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Abstract

The Frankia actinorhizal plant symbiosis plays an important role in colonization of
soils contaminated with toxic aromatic hydrocarbons. Our understanding of the
bacterial partner, Frankia, in the actinorhizal symbiosis has been greatly facilitated by
the availability of sequenced genomes. The analysis of these Frankia genomes has
suggested that these bacteria are metabolically diverse and have potential for toxic
aromatic hydrocarbon degradation. In this chapter, we explore what is known about
that metabolic potential.

Keywords: Frankias-triazines, aromatic hydrocarbon degradation, PAH, bioremediation,
bioinformatics, actinobacteria

1. Introduction

Frankia are filamentous nitrogen-fixing Gram-positive actinobacteria that are found as free-
living microbes in the soil and in symbiotic associations with actinorhizal plants [1-5]. These
bacteria fix nitrogen by converting atmospheric N2 into biologically useful ammonia and
supply the host plants with a source of reduced nitrogen. Frankia are developmentally complex
and form three cell types: vegetative hyphae, spores located in sporangia, and vesicles. Hyphae
are septate structures and form the growing state of this microbe. Under appropriate condi‐
tions, either terminal or intercalary multilocular sporangia are produced and contain many
spores. When mature, the spores are released from the sporangia. The spores are presumed to
aid in the survival and dispersal of Frankia in the environment. Vesicles are produced under
nitrogen-limited conditions and consist of unique lipid-enveloped cellular structures that
contain the enzymes responsible for nitrogen fixation. Thus, vesicles act as specialized
structures for the nitrogen fixation process. Frankia are able to establish symbiotic nitrogen-
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fixing associations with over 220 species of woody dicotyledonous plants, termed actinorhizal
plants, that are found in eight families of angiosperms [1, 3-6]. The symbiosis with Frankia
allows these actinorhizal host plants to colonize nutrient-poor soil and harsh environments.
Actinorhizal plants have been used to recolonize and reclaim industrial wastelands and
environments contaminated with heavy metals and toxic aromatic hydrocarbon [7-15]. The
metabolic potential of these bacteria has only recently been investigated in the context of
bioremediation [16-18].

1.1. Frankia genomics and identification of metabolic potential

Based on phylogenetic analysis, Frankia strains have been classified into four main lineages
[19-23]. Members of lineage 1 are found infective on host plants of the Betulaceae (Alnus),
Myricaceae, and Casuariaraceae families, while lineage 2 represents strains that are infective
on Rosaceae (Dryas, etc.), Coriariaceae (Coriaria), Datiscaceae (Datisca), and the genus Ceano‐
thus (Rhamnaceae). Members of lineage 3 are the most promiscuous and are infective on
Eleagnaceae, Rhamnaceae, Myricaceae, Gynmmostoma, and occasionally Alnus. The fourth
Frankia lineage consists of the “atypical” strains which are unable to reinfect actinorhizal host
plants or form ineffective root nodule structures that are unable to fix nitrogen. Our under‐
standing of this genus has been greatly enhanced by the sequencing of several Frankia genomes
from the different Frankia lineages [24-33]. Analysis of Frankia genomes has revealed new
potential with respect to metabolic diversity, natural product biosynthesis, and stress toler‐
ance, which may help aid the cosmopolitan nature of the actinorhizal symbiosis [31, 34].

In this chapter, we will describe what is known about the degradation properties of these
bacteria.

2. Rhizodegradation

Among bacteria with bioremediation potential, Frankia are unique in that these bacteria form
a symbiosis with actinorhizal plants. The implications of this trait for bioremediation efforts
have only recently been explored. In the context of bioremediation, the most extensively
studied system is the Frankia–Alnus association. Diverse assemblages of free-living Frankia
strains are present in soils with polyaromatic hydrocarbon (PAH) contamination [8-10, 15,
35-38]. These Frankia strains readily form symbioses with alders, resulting in greatly increased
alder fitness in harsh environments. The Frankia–alder symbiosis also increases the minerali‐
zation of representative organic pollutants in oil-sands reclamation sites. The Frankia–alder
symbiosis has been used in reclamation projects because of these traits [5, 8, 36-38]. Free-living
Frankia also appears to be part of natural degradation communities. Specifically, Frankia has
been found to be one of the most abundant genera in wastewater treatment communities [35].
Based on these findings, Frankia appears to be an underutilized tool in holistic remediation
approaches.
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3. S- triazines degradation

