen presenting cells (APCs) that affect all the peptides, which are presented by HLA class
I molecules to T cells enhancing tumor resistance to CTL lysis. The downregulation of total
loss of expression of the HLA class I/peptide complexes circumvents the recognition and
subsequent destruction of tumor cells by CTL, significantly reducing the disease-free interval
and survival rate of cancer patients. The third mechanism consists of the suppression of natural
killer cells (NK) in the tumor microenvironment (TME). The downregulation of the cytolytic
activity against tumor cells is mediated by the action of inhibitory receptors, such as ILT2/LIRI,
CD94/NKG2A, and KIR, which blocks lysis of cells expressing normal HLA class I [50]. The
NK cells respond spontaneously to cytokines by expressing IL2Rβγ, such as IFN-a, IFN-γ, IL-2,
and IL-15. Upon activation, NK cells release TNF-a and IFN-γ for eradicating tumor cells. They
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also interact with dendritic cells (DCs) for exerting synergistic apoptotic cell death in tumor
cells [51]. However, tumor cells release TGF-b1, which downregulates the expression of
NKG2D on NK cells impairing their antitumor activity, especially in advanced stages [52].
Thus, tumors may escape the cytolytic activity of NK cells by the inhibition of interactions
between receptors and ligands, the downregulation of tumoral ligands MICA or MICB, the
eradication of activated NK cells mediated by overexpression of tumoral death-ligands, and
the suppression of interactions between NKs and DCs in the tumor microenvironment (TME)
promoting tumor growth and subsequent metastasis, which may kill the cancer patient [53].
The final mechanism of the last immunosuppressive category consists of loss or downregula‐
tion of surface antigens TAA by tumor cells, which evade the host’s immune system by
circumventing the cytolytic action of effector T cells (CTLs) due to genetic or epigenetic
alterations, which may alter the tumoral protein expression, misleading recognition by the
immune system, which promotes uncontrollable tumor growth. Thus, the loss or downregu‐
lation of epitopes, such as TAA, and differentiation antigens, such as TRP-1, tyrosinase,
MART-1, gp100, and MUC-1, may promote tumoral growth due to escape from the host
immune system [54,55]. Furthermore, mutations caused by the tumor in the TAA may
circumvent the generation of epitopes, which are recognized immunogenically by cognate CTL
regardless of the expression of TAA. These genetic alterations of tumor cells at the coding RNA
level may affect posttranslational mechanisms at the protein level, including glycosylation,
ubiquitination, and proteolytic enzymes, such as endopeptidases and metaloproteinases
(MMPs), which degrade extracellular-matrix (ECM), leading to the downregulation or even
total loss of TAA, which mediates tumor escape from the immune system of the host promoting
tumor growth.

Thus, there is a continuous struggle between the tumor promoting and the antitumor immune
components of the cancer patient where immune promoters of tumor growth and survival
include Th17 cell, Cd4+Foxp3+ Treg cells, MDSC, TAM, and their associated chemokines/
cytokines, such as TGF-b, IL-23, IL-1b, TNF, and IL-6, while inhibitors of tumor development
and growth consists mainly of CD8+ T, Th1, and CD4+ [56]. The inhibitory signaling pathways
to the immune system must be suppressed by cancer immunotherapy [57]. Furthermore, the
complexity of cancer involves a crosstalk between tumor microenvironment that interferes
with the anticancer activities of the immune system, which in part is caused by the deregulation
of the epigenetic machinery that involves methylation-mediated silencing, chromatin remod‐
eling, and microRNA regulons, which may affect immune invasion, tumor–stromal interac‐
tions, and tumor angiogenesis [58]. Epigenetic silencing of coding RNA genes, such as
retinoblastoma (Rb) gene mediated by histone deacetylase-2(HDAC-2), may regulate immune
responses in cancer, which are facilitated by myeloid cells, such as myeloid-derived suppressor
cells (MDSCs), polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-
MDSCs), which are the normal counterparts of inflammatory monocytes that differentiate into
macrophages, and dendritic cells whose dysfunction in cancer is a severe mechanism of
immunosuppression [59,60]. Furthermore, tumor microenvironment (TME) may convert
plasmacytoid dendritic cells by complex molecular pathways into tolerogenic immunosup‐
pressive cells [61].
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Other tumor microenvironment (TME)-induced immunosuppressive factors, which we must
target with cancer immunotherapy not only in solid tumors but also in hematologic malig‐
nancies, include tumor intrinsic immunosuppressing ectoenzyme CD37, which is a disulfide-
linked homodimer that regulates negatively the proinflammatory effects of extracellular ATP;
activates P2X7R, which is a coactivator of the NLRP3 inflammasome-releasing proinflamma‐
tory cytokines such as IL-18 and IL-1b; and blocks antitumor T-cell immunity via upregulation
of the adenosine receptor (AR) signaling, promoting tumor angiogenesis, growth, and
metastasis [62–66].

