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Abstract

Inherited macrothrombocytopenias comprise a heterogeneous group of inherited platelet
disorders that are characterized by large platelets, thrombocytopenia and bleeding ten‐
dencies in affected individuals. Diagnostic platforms have traditionally involved a bat‐
tery of complex phenotypic tests that often fail to reach a diagnosis. Next-generation
sequencing lacks the pre-analytical and analytical shortcoming of these tests and pro‐
vides an attractive alternate diagnostic approach. Our group has developed a candidate
gene array targeting genes known to affect platelet function and tested it in a large cohort
of Australasian patients with presumed platelet function disorders, particularly macro‐
thrombocytopenia. This array identified causative variants in a significant portion of pa‐
tients with uncharacterized platelet disorders, including transcription factor mutations
that cannot easily be diagnosed with standard platelet phenotyping procedures. We pro‐
pose that targeted genotypic screening can identify the genetic basis of platelet function
defects and has the potential to be developed into a powerful clinical platform to help
clinicians diagnose these rare disorders.

Keywords: Inherited macrothrombocytopenia, next-generation sequencing, candidate
gene array

1. Introduction

Platelets are essential for clot formation after tissue trauma. Initiation of the platelet plug occurs
by adhesion of platelets to the damaged vascular endothelium mediated by interactions of
glycoprotein Ib/IX/V complexes with von Willebrand factor (vWF), and GPVI and integrin
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α2β1 with collagen [1]. Extension of the platelet plug requires activation of αIIbβ3 through an
“inside-out” signaling cascade which enables receptor cross-linking with fibrinogen and vWF
and activation of “outside-in” signaling events [1, 2].

Primary hemostasis relies on both adequate function and number of platelets. Abnormalities
in platelet function and/ or number may be acquired (liver disease, chronic kidney disease) or
inherited (inherited platelet function disorders, IPFDs or inherited platelet number disorders,
IPNDs). The group of inherited macrothrombocytopenias is included in the heterogeneous
IPNDs and are characterized by large platelets, thrombocytopenia and bleeding tendencies in
affected individuals (Figure 1A, Figure 1B, Figure 1C and Figure 1D) [3].

Figure 1. A normal blood film and three blood films demonstrating macrothrombocytopenia associated with muta‐
tions in different genes (MYH9, NBEAL2 and GFI1B, respectively). (A) A blood film with platelets of normal appear‐
ance (black arrows). (B) MYH9-related disorder with characteristic inclusion bodies in the neutrophils (small black
arrow) and large platelets (red arrow). Normal-sized platelets are also seen (long black arrow). (C) Gray platelet syn‐
drome showing distinctive pale or gray platelets (black arrows). (D) GFI1B-related thrombocytopenia (c.880-881insC
mutation) resulting in red cells with atypical shapes and sizes (red arrow) and thrombocytopenia with platelets that
appear large with normal granulation (long black arrow) as well as hypogranular or gray (short black arrows).

Unfortunately, inherited macrothrombocytopenia is under-recognized with the presence of
large platelets on blood film examination often leading to a misdiagnosis of immune throm‐
bocytopenic purpura (ITP), resulting in subsequent inappropriate treatment with steroids or
in some cases removal of the spleen [4]. Diagnostic algorithms have traditionally been based
around biological laboratory tests examining functional properties and activation pathways
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in isolated platelets [3, 5–7]. This phenotypic approach is poorly standardized, technically
difficult and not easily reproducible [6–11]. In addition, numerous pre-analytical variables may
affect phenotypic test results. These variables include the effect of food (garlic), alcohol, drugs
(herbal remedies, non-steroidal anti-inflammatory drugs, anti-platelet medications) and
stimulants (smoking and caffeine) on platelet function, activation of platelet samples during
venipuncture and transport necessitating careful sample handling as well as the relatively
large volume of blood needed (which becomes a major problem when assessing pediatric
samples) [12–14]. Despite these complex phenotypic tests, many cases remain without a
definitive diagnosis.

Genetic technology may overcome many of the problems surrounding phenotypic testing for
thrombocytopenia as DNA is stable, can easily be transported long distances and is not affected
by diet or drugs. Moreover, genetic-based tests have provided opportunities to reduce
redundancy and heterogeneity of diagnostic algorithms and have shifted our ability to describe
inherited platelet disorders from a level of the defective platelet pathway involved, to a
molecular level.

The Sanger sequencing method [15] has long been considered the “gold standard” technology
to rapidly analyze small regions across a limited number of samples, but it is not suited to
screening large numbers of genes in multiple patients [16]. The emergence of next-generation
sequencing (NGS) technologies as a diagnostic approach has been able to generate more test
sequence increasing the number of gene targets and decreasing the costs [17, 18]. Human whole
genome sequencing (WGS) or whole exome sequencing (WES) [19, 20] have proven to be
clinically appropriate and practical modalities in describing new genetic mutations in families
and identifying known pathogenic mutations in individuals formerly without a diagnosis [17].