3.1. Overview

Triazines  are  a  class  of  herbicides  composed  of  a  heterocyclic  six-membered  ring  with
alternating carbon and nitrogen atoms joined by double bonds. These herbicides have been
used extensively for control of broadleaf and grassy weeds in corn, sorghum, and sugar‐
cane  cultivation.  Atrazine  and simazine  are  the  most  ubiquitous  members  of  the  s-tria‐
zine family. Biodegradation of atrazine is a complex process and depends on the nature
and amount  of  atrazine  in  soil  or  water  [39-41].  There  are  four  major  steps  in  atrazine
degradation: hydrolysis, dealkylation, deamination, and ring cleavage. For the hydrolysis
step, an amidohydrolase enzyme (AtzA) cleaves the carbon-chlorine (C-Cl) bond and thus
dechlorinates atrazine to hydroxylatrazine. This intermediate is dealkylated and deaminat‐
ed at the ethyl and isopropyl groups by the amidohydrolase enzymes, AtzB and AtzC, to
produce cyanuric acid. This product is converted to ammonia and carbon dioxide by the
AtzD, AtzE, and AtzF enzymes [42-44].

3.2. S-triazine degradation pathway in Frankia

In Frankia, the first two steps in atrazine degradation have been identified as well as the
regulation of their gene expression [17]. The mineralization of atrazine to ammonia and carbon
dioxide is generally initiated by hydrolytic dechlorination, catalyzed by the enzyme atrazine
chlorohydrolase (AtzA). Alternatively, this reaction is catalyzed by another atrazine chloro‐
hydrolase (TrzN), which is also able to use atrazine derivatives including desethyl-desisopro‐
pylatrazine as substrates. Analysis of the Frankia genomes identified candidate genes for the
atrazine degradation pathway (Figure 1). The trzN gene was identified in Frankia alni ACN14a
(FRAAL1474) and Frankia sp EuI1c (FraEuI1c_5874) genomes and its amidohydrolase gene
product is predicted to remove chlorine from s-triazine compounds to produce hydroxyatra‐
zine or ammeline from atrazine and desethyl desisopropyl atrazine, respectively. Furthermore,
a putative atzB gene was also identified in both Frankia genomes (FRAAL1473 and
FraEuI1c_5875) whose predicted gene product, adenosine aminohydrolase 3, is involved in
the dealkylation reaction of the N-ethyl group from hydroxyatrazine transforming it into N-
isopropylammelide. Physiological studies showed that Frankia ACN14a and EuI1c cultures
are able to break down atrazine and desethyl-desisopropylatrazine producing the end
products hydroxyatrazine and N-isopropylammelide. Although the enzymes were not
purified, these data clearly showed metabolism of atrazine. Analysis of gene expression in
Frankia ACN14a found that the two genes, trzN (FRAAL1474) and atzB (FRAAL1473) are under
control of the atzR (FRAAL1471) gene, which encodes a predicted LysR-type transcriptional
regulator.

Bioinformatics analysis of the Frankia genomes revealed a potential full pathway for atrazine
degradation in the Frankia sp EuI1c genome (Figure 2). The atzC (FraEuI1c_4724) gene, which
encodes a putative amidhydrolase enzyme, was identified and is predicted to be involved in
the dealkylation of the N-isopropyl group from atrazine to produce cyanuric acid. With other
bacterial systems, cyanuric acid is hydrolyzed to ammonium and carbon dioxide via the
atzDEF operon [43, 45]. In Frankia EuI1c, the atzD (FraEuI1c_3137) gene product is predicted
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to transform cyanuric acid into carboxybiuret, which spontaneously decarboxylates to biuret.
Putative atzE (FraEuI1c_1007 and 1008), and atzF (FraEuI1c_3831) genes were also identified
in the Frankia EuI1c genome and their gene products expected to complete s-triazine mineral‐
ization by converting biuret to allophanate and ammonia plus carbon dioxide. A trzR
(FraEuI1c_3136) gene, which encodes a GntR family transcriptional regulator, is found before
the atzD gene and is involved in the expression of that gene (Rehan unpublished).