4. Immunomodulation and immunotherapy

There are many potential therapeutic strategies for circumventing mechanisms of tumor
immune evasion, including reversal of the inhibition of adaptive immunity, blocking the T-
cell checkpoint pathways such as CTLA4, PD-1, TIM-3, adenosine A2A receptor and LAG-3
checkpoint molecule with agents such as IMP321, BMS-986016, pembrolizumab, nivolumab,
pidilizumab, AMP-224, ipilimumab, tremelimumab, etc.

Another therapeutic strategy consists of improving the function of innate immune cells by
manipulating the activation of natural killer (NK)-cell inhibitory receptors (KIP) and by
stimulating dendritic cells and macrophages with therapeutic agents in clinical development,
such as Lirilumab, and Toll-like receptors including TLR 2/4, TLR7, TLR 7/8, and TLR9
agonists, such as Hiltonol, Imiquimod, Resiquimod, CpG7909, and Bacillus Calmette–Guerin.

An additional mechanism consists of switching on adaptive immunity by promoting T-cell
costimulatory receptor signaling, using agonist antibodies for the promotion of CD137
signaling with Urelumab, enhancement of CD27 signaling with CDX-1127, activation of CD40
with CP-870,893, and ChiLob 7/4 promotion of GITP signaling with TRX518, enhancement of
OX-40 signaling with MEDI 6469, and administration of systemic recombinant IL-7, IL-15,
IL-21 with Denenicokin, rhIL-7, and rhIL-15 for enhancing immune cell function including T-
cell development.

The final therapeutic strategy consists of the activation of the immune system by potentiating
immune-cell effector function with IDO inhibition with Indoximab or INCB024360, various
vaccine-based therapeutic strategies, inhibition of TGF-b signaling with IMC-TRI, TEW-7197,
LY2157299, or GC1008, and systemic IFN-a or IL-2 administration [67].