Testing approaches may vary depending on whether a novel genetic mutation is likely. WGS
and WES are powerful platforms in discovering novel causal variants in individuals with rare
penetrant monogenic disorders [21], whilst a candidate gene approach allows assessment of
known mutations in genes causing clinical phenotypes.

Whole genome approaches incorporating NGS have recently reported novel mutations in an
essential platelet transcription factor GFI1B [22, 23], and a WES approach followed by targeted
Sanger sequencing was used successfully to describe mutations in ACTN1 causing macro‐
thrombocytopenia [24, 25]. Acknowledging these advancements, we employed a targeted
candidate gene approach to explore cases of suspected inherited macrothrombocytopenia that
remained uncharacterized despite phenotypic testing and hypothesized this to be an effective
approach to diagnose inherited macrothrombocytopenia.

2. Materials and methods

2.1. Patients

Diagnostic assessment of patients with uncharacterized thrombocytopenia was performed as
part of a human research ethics committee approved study conducted in accordance with the
Declaration of Helsinki.
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Following informed written consent, 20 ml of blood was taken from an antecubital vein and
collected into EDTA tubes. This blood was easily transported, in some cases, over 1,000 km
between diagnostic sites in Australia.

A total of 95 patient DNA samples were analyzed. This included two internal controls for
which DNA-based diagnosis had previously been established by Sanger sequencing.

32 male patients (mean age 37.4 years, range 18–92 years) and 44 female patients (mean age
38.7 years, range 18–79 years) were included in the NGS assay. The mean age of the cohort
was 38.1 years (range 18–92 years). Sixteen de-identified DNA samples were received from
referring institutions for which no additional laboratory data were available.

Phenotypic testing data were available for 59 (62.1%) individuals. This included platelet
functional analysis (PFA) (n = 25, 26.0% of the cohort), light transmission aggregometry / whole
blood impedance aggregometry (LTA/WBIA) (n = 39, 41.3% of the cohort), flow cytometry (n
= 45, 47.8% of the cohort) and electron microscopy (n = 12, 13% of the cohort). These phenotypic
test results suggested a diagnosis to a “pathway level”, that is, a description to the level of the
suspected defective biochemical pathway, in only 11 cases. Pathway orientated defects
included, storage pool disorders (n = 3), platelet glycoprotein deficiency (n = 3), platelet
signaling defects (n = 2), platelet secretion defects (n = 2) as well as α-granule disorder (n = 1).

2.2. DNA preparation

Genomic DNA (gDNA) was isolated from peripheral blood leukocytes using the Wizard®
Genomic DNA purification kit (Promega, Alexandria, NSW, Australia). DNA quality and
concentration were assessed using the Nanodrop™ 1000 spectrophotometer (Thermo Scien‐
tific, Scoresby, Vic, Australia) that measures the purity of DNA by the ratio of absorbance of
molecules at 260 and 280 nm. Samples with ratios between 1.8 and 2.0 were accepted for
analysis whilst ratios lower than this may represent the presence of contaminants and these
samples were not processed further [26]. At least, 250 ng of input gDNA was prepared per
sample.

2.3. Candidate gene identification and gene panel design

An extensive literature search using public databases was performed to assemble an initial
candidate gene list of all genes reasonably hypothesized to have an impact on platelet number
and size (n = 173). A final list of candidate genes (n = 19) was derived by including those genes
in which mutations were known to be definitively associated with IPNDs (predominantly,
macrothrombocytopenia) and by excluding genes, which although known to result in throm‐
bocytopenia, could easily be identified by conventional and clinical methods characterized by
distinct clinical phenotypes.

A TruSeq custom amplicon (TruSeq® Custom Amplicon Kit, Illumina Inc., Scoresby, Vic,
Australia) specific for the target regions of the selected 19 genes (Table 1, ACTN1, CD36, ETS1,
F2R, FLI1, GATA1, GFI1B, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9,
NBEAL2, P2RY12, RUNX1, TUBB1) was designed as an entire custom pool using the web-
based software tool, Illumina Design Studio (Illumina Inc.). This generated 201 gene targets
that were either exons or gene regions that were split into 632 amplicons, each of approximately
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250 base pairs (bps). There were no undesignable targets and a total coverage of 91% was
predicted for the panel.

Gene Description (OMIM) Inheritance Disorder (abbreviation in this paper, OMIM entry)

ACTN1 Alpha-Actinin-1 AD
α actinin-related thrombocytopenia (α actinin-RT,

615193)

CD36 (GPIV) Thrombospondin receptor (Glycoprotein IV) AD
Familial thrombocytopenia with GPIV deficiency (nd,

608404)

ETS1
V-Ets avian erythroblastosis virus E26 oncogene

homolog 1
nd nd

F2R Coagulation factor II (thrombin) receptor nd nd

FLI1 Friend leukaemia virus integration 1 AD
Paris-Trousseau syndrome / Jacobsen syndrome (TCPT/

JBS, 188025, 600588)

GATA1 GATA-binding protein 1 XL GATA1-related disorders (GATA1-RD, 300367, 314050)

GFI1B Growth factor-independent 1B AD GFI1B-related thrombocytopenia (GFI1B-RT, 187900)

