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Abstract

Two-dimensional over-complete wavelet packet transform can better represent the tex-
ture and long oscillatory patterns in natural images.

In this chapter, combining the doubly Wiener filtering algorithm and Wiener cost func-
tion, a new best wavelet packet decomposition scheme for image denoising applications
is proposed. The experiment results for the test image database show the effectiveness of
the proposed image denoising algorithm compared to some existing image denoising
methods.
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1. Introduction

Wavelet with vanishing moments are very effective for representing piecewise smooth images
[1]. However, two-dimensional separable wavelets are ill-suited to represent long oscillatory
patterns in images with abundant textures, partly owing to their poor directional selectivity
in frequency domain. These oscillatory variations of intensity can only be represented by small-
scale wavelet coefficients. In some image-processing applications, such as image denoising or
image compression, those small-scale coefficients are quantized to zero in the low bit rate
image compression and are thresholded or shrunken to zero in image denoising, which
degrades compression and denoising performance significantly. To overcome this circum-
stance, one way is to find the more suitable image representation techniques such as curvelet,
contourlet [2], and ridgelet [3]. But these methods need the researchers to design the new
directional compact filter or multichannel filter banks, which is also challenging in filter design
area. Another way is to improve the idea of wavelet design method to accommodate the new
requirement where the over-complete wavelet packet decomposition is proposed.

I NT E C H © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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Over-complete wavelet packet contains a mass of libraries of waveforms, from which the best
wavelet packet base can be selected to efficiently represent long oscillatory patterns given the
corresponding criterion. For example, in image compression application, the best wavelet
packet base is usually found by pruning the full wavelet packet decomposition given a user
predefined cost function. Recently, a large variety of cost function have been proposed, such
as Shannon’s entropy cost function and vector entropy cost function, which are used in the
rate distortion control strategy. On the other hand, different from finding the best tree structure
of the wavelet packet decomposition, some researchers devoted themselves for finding the
best wavelet packet decomposition base [4] which is equivalent to find the best filter banks of
wavelet packet decomposition.

In image denoising application, due to unknown noiseless image as well as a great diversity
of filtering methods in the transform domain, selecting the best wavelet packet base is always
a difficult problem. Enlightened by the idea of doubly local Wiener filtering method [5] and
spatially adaptive wavelet domain shrinkage image denoising algorithms, the best wavelet
packet bases selection method using the local Wiener cost function and its application in image
denoising is proposed. In this chapter, we will first give the detail of the best wavelet packet-
based selection algorithm and then discuss its application in image denoising.

2. Best wavelet packet base selection

Let ¥ °(x), ¥ '(x) be the wavelet function and scaling functions, the basic idea of wavelet packet
function can be defined as:

v () =2 Y, Wk (2x =),

1
v (x) =\/Ezkg(k)l//”(2x—k), forn>1 @

where & (k), g(k) are the orthonormal filters, respectively. Given a signal s(n) which is satisfied
the Nyquist sampling criterion, subspace VOEspan{l,b Ox-1):1 €2} is usually assumed to be the
tirst-level subspace of signal s(n). The subspace with depth j is defined as
v Espan{lpj'fl(x) =271y "2 ix-1), 1€ Z}. To understand this subspace easily, the dynamic
interval[27/n, 27/(n + 1)) can be associated with the subspace V]-”. For example, the interval[0, 1)
is equivalent to V.

2.1. Two-dimensional wavelet packet bases

The two-dimensional separable wavelet packet functions are defined as the tensor products
of two one-dimensional wavelet packet functions, that are,

Vo=spanty °x -1y °(y-p): (I, p)e 2%
Y"x, )= (X)W "(y), m, ne0, 1, ...

)
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Similar to the one-dimensional case, the subspace
V" =spany " (x) =27y "2 Tx -1 "2 Ty-p), (I, p)€ 7Y (3)

is referred to as the subspace with depth j and a wavelet packet function ¢ ™" (x, y). Figure 1
gives the subspace of 2D wavelet packet base diagram. It can be seen that each node is divided

into two branches. Let us associate the dyadic square [2 /m, 2/(m +1))x[27/n, 27/ (n + 1)) with
the subspace V]-”"”, for example, V, associates with the square [0, 1)2, Vf'o associates with the
rectangle [1/2, 1)x[0, 1/2), and Vll'1 associates with the square [1/2, 1)% It has been proved
that: if the squares [27/m, 27/(m+1))x[27/n, 27/(n +1)), (m, n, j)EQ are a partition of the unit
square [0, 1)%, then the family of functions {\I”” "x, y):(, p) e 72, (m, n, j)E Q} constitutes an

jil,p
orthogonal wavelet packet base of V.
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Figure 1. The subspace of 2D wavelet packet base