There are many immunomodulatory effects of targeted therapies, which can circumvent
tumor-mediated immunosuppression, improving the effector T-cell function that enhances
eradication of targeted tumors. Tumor and immune system effects of approved and experi‐
mental targeted agents include Sunitinib, which by inhibiting multiple tumor-associated
tyrosine kinases, such as PDGFR and VEGFR, downregulates STAT3 and VEGF signaling
pathways, reducing the population and effectiveness of T-reg cells and MDSCs. By blocking
tumor-associated tyrosine kinases, such as KIT and ABL, imatinib inhibits IDO, reduces the
population and effectiveness of T-reg cells, enhances the population of B-1 B cells and the
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concentration of natural antitumor carbohydrate antibodies, and promotes the crosstalk
between NK and DC cells. By sensitizing tumor cells to the induction of apoptosis or type I
PCD, IAP inhibitors stimulate responses of T cells, NKT cells, and NK cells. GSK3b inhibitors
facilitate differentiation toward stem cell memory T-cell population by blocking GSK3b-
mediated signaling of tumor cell growth, enhancing TLR4 signaling. By downregulating PI3K-
AKT signaling in tumor cells, PI3K-AKT inhibitors enhance tumor susceptibility to perforin
and granzyme-mediated lysis involving NK cells and CTLs, downregulating prosurvival
signaling and reducing tumor promoting inflammation. By downregulating HSP-90, which
enhances unfolded protein-associated stress in tumor cells, HSP-90 inhibitors exert immunos‐
timulatory action by enhancing the expression of NKG2D ligands and by stimulating the CTL
recognition of tumor cells. JAK2 inhibitors increase the maturation of DCs, enhance DC-
mediated antigen presentation and T-cell priming, and downregulate immunosuppressive
STAT3 signaling and expression of IAP and PDL1 of tumor cells by blocking JAK2 signaling
in tumor cells. By downregulating BRAF-V600E, vemurafenib upregulates MART1, gp100,
and other antigens, while it reduces tumor secretion of immunosuppressive cytokines. By
inhibiting 26S subunit of the proteasome, bortezomib sensitizes tumor cells to lysis mediated
by CTL and natural killer (NK) cells after the downregulation of the expression of MHC class
I molecule, while it boosts antigen-specific T-cell response to vaccination. By inhibiting the
mTOR pathway, rapamycin, temsirolimus, and other mTOR inhibitors exert immunostimu‐
latory actions, increasing CD8+T-cell activation and production of IFN-γ, enhancing CD8+ T-
cell differentiation into memory T cells, impairing the homeostasis of T-reg cells, and
downregulating IDO. Cetuximab as a neutralizing antibody against EGFR inhibits tumoral
growth signals and activates the immune system by complement fixation, antibody-dependent
cellular cytotoxicity, MHC class I and class II upregulation, and enhancement of DC priming
of tumor-specific CTLs. Trastuzumab inhibits tumor growth signaling by the downregulation
of HER2, which activates antitumor CTL activity, activates NK cells to secrete IFN-γ, and
induces antibody-dependent cell-mediated cytotoxicity (ADCC). Bevacizumab, which is a
neutralizing antibody against VEGF, inhibits angiogenesis and subsequent metastasis, while
it enhances the maturation of dendritic cells (DCs) and the DC priming of T cells and shifts
differentiation of DC toward mature DCs instead of MDSCs [68]. Thus, by interfering with
these targeted pathways that drive tumor maintenance and growth, we exert immune
therapeutic action by modulating the differentiation, activation, function, and development of
the immune cells, which are responsible for inhibiting tumor growth and development, while
tumor-induced immunosuppressive mechanisms are circumvented. These immunomodula‐
tory properties that activate the antitumor response include antagonism of tumor-mediated
immunosuppressive mechanisms; increase of T-cell activation, differentiation, and effector
function; and enhancement of T-cell priming and bolstering of presentation of tumor antigens,
indicating a synergistic antitumor action between targeted therapies, which inhibit genomic
pathways and anticancer immunomodulatory effects. These synergistic anticancer effects may
become even much more effective with the use of combinatorial immunotherapies, which can
be used in combination with other conventional anticancer treatment modalities, such as
chemotherapy, radiotherapy, and surgery whose inflammatory and immunosuppressive
actions may be circumvented with immunonutrition which can improve metabolomics, while
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it may circumvent the deadly risk of infection to cancer patients. More analytically, combina‐
torial immunotherapy may act synergistically by combining two different immunotherapeutic
agents, such as inhibitors of immune checkpoints for preventing T-cell energy, and cancer
vaccines for producing antitumor T cells. For instance, PD1 inhibitors or CTLA4 vaccines, such
as autologous granulocyte macrophage colony-stimulating factor (GM-CSF) secreting tumor
vaccine, may exert a significant synergistic antitumor action associated with higher overall
survival rates by targeting multiple immunosuppressive pathways. Another combinatorial
immune therapeutic approach consists of combining costimulatory receptors, which are
overexpressed on activated T cells with agonistic antibodies, leading to enhancement of
antitumor T-cell function, which eradicates tumors. Promising combinatorial immunothera‐
pies target synergistically the dual T-cell checkpoints, downregulating CTLA-4, PD-1, PD-L1,
and LAG-3 with ipilimumab, tremelimumab, nivolumab, pembrolizumab, MEDI4736, and
BMS-986016 against NSCLC, colon Ca, gastric Ca, SCLC, pancreatic Ca, melanoma, RCC, triple
(-) breast Ca, and other solid tumors. Combinatorial immunotherapeutic regimens include T-
cell inhibitors with costimulatory receptor agonists targeting CTLA-4 and CD40 with admin‐
istration of tremelimumab and CP-870,893 against metastatic melanoma. Another
combinatorial regimen consists of T-cell inhibitors, and function enhancers of innate immune
cells targeting CTLA-4, PD-1, and KIR with administration of lirilumab, ipilimumab, and
nivolumab against solid tumors. Finally, T-cell inhibitors are combined with other activators
of the immune system, such as vaccines and passive immunotherapeutics targeting CTLA-4,
IL-21, PD-1, IDO with administration of denenicokin, ipilimumab, Nivolumab, INCB024360,
indoximod, sipuleucel-T, nivolumab, gp100, NY-ESO-1, TriMix-DC, and adoptive cell transfer
against melanoma, prostate Ca, and other solid tumors [67]. Currently, combinatorial thera‐
peutics may combine more than two agents, such as, immunotoxins, Fc-fusion proteins, and
bispecific T-cell engagers (BiTEs) [69–72].