GP1BA Glycoprotein 1b-alpha polypeptide

AR

AD

AD

AD

Bernard Soulier syndrome (BSS, 231200)

Platelet type-von Willebrand disease (PT-VWD, 177820)

Velocardiofacial syndrome (VCFS, 192430)

Mediterranean thrombocytopenia (nd, 153670)

GP1BB Glycoprotein 1b-beta polypeptide AR Bernard Soulier syndrome (BSS, 231200)

GP6 Glycoprotein VI AR*
Bleeding disorder, platelet type 11

(614201)

GP9 Glycoprotein IX AR Bernard Soulier syndrome (BSS, 231200)

ITGA2 Integrin, alpha-2 AR
GPIa/IIa deficiency (giant platelets and mitral valve

insufficiency) (nd,nd)

ITGA2B Integrin, alpha-2B AD
Monoallelic ITGA2B/ITGB3-related thrombocytopenia

(ITGA2B/ITGB3-RT, 187800)

ITGB1 Integrin, beta-1 AR
GPIa/IIa deficiency (giant platelets and mitral valve

insufficiency) (nd,nd)

ITGB3 Integrin, beta-3 AD
Monoallelic ITGA2B/ITGB3-related thrombocytopenia

(ITGA2B/ITGB3-RT, 187800)

MYH9 Myosin heavy-chain 9 AD MYH9-related disease (MYH9-RD,155100)

NBEAL2 Neurobeachin-like 2 AR Gray platelet syndrome (GPS, 139090)

P2RY12 Purinergic receptor P2Y, G protein-coupled 12 AR*
Bleeding disorder, platelet type 8

(609821)

RUNX1 Runt-related transcription factor 1 AD
Platelet disorder, familial, with associated myeloid

malignancy (FDP/AML, 601399)

TUBB1 Tubulin, beta-1 AD
β1 Tubulin-related thrombocytopenia ( β1 tubulin-RT,

613112)

Table 1. Candidate gene list. OMIM, online Mendelian inheritance in man; AR, autosomal recessive; AD, autosomal
dominant; XL, X-linked; nd, not defined, *In progress (OMIM)
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2.4. Next-generation sequencing

The Truseq custom amplicon library preparation kit and the MiSeq Illumina sequencer platform
(Illumina Inc.) were used to create the sequencing library and perform resequencing respective‐
ly. All steps were performed in-house according to the manufacturer’s instructions [27, 28].

Library preparation was performed by enrichment of the target regions using an amplicon-
based multiplex polymerase chain reaction (PCR) method. Here, a custom amplicon tube
(CAT) containing upstream and downstream oligonucleotides specific for the target regions
was hybridized to the unfragmented gDNA samples in a 96-well plate. Unbound oligonu‐
cleotides were then removed by a series of wash steps using manufacturer supplied reagents.
A proprietary extension–ligation mix containing DNA polymerase and ligase (Illumina Inc.)
extended and ligated the upstream bound oligonucleotide through the targeted region to the
5′ end of the downstream oligonucleotide. The resulting extension–ligation products contain‐
ing the targeted genomic region flanked by common sequences required for amplification were
then amplified by standard PCR on a thermal cycler. The amplicon size (250 bps), the number
of amplicons in the CAT (632 amplicons) and the type of input DNA (high quality) determined
the number of PCR cycles (n = 24). The PCR reaction incorporated two unique, sample-specific,
multiplexing index sequences (barcoding) that would later be used by the alignment software
(MiSeq reporter) to identify individual samples following library pooling, and common
adapters required for cluster generation. PCR products were purified by AMPure XP beads
(Beckman Coulter, Lane Cove, NSW, Australia) and the quantity of each library was normal‐
ized by an integrated bead-based method. Equal volumes of the normalized libraries were
then combined, diluted in hybridization buffer (Illumina Inc.) and heat denatured.

The MiSeq Illumina instrument was used to resequence the pooled library by paired-end
sequencing. The DNA library was immobilized to the single-use glass-based MiSeq flow cell
through the adapter sequences. Bridge PCR amplification then generated clusters of clonal
copies of each DNA molecule. These templates were then sequenced using platform-specific
reversible dye terminator sequencing-by-synthesis chemistry. Sequence alignment to the
reference genome (GRCh37/hg19) was performed using on-instrument software (MiSeq
reporter software, Illumina Inc.) that aligned the reads in BAM format and outputted variant
calls in.vcf files. Variant calls were generated using ANNOVAR software (http://www.open‐
bioinformatics.org/annovar) [29] with an acceptance threshold Q-score of 30, corresponding
to a 1:1000 error rate and genomic datasets were viewed using the Integrative Genomics viewer
(IGV) (www.broadinstitute.org/igv/) [30]. Sanger sequencing was performed to provide data
for bases with insufficient coverage and validate variants of clinical significance.