2.2. Best wavelet packet base selection under wiener cost function

Similar to the tree structure illustrated in Fig. 1, 2D wavelet packet decomposition can be easily
expressed by the quad-tree structure with the root node {0, 0, 0. Each node (m, n, j) (except
the last level node) has four child nodes (2m, 2n; j+1), 2m, 2n+1, j+1), 2m+1, 2n, j) and
(2m+1, 2n +1, j+1). This quad-tree structure facilitates the best wavelet packet decomposition
procedure. Given the image and the noise level ¢ (if unknown, the noise level can be estimated
by the MAD estimator in the wavelet domain), the wavelet packet coefficient at the node
(m,n, j) under J-level wavelet packet decomposition is represented as

y]»m,ﬂ(p, q), m,n=0,1, ..., 27-1; j=0,1, ..., J. For each node, its Wiener cost function is
computed by

(m 1 ]) Z Z [ En’(””(p)]q)} % m,n=0,1,..,2'-1,j=0,1,...,]. (4)
P.q
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Assuming all the node in the quad-tree decomposition forms a set Class (A)={Q=1{(m, n, j)},

our task is to find a subset Q" from set QQ which have the smallest total cost function (the
summation of the Wiener cost function at all wavelet packet decomposition node).

Similar to most of the search algorithms of the best wavelet packet base, the best wavelet packet
base under Wiener cost function is obtained by pruning a J-level full quad-tree from bottom
to top. The searching algorithm can be described as follows:

i LetS(m, n, | )={(m, n, | )}, m, n=0,1, -, 2/ -1 represent 2% leaf nodes in the J-level full
quad-tree.
ii. For0<j<J and eachnode (m, n, j)inthej-thlevel, calculate the corresponding Wiener

cost function

m, n(p q)
Jimmf)=o"2 2 ER)] : (5)
F v (pa)] vo
as well as the summation of the Wiener cost functions of its four child nodes by
J(m,n,j) = J(S(2m,2n,j+1)) + J(S(2m,2n +1,j + 1)) +
+](S2m+1,2n,j+1))+ J(S2m+1,2n+1,j+1))
iii. If J(m, n, j)<J(m, n, j), then
S(m,n,j) =S(2m,2n,j+ )| JS@2m,2n+1,j+ 1) JS@m+1,2n,j+ 1) JS@2m +1,2n+1,j+1)
otherwise, S(m, n, j)={(m, n, j)}.
iv. Calculate the Wiener cost function of each set S(m, n, j) by
](S(m,n,j))s Z ](u,v,r), mmn=0,1,..,2 -1, ©)

(u,v,r)eS(m,n, j)

V. If >0, set j — j—1 and return the step (ii); otherwise, output Q'=5(0, 0, 0).

The set Q" is composed of all leaf nodes of the best quad-tree decomposition structure. In
this way, given the input noisy image and the noise level, the optimal orthogonal wave-
let packet decomposition structure and the minimal total Wiener cost function can be
obtained. Figure 2 shows a demo of best wavelet packet decomposition where Fig. 2(a) is
its square representation and Fig. 2 (b) is the corresponding tree structure of this best
wavelet packet decomposition.
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Figure 2. A demo of best wavelet packet decomposition

3.Image denoising algorithms based on best wavelet packet decomposition

This section gives two image denoising algorithms based on the best wavelet packet decom-
position. In the above section, the optimal wavelet packet decomposition structure is obtained
under the Wiener cost function. When computing the Wiener function, the noiseless image
and the noise level are assumed as known. In practice, this assumption is unreasonable. It is
well known that the noise level can be accurately estimated by the MAD estimator from the
input noisy image. The key problem is how to estimate the noiseless image. Enlightened by
the empirical Wiener filtering and the doubly local Wiener filtering image denoising algo-
rithms, we first filter the noisy image to get the pilot image, and then the pilot image is used
to get the best wavelet packet decomposition structure.

It is well known that undecimated wavelet packet decomposition can achieve better image
denoising performance than the decimated wavelet packet decomposition. This is owing to
the property that they are shift invariance and robustness. So, the undecimated wavelet packet
decomposition can ameliorate some unpleasant phenomenon that appears in the maximally
decimated wavelet packet decomposition, such as Gibbs-like ringing around edges and specks
in smooth region.