Another even more efficient antitumor strategy consists of combining targeted therapies with
immunotherapies which exert many antitumor synergies. As we have observed previously
antitumor targeted therapies by breaking oncogene addiction, they may optimize the action
of immunotherapies by enhancing their sensitivity after circumvention of resistant immuno‐
suppressive mechanisms, leading to elimination of tumorigenic inflammation, enhancing long
lived memory T-cell priming, activation, differentiation, function, and effective dendritic cell
(DC) maturation, which trigger tumor cell senescence and eradication of tumor cells by
induction of apoptosis or type I PCD leading to a bystander killing effect [73]. The derived
apoptotic bodies release large quantities of multiple cancer-associated antigenic debris, which
activate dendritic cell (DC) functioning as a vaccination in situ, leading to long-lasting
remissions by combining the inhibition of oncogenic downstream signaling pathways,
enhancing immunosensitivity after elimination of tumor-induced immunosuppressive
mechanisms, which may lead to immunomodulatory effects, such as attenuation of the
function of specific immunocomponents that block the action of cytotoxic T lymphocytes
(CTLs), including myeloid-derived suppressor cells (MDSCs) and FOXP3+ regulatory T (Treg)
cells. Other targeted antitumor agents may enhance the priming of tumor-specific CTLs and
increase tumor antigen presentation by dendritic cells [74–76].
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Thus, this complex interplay of targeted anticancer agents, and immunotherapy may sensitize
tumor cells to immune-mediated eradication with long-lasting immunotherapeutic effects,
which may inhibit induction of tumor dormancy [77–79].

Thus, we can combine targeted therapies with combinatorial immunotherapies, which consist
of conventional immunotherapy, including administration of cytokines and/or chemokines,
such as IL-7, IL-15, IL-21, adoptive T-cell transfusion with effector T cells, APC vaccination
with dendritic cells (DCs), and tumor-associated antigens with tumor peptides combined with
novel tumor immunotherapies, which target tumor-induced immunosuppressive molecules,
circumventing tumor immunoresistance by inhibition of soluble suppressive molecules, such
as TGFb, COX2, VEGF, and IL-10; suppressive molecules, such as PD1, and CTLA4 on T cells;
and suppressive molecules, such as arginase, B7-H1, B7-H4, and IDO on APCs. They also target
immunoresistant regulatory T cells by inhibition of trafficking with CCL22-specific antibody
differentiation and signaling, such as FOXP3 signal, and depletion of T-reg cells with deni‐
leukin diftitox, cyclophosphamide, and CD25-specific antibody [80].