2.5. Data analysis

The University of California, Santa Cruz (UCSC), genome browser (http://genome.ucsc.edu)
was used for variant analysis and variants were cross-checked against databases including the
NHLBI-Extended Sequencing Project (ESP), 1000 Genomes Project Database [31] and the
Database of Single-Nucleotide Polymorphisms (dbSNP, http://www.ncbi.nlm.nih.gov/SNP/).
Bioinformatic tools, Sorting Intolerant From Tolerant (SIFT, http://sift.jcvi.org/) [32], Polymor‐
phism Phenotyping-2 (PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/) [33] and Mutation
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taster (http://www.mutationtaster.org/) [34] were used to predict variant effects on protein
structure and function in the cases of variants lacking published literature.

2.6. Nomenclature and descriptions for variant reporting

All variants identified were annotated according to Human Genome Variation Society (HGVS)
nomenclature for clinical reporting (http://www.hgvs.org). The variant elements included
gene name, zygosity, cDNA nomenclature, protein nomenclature, exon number and clinical
assertion.

Descriptions of sequence variations were adapted from the American College of Medical
Genetics and Genomics (ACMG) recommendations for standards for interpretation and
reporting of sequence variations and are listed below [35]:

Pathogenic: The sequence variation has been reported in the literature and is a recognized cause
of the disorder.

Likely pathogenic: The sequence variation is previously unreported and is of the type that is
expected to cause the disorder.

Variant of uncertain significance (VUS): The sequence variation is previously unreported and is
of the type which may or may not be causative of the disorder.

Likely non-pathogenic: The sequence variation is previously unreported and is probably not
causative of disease.

Non-pathogenic: The sequence variation is previously reported and is a recognized neutral
variant.

3. Results

3.1. Next-generation sequencing platform performance

Next-generation sequencing on the Illumina platform produced 13 690 589 (96.74%) reads that
passed initial filtering. This process removes any clusters demonstrating excessive intensity
corresponding to bases other than the called base. Only reads that passed the quality filter
were assigned a quality score. A quality score of Q30 was accepted in the run predictive of an
error probability of ≤0.1%. One sample was excluded from analysis due to poor DNA quality
that generated poor-quality scores across all genomic regions.

Overall coverage across all genomic targets was 92.3%. This was consistent with the initial
software prediction.

3.2. Candidate gene panel results

A total of 703 non-synonymous variants were detected; 75 of these variants were novel and
had not been reported in the dbSNP database. An average of eight non-synonymous variants
was detected per patient.
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Two individuals with known mutations in GFI1B, GP1BA and GP9 by Sanger sequencing were
included as controls. NGS successfully called the first, GFI1B c.880-881insC, but failed to detect
the second, a patient with a phenotype consistent with the inherited macrothrombocytopenia
Bernard-Soulier syndrome (BSS). This patient’s genotype had previously been confirmed by
Sanger sequencing and included mutations in both the GPIBA (GPIBA c.2217C>T) and the GP9
genes (c.1829A>G and c.1859T>G). Failure to detect these mutations may have been caused by
sequencing errors introduced by GC-rich motifs in these regions [36, 37].

Pathogenic mutations were detected in 16 individuals (17.4% of the cohort) whilst 36 individ‐
uals (39.1%) had VUS and 40 individuals (43.0%) were without identifiable pathogenic
mutations (Table 2, Table 3).

Genes
Number of individuals with pathogenic

mutations
Number of mutations detected of uncertain

significance

ACTN1 0 8

GP1BA 1** 2

GP1BB 0 2

GP9 0 1

MYH9 6 3

TUBB1 0 3

NBEAL2 1 7

FLI1 0 1

GATA1 0 3

GFI1B 3 2

RUNX1 2** 0

CD36 0 13

F2R 0 0

GP6 0 5

ITGA2 0 4

ITGA2B 3* 6

ITGB1 0 0

ITGB3 0 0

P2RY12 0 0

Total Number 16 60 mutations in 36 individuals

Number of individuals without pathogenic mutations identified: 40

*Parents heterozygous; child with homozygous mutation giving rise to a Glanzmann thrombasthaenia phenotype.

** These mutations are likely pathogenic.That is, the detected variation is unreported in the literature to date, however,
based on the type of variation, it’s deleterious effect predicted using bioinformatic tools (see data analysis) and the
associated phenotypic data, is of the type to cause the disorder

Table 2. Mutations detected in the candidate genes. Genes affecting the platelet cytoskeleton (top, white shading), the
platelet granules (light gray shading) and platelet-related transcription factors (dark gray shading).
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Gene Chromosome Zygosity Nucleotide change Protein alteration Exon

GP1BA** 17 Heterozygous c.1432delT p.Phe478fs 2

MYH9 22 Heterozygous c.283G>A p.Ala95Thr 2

Heterozygous c.287C>T p.Ser96Leu 2

Heterozygous c.2104C>T Arg702Cys 17

Heterozygous c.4339G>C p.Asp1447His 31

NBEAL2 3
Compound

heterozygous
c.5935C>T

c.7103dupA
p.Arg1979Trp

His2368fs
37
45

GFI1B 9 Heterozygous c.503G>T p.Cys168Phe 4

RUNX1** 21 Heterozygous
c.503–504ins

ACCACAGAGCCATCAAA
AT

p.Ile168fs 3

Heterozygous Stop/gain c.766C>T p.Gln256X 5

ITGA2B* 17 Homozygous c.138–139insT p.Gly47fs 1

* Parents heterozygous. Child with homozygous mutation giving rise to a Glanzmann thrombasthaenia phenotype.