Figure 2. The atrazine degradation steps in Frankia strains EuI1c and ACN14a include atrazine dechlorination and
dealkylation and ring cleavage by TrzN, atzB, and atzD enzymes.

4. Aromatic compounds degradation

4.1. Biphenyl and polychlorinated biphenyl

Biphenyls and polychlorinated biphenyls (PCBs) are some of the most recalcitrant xenobiotics
found in the environment. The degree of chlorination differs greatly among the PCBs, ranging

Figure 1. Gene cluster organization in Frankia alni ACN14a for atrazine degradation. The cluster contains a putative
trzN (FRAAL1474), putative atzB (FRAAL1473), and putative LysR-family transcriptional (atzR).
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from 1 to 10, as does their position on the carbon atoms. Since the mid-1980s, the use of PCBs
has been phased out in many countries. However, due to their toxicity, persistence in the
environment, and potential carcinogenicity, they are still a major global environmental
problem [46-48].

Bacteria degrade biphenyl and PCBs via the meta-cleavage pathway, which is encoded by the
bph operon, and produces tricarboxylic acid and chlorobenzoate (CBA) as intermediates
[47-50]. The first enzyme in this pathway is biphenyl dioxygenase, which is a multimeric
complex consisting of the large α and small β subunits, and the ferredoxine and ferredoxine
reductase subunits. The degradation process is initiated by biphenyl dioxygenase which
incorporates two oxygen atoms at the 2 and 3 carbon positions of the aromatic ring (called 2,3-
dioxygenation) to generate hydroxyl groups. For PCBs degradation, biphenyl dioxygenase
catalyzes the initial 2,3-dioxygenation, and dihydrodiol dehydrogenase converts the product
into 2,3-dihydroxybiphenyl. The enzyme, 2,3 dihydroxybiphenyl dioxygenase, cleaves the
dihydroxylated ring to produce (chlorinated) 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid
(HOPDA). A hydrolase enzyme then hydrolyzes HOPDA to (chlorinated) benzoic acid and 2-
hydroxypent a-2,4-dienoate.

4.1.1. Biphenyl degradation pathway in Frankia

At least four Frankia strains (ACN14a, CcI3, EUN1f, and EuI1c) are resistant to biphenyl and
polychlorinated biphenyl (PCB) at concentrations up to 5mM [51, Swanson unpublished
results]. Data mining for known organisms capable of biphenyl degradation [46, 52] and the
availability of a Frankia genome database enabled the identification of genes potentially
involved in biphenyl degradation in several of the Frankia strains listed above. Five genes were
identified that encode enzymes involved in biphenyl degradation: the alpha and beta subunits
of the aromatic-ring-hydroxylating dioxygenase, a Rieske (2Fe-2S) iron–sulfur domain protein,
an alpha/beta hydrolase fold protein, and a short-chain dehydrogenase/reductase (SDR). These
enzymes are putatively capable of oxidizing and hydroxylating benzene rings, and are also
known as the upper meta-cleavage pathway. A lower pathway of aromatic ring degradation
consisting of three genes (encoding the 2-hydroxypenta-2,4-dienoate hydratase; acylating
acetaldehyde dehydrogenase; and 4-hydroxy-2-oxovalerate aldolase) is located downstream
of this operon [53, Swanson and Tisa unpublished data]. Figure [3] shows the gene neighbor‐
hood of the Biphenyl degradation genes. These genes were also found in Frankia strain EUN1f
and Dg1 genomes (Swanson and Tisa unpublished). Both the meta-cleavage upper and the
lower pathways are commonly referred to as the bph operon in several other PCB-degrading
bacteria. Rhodococcus RAH1, a species closely related to Frankia, utilizes bph genes homologous
to those found in Frankia to metabolize PCBs as a sole carbon and energy source [54]. Since at
least two genes (Aromatic-ring-hydroxylating dioxygenase, subunit alpha-like protein
(FraEuI1c_4097) and short-chain dehydrogenase/reductase (FraEuI1c_4101) in the bph operon
in Frankia are upregulated in the presence of biphenyl, it is likely that Frankia also uses the bph
operon to metabolize biphenyl and PCBs (Rehan and Tisa unpublished)
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Figure 3. The gene neighborhood of bph operon in Frankia EuI1c in comparison to Rhodococcus equi 103S and Photorhab‐
dus luminescens laumondii TTO1 operon. (1) Aromatic-ring-hydroxylating dioxygenase, subunit alpha. (2) Rieske
(2Fe-2S) iron–sulfur domain protein. (3) Aromatic-ring-hydroxylating dioxygenase, subunit beta. (4) Alpha/beta hy‐
drolase fold protein. (5) Short-chain dehydrogenase/reductase SDR.