These combinatorial immunotherapies with targeted therapies can be used as neoadjuvants
and adjuvant treatments with conventional anticancer strategies, such as surgical debulking,
radiation therapy, and chemotherapy. For instance, immunotherapies such as indoximod,
Denecikocin, CP-870,893, PF-05082566, urelumab, IMP321, pidilizumab, MEDI14763,
MPDL3280A, pembrolizumab, tremelimumab, and nivolumab [67], which target CTLA-4,
PD-1, PD-L1, LAG-3, CD137, CD40, IL-21, and IDO, have been combined with chemothera‐
peutic regimens or agents, such as FOLFOX, paclitaxel, cyclophosphamide, carboplatin,
docetaxel, gemcitabine, etc., and molecular targeting agents, such as gefitinib, dasatinib,
bevacizumab, erlotinib, sunitinib, pazopanid, lenalidomide, vemurafenib, trametinib, rituxi‐
mab, sorafenib, etc., against liquid tumors, such as CML, NHL, etc., and solid tumors including
NSCLC, RCC, multiple myeloma, melanoma, pancreatic Ca, CRC, prostate Ca, breast Ca, etc.

In conventional anticancer treatment, the chemotherapeutic-induced immunosuppression
inhibits the anticancer efficiency of cell therapies, which are based on activated lymphocytes
for eradication of tumor cells enhancing susceptibility to infections [81].The majority of
conventional chemotherapeutic agents interfere with hematopoiesis and subsequently with
the immune system affecting the surveillance of cancer cells promoting tumor development
and growth [82].

Generally, cancer surgery causes tremendous alterations in the neuroendocrine, metabolic,
and immune systems constituting the stress response, which may lead to infection, and cancer
recurrence due to release of catecholamines, cortisol, and cytokines that interfere with the
adaptive or specific immunity, which is composed of humoral immunity that consists of B
cells, and cellular immunity containing T-cytotoxic cells, T-suppressor cells, and T-helper cells,
and the innate or nonspecific immunity. During the postoperative stage, there is balance
between pro-inflammatory and anti-inflammatory cytokines. Deficient responses may cause
immunosuppression leading to infections. Excessive responses may cause the systemic
inflammatory response syndrome (SIRS), which has been associated with the clinical syn‐
drome of sepsis and multiorgan failure (MOF) or multiple organ dysfunction syndrome
(MODS) [83].
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The postoperative immune response is multifactorial with the release of inflammatory Th1
cytokines, such as IL-6 and TNF-a, and corticosteroids immediately after cancer surgery.
Subsequently, even after 2 h from the surgical procedure, there is a reduction of the Th1
cytokines, while the Th2 cytokines, such as TGF-b, and IL-10 rise rapidly increasing the
accumulation of immunosuppressive myeloid-derived suppressor cells, and immune-
inhibitory cytokines [84]. This shift toward the Th2 immune response deregulates the cellular
immunity, enhancing susceptibility of the cancer patient to infection, sepsis, and MOF [85–
87]. Furthermore, there is a quantitative reduction of T lymphocytes, which depends on the
volume of blood loss during surgery. Also, there is a reduction in the number of white blood
cells (WBCs) called leucopenia, which causes immunosuppression that combined with
reduced cytokine secretion and suppression of T-lymphocyte responses, and reduced levels
of macrophages may cause postoperative sepsis that may lead to morbidity. However, sepsis
may be inhibited by postoperative release of anti-inflammatory cytokines, prostaglandins, and
nitric oxide, which requires arginine as a substrate for its production by nitric oxide synthase
[88]. Since plasma levels of arginine are reduced in septic patients, we need to establish a
positive nitrogen balance by supplementation of arginine as an immunonutrition approach.
This amino acid regulates blood flow by producing nitric oxide (NO), and it functions as an
immunomodulator by enhancing the antitumor cytotoxicity of neutrophils and macrophages
[89–92]. Furthermore, the proper antitumor function of T cells requires arginine. The tumor
microenvironment contains nitric oxide synthase (NOS) and arginase I, which are upregulated
by tumor-induced MDSC, acting as an immunosuppressive mechanism that leads to a
deficiency of arginine, which subsequently suppresses the antigen-specific T-cell responses by
downregulating the T-cell receptor [93,94]. Within a few hours after cancer surgery, there is
an evident reduction of arginine in the circulation of the cancer patient [95,96] because arginine
is metabolized by arginase-I, which may be downregulated by omega-3 fatty acids that are
metabolized to PGE3, inhibiting production of immunosuppressive Th2 cytokine, and
increasing the production of protectins and resolvins, which promote tissue repair [97].
Immunonutrition in the surgical cancer patient with arginine may improve trauma healing,
enhance macrophage function, and lymphocyte immune responses enhancing resistance to
infection at the postoperative stage [98]. A functional immune system is required for protecting
the surgical cancer patient from the high risk of postoperative infections, which can be achieved
by perioperative immunomodulating formulations that can circumvent postoperative
immunoparesis and prevent sepsis by activating the immune cell responses, and modulating
inflammation.