** Mutations are likely pathogenic.

Table 3. Pathogenic genetic variants detected: nucleotide cDNA changes and corresponding protein alterations.

The candidate array was successful in detecting mutations in genes commonly associated with
macrothrombocytopenia and included a total of nine MYH9 mutations (six of which had
previously been reported in the literature as pathogenic and three of which are of uncertain
significance) (Figure 2) and a compound heterozygous mutation of NBEAL2 in keeping with
Gray platelet syndrome.

Figure 2. MYH9 variants detected in the candidate gene panel. Exons 2–20 encode the head and neck domains of
NMMHC IIA (Blue block). Exons 21–41 encode the tail domains. Mutations were detected in exons 2, 17, 31 and 33. Six
pathogenic mutations (red text) and three variants of uncertain significance (black text) were detected.

A homozygous mutation of ITGA2B was also detected and confirmed a suspected Glanzmann
thrombasthenia phenotype. Several transcription factor variants were found, including a FLI1
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mutation of uncertain significance in one patient, three GATA1 mutations of uncertain
significance in three individuals from two families, three pathogenic GFI1B mutations in three
individuals from two families and two of uncertain significance in two individuals in another
two families. RUNX1 mutations were identified in three individuals from three families; two
of these were considered likely pathogenic, whilst the third was shown to represent a false
positive result (RUNX1, heterozygous, stop/gain, c. 966T>G (p.Tyr322X), exon 6). False
positivity was confirmed by Sanger sequencing that showed a wild-type sequence across that
region.

Sanger sequencing was also performed in selected samples across regions of low coverage (Q
< 30) from those genes in which the clinical significance is widely accepted and included, GP9,
GP1BA, GPIBB, FLI1 exon 3, FLI1 exon 9, MYH9 exon 20, MYH9 exon 37 and GFI1B exon 5.
This confirmatory step detected a novel mutation in FLI1 [38], not identified by NGS.

4. Discussion

The diagnosis of IPFD and IPNDs using classic phenotypic methods poses a challenge to
clinicians and laboratory scientists due to lack of consensus over classification and diagnostic
criteria, poor standardization of tests and heterogeneity of traditional diagnostic approaches
[6]. This diagnostic conundrum is evident in our cohort where only 11 patients received a
suspected diagnosis to a pathway level following multiple previous phenotypic tests. In
addition, only 62% of patients received any form of phenotypic test, reflecting the difficulty of
accessing these specialized techniques in many centers.

Sanger sequencing is widely regarded as a reliable platform for routine diagnostic genetic
testing and small-scale projects. However, effective analysis of numerous disease-associated
genes by Sanger sequencing in a diagnostic setting is time-consuming, expensive and not
always feasible [18]. A candidate gene array was selected as it has the potential to simultane‐
ously analyze all of the selected coding regions of disease-targeted genes. Moreover, relative
to WES and WGS, it provides good gene coverage and representation of exons, is relatively
fast and cheap and minimizes the problems with unexpected findings and development of
complex downstream bioinformatic pipelines for analysis [39].

We have demonstrated that high-quality sequence data can be generated from a candidate
group of platelet genes using the Illumina MiSeq platform. Our candidate gene panel com‐
prised 19 genes associated with IPNDs, predominantly inherited macrothrombocytopenia.
Pathogenic mutations were detected in 17.4% of the cohort. The most number of mutations
was detected in the MYH9 gene. MYH9-related disorders are the most common forms of
inherited thrombocytopenia and are frequently under-recognized or misdiagnosed as immune
ITP [40–42]. Immunofluorescence staining of the peripheral blood film demonstrating
abnormal clustering of non-muscle myosin heavy chain IIA (NMMHC IIA), seen as Döhle
bodies on the blood film is regarded as a suitable diagnostic test [40], but is not available at all
centers. A strong genotype–phenotype relationship is recognized in these disorders, with
mutations affecting the motor (head and neck) region of NMMHC-IIA causing more severe
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thrombocytopenia and a higher risk for nephritis, cataracts and deafness, whilst those
mutations affecting the tail region cause less severe thrombocytopenia and extra-hematolog‐
ical manifestations [43, 44]. Genetic confirmation of MYH9-related disorders, therefore, has
prognostic significance. In our group of patients, three pathogenic mutations in five individ‐
uals were detected and were predicted to affect the motor region of NMMHC IIA. Knowledge
of these mutations has provided an opportunity to offer advice regarding additional non-
hematological surveillance tests such as audiograms, renal function assessments and ophthal‐
mological screening for cataracts [40, 41, 45].