4.2. Phenol degradation

4.2.1. Overview

Phenol (or hydroxybenzene) consists of a benzene ring substituted with a hydroxyl group.
Derivatives of this molecule are colloquially known as phenolic compounds. Phenolic
compounds are ubiquitous chemicals with diverse properties and uses. The simplest phenolic
compound, phenol, is widely used in oil and coal processing, tinctorial and metallurgic
industries, and many other industrial applications. Phenol also enters the environment via
vehicle exhaust and as the product of natural metabolic processes, and chlorophenols are
widely used as biocides in agricultural applications [for a review see 55]. While anthropogenic
phenolics are often hazardous, natural phenolic compounds are mostly harmless in the
concentrations that are found in foods such as coffee and tea, and some are used as antibiotics
[56, 57]. However, the toxicity of some phenolics, particularly phenol and chlorinated phenols,
has prompted considerable research activity devoted to phenol remediation. Acute and
chronic exposure to phenol and chlorophenol has serious health effects. Phenol and chloro‐
phenol cause lipid peroxidation which ultimately leads to tissue necrosis, and liver and kidney
damage [58]. Additionally, chlorophenol exposure is associated with elevated risks of cancer,
immune deficiencies, and teratogenic effects [59-61].

4.2.2. General phenol degradation pathway

One of the most promising techniques for removing anthropogenic phenolics from the
environment is bioremediation. As was the case for many compounds, the degradation
pathway for phenol was first elucidated in a Pseudomonas strain [62]. Most bacteria degrade
phenolics using catechol catabolic enzymes, most importantly catechol-2,3-dioxygenase.
Phenols are first hydroxylated to form catechol, and then catechol-2,3-dioxygenase cleaves the
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benzene ring at the meta position [62]. Therefore, the degradation pathway that begins with
catechol-2,3-dioxygenase is called the meta pathway (Figure 4). While the meta pathway is
most prevalent, degradation can also begin with cleavage at the para or ortho position using
catechol-1,2-oxygenase [63-65]. After ring cleavage, 2-hydroxymuconic semialdehyde hydro‐
lase catalyzes a decarboxylation reaction yielding 4-oxalocrotonate. 4-oxalocrotonate is
hydrated by 2-oxopent-4-enoate hydratase to form 4-hydroxy-2-oxovalerate. 4-hydroxy-2-
oxovalerate aldolase then splits 4-hydroxy-2-oxovalerate into pyruvate and acetaldehyde,
which can then be incorporated into the central metabolic pathways [62].

Figure 4. General phenol degradation pathway.

4.2.3. Phenolic compounds and Frankia

Frankia spp. both produce and are affected by phenolic compounds. However, it is unclear
whether Frankia may degrade phenol and other phenolic compounds. The response of Frankia
to phenolics was first studied in the context of plant–microbe interactions. Despite apparent
functional and morphological similarities between Frankia nodules and leguminous nodules,
the molecular and physiological mechanisms that control nodulation are distinct. Therefore,
the unique process of nodulation by Frankia is still an area of intense research. Alnus spp.
(Alders) plants are a major host plant for Frankia, and also have unusually high levels of
phenolics in their root exudates, which affect the growth of Frankia. Most Alnus phenolics tested
inhibit Frankia growth to varying degrees [66, 67]. Specifically, benzoic acids are less inhibitory
than cinnamic acids such as caffeinic acid. However, one plant phenolic, o-hydroxyphenyl‐
acetic acid, promoted Frankia growth, and both benzoic and cinnamic acids caused increased
branching of Frankia hyphae. Low concentration plant phenolics also mediate a global shift in
Frankia gene expression, while higher concentrations (above 30 mg L-1) simply inhibit biosyn‐
thesis [33]. Interestingly, Frankia also increases phenolic expression of their host plant, causing
them to produce more phenol, flavonoids, and hydroxycinnamic acid [68].