Other protective perioperative practices include minimally invasive surgical procedures,
circumvention of immunosuppressive drugs, and reduction of blood transfusions [99]. Radical
surgery combined with old-age neuroendocrine response and administration of analgesics
may suppress the activity of the innate immunity and specifically NK cells, which leads to
tumor progression since tumor cells circumvent tumor immunosurveillance and subsequent
cytolysis [100–104]. In addition, operative anesthetics, such as halothane, thiopental, and
ketamine, may suppress even further the activity of NK cells promoting metastasis. Thus,
immunonutrition may stimulate the immunity, while other factors such as hypothermia,
alcohol, and mainly stress may enhance tumor progression [105].
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Supplementation with polysaccharides or glutamine may increase natural killer (NK) cell
activity [106]. A requirement for a functional anticancer immunity includes a balanced
Th1/Th2 ratio because after surgery, a dominant Th2-type immune response, especially in
tumors of the gastrointestinal (GI) tract, may suppress tumor surveillance and cellular
immunity [107]. Other immunosuppressive and inflammatory factors such as IL-6 and
immunosuppressive acidic protein (IAP) may reduce the antitumor activity of cellular
immunity leading to tumor progression.

Other immunosuppressive factors include IL-10, TGF-b, and angiogenic VEGF, which is
regulated by CD47 signaling that suppresses activity of T cells promoting tumor growth [108].
Thus, after oncological surgery, we must help the patient to maintain homeostasis against the
consequences of cancer, tissular attrition, hormonal and metabolic changes, and mainly
inflammatory reaction, which induces metastases by a cascade of genomic signaling pathways
that may lead to angiogenesis, which is associated to a potent immunosuppression [109,110].
In addition to surgery, other conventional cancer treatments, such as chemotherapy and
radiation therapy, may suppress the immune system of the cancer patient by causing a
tremendous reduction in the production of all the cells of the bone marrow leading to leuco‐
penia and anemia, which may lead to severe infections. Specifically, if a neutrophil count is
below 1000, the risk of infection by bacteria, germs, and fungi is increased, which becomes
worse if the count is below 500 where we have neutropenia. This may be treated with admin‐
istration of colony stimulating factors (CSF) or white blood cell (Leukocyte) growth factors.
With bone radiation for metastatic tumors, leucopenia and even neutropenia may be caused
by chemotherapy. Furthermore, local radiation therapy can irritate the skin causing small
breaks from which germs and bacteria may enter causing infections. Also when lymph nodes
are irradiated, infection may occur, which leads to lymphedema. Moreover, there are many
tumor-induced immunosuppressive mechanisms, which have been described previously that
act synergistically.