Transcription factors are the key regulators for the development of the hemostatic platelet from
blood stem cells. Stem cells differentiate into a bipotent megakaryocyte-erythroid progenitor,
then a committed megakaryocyte that undergoes endoreplication prior to extending propla‐
telet extensions from the cytoplasm into the bone marrow sinusoid forming platelets [46]. This
complex differentiation pathway is orchestrated by the activation and repression of groups of
genes important for blood cell development via transcription factors [46, 47]. The candidate
gene panel contained four genes that encode hemopoietic transcription factors, FLI1, GATA1,
GFI1B and RUNX1. Definitive diagnosis of platelet disorders caused by mutations in these
genes solely by phenotypic testing is not possible. We detected a pathogenic mutation in one
of these genes, GFI1B, and likely pathogenic mutations, in RUNX1. The RUNX1 gene is
responsible for the familial platelet disorder with a predisposition to acute myeloid leukemia
(FPD/AML) [48]. The propensity to develop acute leukemia is determined by the action of the
variant, with dominant negative and haploinsufficient mutations having different leukemo‐
genic risk. The former has a higher risk (up to 40% in some reports) of progression to AML or
myelodysplastic syndrome [49–51]. Other factors include the residual level of activity of wild-
type RUNX1 [52], deregulation induced by dominant negative mutations on hamopoietic stem
cell genes such as NR4A3 [53] as well as effects on p53 genes-dependent genes that induce
genomic instability of the granulomonocytic precursors [52]. The median age of onset of
progression to myelodysplastic syndrome / acute leukemia is 33 years of age, and therefore,
the detection of two, likely pathogenic, RUNX1 mutations by our candidate gene panel is of
obvious importance [49]. Despite their adverse risk, clinical guidelines regarding the best way
to counsel, test and manage these patients and their family members are lacking and recom‐
mendations are largely based on expert opinion [54]. Initial referral to a specialist team
comprising a physician as well as genetic counselor is recommended, as well as, full blood
count analysis, bone marrow biopsy (to detect occult malignancy) and full human-leukocyte
antigen (HLA) typing of patients and their first-degree relatives (in the event a bone marrow
transplant is required in the future). A biannual follow-up schedule thereafter should be
established to ensure close hematological surveillance [54]. GFI1B is another transcription
factor that plays an essential role in hematopoiesis [46, 55]. Two recent publications [22, 23]
described mutations in the DNA-binding zinc finger domain of GFI1B causing an autosomal
dominant bleeding disorder in affected families. Our candidate gene array detected another
mutation in a non-DNA-binding zinc finger domain of GFI1B (GFI1B c.503G>T). Further
characterization of this c.503G>T mutation indicates a milder platelet phenotype with less
clinical bleeding symptomatology than the DNA-binding mutants [56] (Figure 3). The
detection of this non-DNA-binding mutation has afforded us an opportunity to propose a
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genotype–phenotype relationship associated with mutations in two different regions of GFI1B.
This is important to enable classification, aid diagnosis and inform treatment strategies.

Figure 3. The blood film of an affected individual with the GFI1B c.503G>T mutation demonstrating macrothrombocy‐
topenia. Platelets show normal granulation unlike the platelets seen in individuals with the GFI1B c.880-881insC muta‐
tion (Figure 1D) that have a heterogeneous appearance (some platelets appear hypogranular or gray whilst others have
normal granulation).

The yield of pathogenic variants reported above may have been improved by more stringent
patient selection criteria. In this study, all patients suspected of an inherited thrombocytopenia
by treating hematologists were included regardless of the platelet phenotype. That is, not all
patients demonstrated macrothrombocytopenia. In addition, in 16 cases only DNA was
received and the platelet phenotype was not known. Noting that 15 of the 19 genes on the
candidate panel are known to cause macrothrombocytopenia and that only 5 genes on the
panel (ETS1, P2RY12, F2R, GP6, RUNX1) have an uncertain platelet phenotype or otherwise
known to cause functional disorders with normal-sized platelets, the pre-test probability of
detecting a pathogenic variant in samples where macrothrombocytopenia was not present was
low. Furthermore, this candidate array was performed in a research laboratory and therefore
included genes (ETS1 and F2R) where the association with inherited thrombocytopenia is not
well delineated. Exclusive inclusion of genes with clear evidence of disease association may
further improve the diagnostic yield.