Frankia may promote excretion of phenolics as a way to increase available nutrients. However,
this explanation depends on Frankia having the ability to degrade phenolic compounds. While
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no study has demonstrated that Frankia degrades phenolic compounds, there is genetic
evidence that this bacterium may have the ability to degrade phenolics. First, some Frankia
strains have genes coding for the production of catechol and other phenolic compounds [34].
Because bacteria often salvage the biomolecules they produce, the presence of an anabolic
pathway suggests that a catabolic pathway is also present [69]. Furthermore, multiple Frankia
strains contain catechol-2, 3-dioxygenase, the most important enzyme in the phenol degrada‐
tion pathway (Swanson and Tisa unpublished data) [64]. A closely related bacterium,
Rhodococcus spp., uses the catechol-2,3-dioxygenase pathway to grow with phenol as its sole
carbon source [70]. The same species is also able to break down the more recalcitrant penta‐
chlorophenol via the para pathway [71]. This suggests that Frankia may break down phenol, a
trait that could be applied in bioremediation efforts. Several Frankia strains are able to grow
on phenol, quercetin, catechol, and other phenolic compounds (Furnholm, Greenleaf, and Tisa
unpublished data), but the metabolism of their breakdown has not been studied.

4.3. Naphthalene degradation

4.3.1. Overview

Naphthalene is a ubiquitous polyaromatic hydrocarbon composed of two benzene rings joined
at the 9 and 10 carbons (Figure 5). Naphthalene is produced by distilling and crystallizing coal
tar, and also as by-product of fossil fuel combustion and cigarette smoke [72]. Naphthalene is
used in a number of industrial applications including as feed stock for the production of
plastics and resins, and as a component of creosote-based wood preservatives. Naphthalene
is also used in tincture and leather tanning industries [72]. Unlike many organic pollutants,
naphthalene does not bioaccumulate. Instead, naphthalene is metabolized and excreted in the
urine of rats and humans [72, 73]. Nonetheless, naphthalene is a problematic pollutant with
numerous toxic effects. Acute exposure to naphthalene causes hemolytic anemia, and liver
and neurological damage [74]. Chronic naphthalene exposure is associated with elevated
cancer risk [75, 76]. The toxicity of naphthalene and its prevalence as a pollutant has spurred
research on remediation techniques, including bioremediation and biodegradation.

Figure 5. Structure of naphthalene.

4.3.2. Degradation pathway

The naphthalene biodegradation pathway was first studied in a strain of Pseudomonas which
has two related naphthalene degradation pathways. The upper pathway catabolizes naph‐
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thalene to produce salicylate and a molecule of pyruvate [77]. The lower pathway breaks
salicylate down into acetyl Co-A and pyruvate [78]. The first step of the upper pathway is
catalyzed by four proteins: naphthalene dioxygenase reductase, naphthalene dioxygenase
ferredoxin, and naphthalene dioxygenase Fe-S protein small and large subunits. This collection
of enzymes oxidizes naphthalene to produce cis-naphthalene dihydrodiol, which is subse‐
quently dehydrogenated by naphthalene cis-dihyrdodiol dehydrogenase to form 1,2-dihy‐
droxynaphthalene. 1,2-dihydronaphthalene dioxygenase then produces 2-
hydroxychromene-2-carboxylate which is then cleaved by 2-hydroxychromene-2-carboxylate
dehydrogenase to form cis-o-hydroxybenzylpyruvate. 1,2-dihydroxybenzylpyruvate aldolase
then splits cis-o-hydroxybenzylpyruvate producing pyruvate and salicylaldehyde. Finally,
salicylaldehyde dehydrogenase carboxylates salicylaldehyde to form salicylate [77, 78].