5. Immunonutrition

It is very important that more than one third of all cancer deaths are related to nutritional
complications, which have been caused by side effects of the major treatments for cancer even
the targeted ones. With the administration of nutritional therapy, we can reduce or even inhibit
the nutritional complications of cancer, improving nutritional status and healing, maintain
normal weight by preventing muscle wasting, and mainly reduce side effects and mortality
or morbidity by enhancing the overall effectiveness of anticancer treatments and their
combinations while we may preserve and even enhance quality of life. Furthermore, with
immunonutrition, we may boost the immune system of cancer patients, especially those who
are hospitalized and malnourished. The immune system of cancer patients can be modulated
with immunonutritional formulations, which may contain immunostimulant and anti-
inflammatory nutrients such as protein, carbohydrate, amino acids, lipids, mineral, trace
elements, and vitamins including glutamine, which may enhance immune cell activity,
improve nutritional status, and reduce hospitalization time reducing risk of infections. Other
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nutraceuticals include arginine, which boosts immune function, prevents infection, and repairs
tissue after surgery; omega-3 fatty acids, which have anti-inflammatory properties minimizing
the risk for cancer cachexia; ribonucleic acid (RNA), which may stimulate immune cell division
and activity; taurine, which reduces inflammation; vitamin C or ascorbic acid, which supports
immune function and promotes wound healing; selenium, which supports immune function
preventing infection; turmeric, which has anti-inflammatory effects especially at the post-
operative stage; vitamins B12, B6, and B1, which may prevent post-operative immunosup‐
pression; zinc, which is important for normal immune system function; and wound healing
after surgery [111]. Also, natural products of alternative medicines, such as botanical or herbal
plant derivatives, and mind–body practices under an integrative medicine approach may
enhance the anticancer effects of conventional anticancer treatments, reducing their systemic
toxicity; alleviate clinical symptoms including pain, which are induced by cancer; and prolong
survival rates of cancer patients mainly by enhancing tumor immune responses via overex‐
pression of classic MHC molecules, induction of apoptosis in tumor cells via the Fas/FasL
pathway, and elimination of oncogenic cancer stem cells by inhibiting tumor immunoresist‐
ance [112–115]. Further, alternative medicine therapeutic strategies may reverse the tumor-
induced immunosuppressive phenotype regulating the antitumor properties of the immune
cells of the cancer patients by enhancing the antitumor abilities of T lymphocytes, regulating
the M1/M2 phenotypes of tumor-associated macrophages (TAM), eliminating myeloid-
derived suppressor cells (MDSC), enhancing antigen-presenting capacity of dendritic cells
(DCs), and regulating the secretion of Th1/Th2 immune factors.

Generally, by using an integrative medicine immunotherapeutic approach where alternative
medicine practice which follows a multitargeted and bidirectional regulation may compensate
for deficiencies of conventional orthodox western medicine, which is characterized by
specificity, we may achieve a synergistic effect concerning circumvention of tumor-induced
immunosuppression and enhancement of antitumor immunomodulation followed by
minimization or elimination of side effects prolonging the survival rate of advanced stage and
metastatic cancer patients promoting their quality of life [116–121].

6. Conclusion

The key is to treat each cancer patient under a precision or personalized evidence-based
medicine approach, which must rely on clinomics, including transcriptomics, genomics,
immunomics, lipidomics, glycomics, proteomics, metabolomics, nutrigenomics, and mainly
epigenomics, whose alterations in their noncoding RNA genes are reversible especially with
immunonutrition. The precise immunotherapeutic approach against cancer may act synerg‐
istically with conventional anticancer therapies, such as surgery, chemotherapy, and radio‐
therapy combined with therapies based on molecular targeting, which are tailored for each
patient on a pharmacogenomic basis. Also, they can be combined with nanomedicine for
specific molecular targeting and circumvention of biological milieu interactions, which may
tremendously enhance therapeutic efficacy with simultaneous reduction of systemic toxicity.
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