Variants of uncertain significance (VUS) were detected in over a third of the cohort (39.1%).
Thirteen samples contained more than one VUS. One sample contained five VUS in five
different genes (GFI1B, ITGA2, MYH9, NBEAL2 and TUBB1). In many instances, these variants
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were novel. It is likely, as knowledge of the genes causing inherited platelet bleeding disorders
increases, this percentage will decrease, the VUS either becoming recognized as pathogenic or
definitely non-pathogenic. Our analytical pathway used three bioinformatics tools (SIFT,
PolyPhen2, Mutation taster) in variants lacking published literature to assist variant annota‐
tion. Bioinformatic tools using sequence and/or structure to predict the effects of amino acid
substitutions on protein function have been developed following observations that disease-
causing mutations are more likely to occur at positions that show evolutionary conservation
and/or common structural features which enable them to be distinguished from neutral
substitutions [57–60]. These tools serve to guide future experiments and should not be used
solely as a clinical predictor of pathogenicity. Consider the ACTN1 missense mutation
(ACTN1, heterozygous, c.580G>A [p.Gly194Arg], exon 6, rs145918825) detected in our
candidate gene array. It is predicted to disturb the calponin homology domain (CHD) within
the actin-binding domain (ABD) of α-actinin (an important platelet structural protein). All of
the mutations described in the literature to date have identified ACTN1 mutations within the
functional domains (ABD and the C-terminal calmodulin-like domain [CaM]) but not within
the spacer spectrin repeats [25, 61, 62]. Bioinformatic tools were applied to this variant. It is
predicted to be deleterious by SIFT (sequence homology-based tool), whereas PolyPhen-2
(structure/sequence based tool) predicts the amino acid alteration to be benign. This highlights
two points. Firstly, it is advisable that predictions are made by integrating the results from
several tools as reliance on one tool may lead to incorrect annotation [63], and secondly, that
bioinformatic tools provide predictions only. In this case, the functional consequences of the
ACTN1 DNA variant are yet to be described and thus the variant may or may not be significant.
Further family studies and additional structural analyses of the protein may clarify the
pathogenicity of the variant [35].

Coverage is a crucial metric for establishing accuracy as well as analytical sensitivity and
specificity of a NGS testing platform [64]. Coverage requirements depend on the application
of the NGS test. In general, sequencing more reads will increase the power of the assay. We
determined the necessary coverage level based on recommendations forwarded by the Royal
College of Pathologists of Australasia [65] whose guidance is in compliance with National
Pathology Accreditation Advisory Council (NPAAC) standards for testing of human nucleic
acids [66] and combined this advice with recommendations from published literature and
other international bodies such as the ACMG [35]. Our accepted Q score (Q30) was met in
92.3% of all genomic targets and in 97% of exonic targets. The read coverage distribution curve
displayed a classic Poisson-like distribution indicating uniformity of coverage, this data
accompanied by the high quality of base calls suggested that the NGS platform is able to deliver
reliable sequence data. However, there were also areas of lower coverage where the platform
did not perform as well, and lacked sensitivity. These regions were identified at genomic
targets in FLI1, GP1BA, GP1BB, GP9, ITGB1 and NBEAL2 and were predicted in the design
studio report. Two false negative results were confirmed in regions where coverage was low.
The first being the failed detection of GPIBA and GP9 mutations in the second internal control
sample and the second was a novel pathogenic mutation in FLI1 that was confirmed by Sanger
sequencing and additional laboratory investigations. To ensure coverage of the respective
amplicons over the GP9 region, parallel Sanger sequencing was performed. Targeted Sanger
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sequencing was also performed for GP1BA and GP1BB in cases in which phenotypic details
had been provided by the referring clinician and where confident exclusion of a variant in
those genes was necessary. Sanger sequencing performed over these regions did not detect
additional mutations. Only a single false positive result was confirmed by Sanger sequencing
(RUNX1, stop/gain, c.966T>G). This suggested good platform specificity. The question as to
whether confirmatory Sanger sequencing need be performed is debated in the literature [39,
67]. Proponents argue that it is required to confirm a diagnosis as well as remove incorrect
calls introduced by experimental errors. Whereas, opponents argue, in the setting where the
NGS platform performance metrics have been established to be comparable to Sanger
sequencing performance measures, a strategy dictated by the degree of coverage per nucleo‐
tide be adopted. Suggesting that parallel Sanger sequencing need not be performed as long as
the coverage is >30 times per nucleotide at that genomic target, adding that confirmatory
testing be performed where coverage is less than 20 times, and be determined by visual
inspection with coverage between 20 and 30 times. Authors commented that the laboratory
may also simply elect to exclude the target from the report if Sanger sequencing is not
performed despite low coverage [39].

An important aspect of the post-analytical process is the timely provision of a genomic test
report. In the setting of inherited platelet disorders, a false negative interpretation may lead
to a falsely conservative bleeding prophylactic strategy at the time of surgery, in turn, placing
the individual at a potentially increased risk of bleeding. A false positive result, on the other
hand, may cause undue stress to the individual and their family. A genomic test report was
therefore carefully and consistently structured taking into consideration recommendations
from professional bodies such as the RCPA [65] and ACMG [68]. The report (Appendix 1)
contained a summary of the genes analyzed and reflected the scope and limitation of the assay
and indicated the context in which the test was performed. A clear, succinct, interpretative
comment was made regarding the detected variant. This indicated whether or not the detected
variant was associated with the clinical phenotype and highlighted variants of uncertain
significance. The body of the report detailed, in a structured format (see materials and
methods), any detected pathogenic or clinically relevant variants and whether these had been
previously described. An interpretation on the significance of the detected variant was
supported by relevant references where possible, and recommendations regarding additional
validation tests and /or genetic counseling and clinical screening were provided. Following
the main body of the report, DNA variants that were considered to be non-pathogenic were
listed. The report was concluded by a description of the test method and limitations thereof.