In what follows, we will give the detail of the image denoising algorithm using the undeci-
mated wavelet decomposition. Let x(p, q) be a input noisy image of size 2N x2V, the operator
Shift, ,(x) denotes circularly shifting the inputimage x(p, q) by k indices in the vertical direction
and [ indices in the horizontal direction, and the operator Unshift, ;(x) is a similar operation
but in the opposite direction. In the proposed algorithm, we first use the decimated best
wavelet packet decomposition algorithm to denoise all possible shift versions of the noisy
image to get a set of denoised images and then unshifting these denoised images and average
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them to get the final denoised image. The new algorithm is referred to as the local Wiener
filtering using the best undecimated wavelet packet decomposition (LWF-BUWPD), which
can be summarized as follows:

i Using the local Wiener filtering image denoising algorithm to each shift of input noisy
AN
image shift (x(p, q)) to get a pilot image s(p, q) ;

ii. Given the pilot image and noise level, the best wavelet packet decomposition
structure can be obtained by using the searching algorithm in section 2.

iii. Given the best wavelet packet decomposition structure, the empirical energy
distribution of the pilot image can be estimated by

m,n 1 A . *
E () :{m2<s,t)ew8im,n<iv+srq+f>}+f<mw> =Q )

where W and § imn(p, q) represent the directional window and the pilot image’s best wavelet

packet decomposition coefficients, respectively.

iv. Using the estimated energy distributions and noise level, the local Wiener filtering is
operated on the base wavelet packet decomposition coefficients of the noisy image,
that is,

E" (p,q)

57" (p.g) = Y (p,q), (myn, ) e QY (8)

CEM(pg)+o

where y""(p, ) are the best wavelet packet decomposition coefficients of the noisy image in

m,n
the subspace V;™".

V. Unshift all the shifted denoised images and average them to obtain the final denoised
image §(p, q)

. 1 12 - iy N
S0 = a7 Lo 2o Unshift (5. (p) ©)

4. Experimental results

We choose the 8-bit 512 x 512 grayscale images “Lena” and “Barbara,” and a 256 x 256 texture
image, as the test images. In the proposed image denoising algorithm, the best wavelet packet
decomposition structure is varied with different shift noisy images and different noise level.
For better illustration, the best wavelet packet decomposition structure for different noise level
is shown in Fig. 3 for “Barbara” image.
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Figure 3. The best wavelet packet trees for the “Barbara” image with different noise levels: (a) 0=10; (b) 6=15; (¢
0=20;(d)o=25.

In Table 1 and Fig. 4, we give the denoising performance of the image denoising algorithms
using the undecimated best wavelet packet decomposition. The experimental results show
that for images of structural textures, for example, “Barbara” and texture images, the proposed

algorithm greatly improves denoising performance as compared with the existing state-of-the-
art algorithms.

Test image Boat Fingerprint House

Noise level 10 15 20 25 10 15 20 25 10 15 20 25

DLWFDW 3343 3147 30.10 29.09 3221 30.01 2851 2734 3514 3321 3191 30.92

DFB-GSM 33.58 3170 30.37 29.13 3245 30.14 28.60 2745 3535 33.64 3239 3140

LWE-BUWPD 3358 31.69 3036 2936 3251 30.22 28.66 2756 3537 33.65 3242  31.42

Test Images Lena Barbara Texture

Noise level 10 15 20 25 10 15 20 25 10 15 20 25

DLWFDW 35.3 33.5 32.2 31.2 33.9 31.5 29.9 28.6 3392 31.68 30.11 29.03

DFB-GSM 35.61 3390 3266 31.69 34.03 31.86 3032 29.13 3483 32,61 3095 29.71

LWEF-BUWPD 3560 33.87 3265 31.66 34.35 3228 30.80 29.63 3497 3292 3172 30.65

Table 1. The performance comparison of the LWF-BUWPD and several state-of-the-art image denoising algorithms
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Figure 4. (a) The noiseless image (the left top corner), the noisy image (the right top corner, noise level 20), the
denoised image by the DFB-GSM algorithm (the left bottom corner, PSNR = 30.93 dB), and the denoised image by the
LWEF-BUWPD algorithm (the right bottom corner, PSNR = 31.70 dB); (b). Zoomed local regions of the four images in

(@)
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