In conclusion, our study has demonstrated the potential to successfully diagnose inherited
macrothrombocytopenia in cases that remained uncharacterized by traditional phenotypic
approaches. Optimization of this format will provide patients an opportunity for a “one stop,
one step” testing platform that is cost-effective and not affected by the pre-analytical variables
that hinder current testing methods based on functional analysis of platelets. However, the
translation of NGS from a powerful research tool into the clinical laboratory will require co-
operation from international groups to establish best practice, quality and reporting standards
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for these conditions, as well as to generate reliable databases that link platelet phenotypes to
genotypes to provide best hemostasis clinician advice.

5. Appendix

Test performed: Candidate gene array of 19 genes (ACTN1, CD36, F2R, FLI1, ETS1, GATA1,
GFI1b, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9, NBEAL2, P2RY12,
RUNX1, TUBB1) using the Illumina MiSeq next-generation sequencing platform.

Please Note:

This test has been performed for research purposes only and has not been NATA accredited
in our laboratory.

Validation by Sanger sequencing has not been performed on clinically significant or novel
detected variants and should be considered by the referring clinician.

Result: A mutation in a gene known or predicted to be associated with decreased platelet
counts and/ or function has been identified. A second variant of uncertain significance has also
been identified.

DNA variants: Variant 1: MYH9, Heterozygous, c.287C>T (p.Ser96Leu), Exon 2, rs121913657,
pathogenic.

Variant 2: NBEAL2, Heterozygous, c.6178C>T (p.Arg2060Cys), exon37, uncertain significance.

Previously described: Variant 1: Yes (rs121913657)

Variant 2: No.

Interpretation: A heterozygous 287C-T transition in the MYH9 gene, resulting in a ser96-to-
leu (S96L) substitution, has been predicted to disturb the helical region of the protein resulting
in MYH9- related disorder (Epstein syndrome).

The pathogenicity of variant 2 is uncertain as information regarding this mutation is not
available in the reported literature. Note that the classification of variants of uncertain/
unknown significance may change over time if additional information on these conditions
becomes available in the reported literature.

References: Arrondel C, et al. Expression of the non-muscle myosin heavy chain IIA in the
human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am
Soc Nephrol 2002;13: 65–74.

Utsch B, et al. Bladder exstrophy and Epstein type congenital macrothrombocytopenia:
evidence for a common cause? (Letter) Am J Med Genet 2006;140A:2251–3.

Kunishima S, et al. Immunofluorescence analysis of neutrophil non-muscle myosin heavy
chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations. Lab
Invest 2003;83:115–22.
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Recommendations: The pathogenicity of detected candidate variants should be validated
independently by Sanger sequencing. Where necessary, the functional significance of these
variants should be confirmed independently by appropriate biological assays to replicate the
phenotype of this patient.

MYH9-related disorders have an autosomal dominant inheritance. Genetic counselling is
recommended for this individual and their family. Family screening may be appropriate after
appropriate genetic counselling.

DNA variants detected of unlikely clinical significance:

NBEAL2, Heterozygous, c.1531C>G (p.Arg511Gly), Exon 13, rs11720139, likely non-patho‐
genic. GP6, Homozygous, c.691G>A (p.Ala231Thr), Exon 6, rs2304167, likely non-pathogen‐
ic. MYH9, Heterozygous, c.4876A>G (p.IIe1626Val), Exon 34, rs2269529, likely non-
pathogenic.

Test method:

A TruSeq custom amplicon specific for the target regions of 19 genes, ACTN1, CD36, F2R, FLI1,
ETS1, GATA1, GFI1b, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9,
NBEAL2, P2RY12, RUNX1, TUBB1 was designed using Illumina design studio (Illumina, Inc,
San Diego, CA, USA). Next-generation sequencing was performed using the MiSeq Illumina
sequencer platform (Illumina, Inc.). Obtained sequences were aligned to the reference genome
(GRCh37/hg19) using MiSeq reporter software (Illumina, Inc.) and the genomic datasets
viewed using the Integrative Genomics viewer (IGV) (www.broadinstitute.org/igv/). Variant
calls were generated using ANNOVAR software (http://www.openbioinformatics.org/
annovar) with an acceptance threshold Q-score of 30, corresponding to a 1:1000 error rate.
Sanger sequencing was performed to provide data for bases with insufficient coverage. The
University of California, Santa Cruz (UCSC), genome browser (http://genome.ucsc.edu) was
used for variant analysis and variants were cross-checked against databases including the
NHLBI-extended sequencing project (ESP), 1000 genomes project database and the Database
of Single-Nucleotide Polymorphisms (dbSNP). Bioinformatic tools (SIFT, PolyPhen-2 and
Mutation taster) were used to predict variant effects on protein structure and function in the
cases of variants lacking published literature.

Limitations: Overall gene coverage was 97% using this format. Therefore, it is possible that
the genomic region where a disease causing mutation exists in the proband was not captured
and therefore was not detected.

It is also possible that a particular genetic mutation was not recognised as the underlying cause
of the genetic disorder due to incomplete scientific knowledge of the impact of all variants at
this point in the literature.

Reported by:

An example of a NGS report.
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