In the lower pathway, salicylate hydroxylase hydroxylates salicylate to produce catechol. The
remaining benzene ring is then cleaved by catechol-2,3-dioxygenase to produce 2-hydroxy‐
muconic semialdehyde [78]. Hydroxymuconic semialdehyde dehydrogenase then produces
2-hydroxyhexa-2,4-diene-1,6-dioate which is subsequently isomerized by 4-oxalocrotmate
isomerase to produce 2-oxohexa-3-ene-1,6-dioate. This is then transformed into 2-oxopent-4-
enoate by 4-oxalocrotomate decarboxylase. 2-oxopent-4-enole hydratase produces 4-hy‐
droxy-2-oxovalerate, which is subsequently split into acetaldehyde and pyruvate by 2-oxo-4-
hydroxypentanoate aldolase. Finally, acetaldehyde dehydrogenase converts acetaldehyde
into acetyl Co-A [78]. Both of these pathways are also found in Rhodococcus spp, a close relative
of Frankia [79].

4.3.3. Naphthalene degradation in Frankia

Not surprisingly, Frankia also metabolizes naphthalene as a sole carbon and energy source via
a related pathway [18]. Specifically, Frankia uses the protocatechuate pathway to convert
naphthalene or a naphthalene derivative into acetyl Co-A and succinyl Co-A (Figure 6) [18].
This finding confirms the role of Frankia in naphthalene degradation, which was suggested by
earlier field studies [8-10, 37, 38]. In symbiosis with alders, Frankia increases polyaromatic
hydrocarbon degradation in oil-sand tailings for the first 1.5 years [8, 10, 37]. However, after
2.5 years, alders without Frankia symbionts demonstrated naphthalene degradation equal to
the degradation or Frankia-inoculated alders [8]. The Frankia-alder symbiosis thrives in PAH-
contaminated areas [15]. Interestingly, alder plants found in these PAH-contaminated areas
maintained a symbiosis with Frankia lineage III as opposed to the normal lineage I, suggesting
that this pollutant affected nodulation and/or survival of the actinorhizal plants. Taken
together, these findings indicate that Frankia could be a useful tool in naphthalene remediation.

4.4. Protocatechuate

4.4.1. Overview

Under oxic conditions, microbial degradation of many aromatic compounds occurs through
the catechol or protocatechuate branch of the ß-ketoadipate pathway via either ortho cleavage
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by catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase or meta-cleavage by
catechol-2,3-dioxygenase and protocatechuate-4,5-dioxygenase.

4.4.2. Potential protocatechuate degradation pathway in Frankia

Besides the protochatechuate pathway found in Frankia QA3 [18], several other potential
protocatechuate pathways have been identified from bioinformatics analysis of the available
Frankia genomes. In Frankia EuI1c, a potential operon (FraEuI1c_2560 -to- FraEuI1c_2564) for a
putative protocatechuate pathway was identified (Figure 7). This operon encodes the predicted
gene products involved in the putative pathway including protocatechuate 3,4-dioxygenase
alpha and beta subunits, fumarate lyase, 3-oxoadipate enol-lactonase, and 4-hydroxybenzoate
3-monooxygenase. These gene products are similar to the protocatechuate degradation
pathway found in Rhodococcus opacus 1CP [80, 81]. These results suggest that Frankia may use
the protocatechuate degradation pathway to degrade many aromatic ring compounds after
their conversion to protocatechuate.

Figure 6. Putative naphthalene degradation pathway in Frankia [18]. (Figure is recopied with permission from Canadian
Journal of Microbiology.)
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Figure 7. The proposed protocatechuate degradation pathway in Frankia strains EuI1c and EUN1f.

5. Hydrocarbons

5.1. Overview

Petroleum-based energy and products are used extensively around the world. The pervasive‐
ness of petroleum inevitably leads to serious environmental pollution. Petroleum is a complex
mixture of hydrocarbons, cycloalkanes, aromatic hydrocarbons, and more complex chemicals
like asphaltenes. These chemicals and their derivatives, which are termed petrogenic com‐
pounds, are released into the environment as a result of oil spills and combustion of petroleum-
based products [82]. Oil spills are one of the most serious sources of petroleum pollution and
devastate aquatic and marine environments. Ongoing research to identify new methods for
petroleum remediation is important because oil spills and other types of petroleum-derived
pollution continue to pose environmental health risks.

Hydrocarbon-degrading bacteria and fungi are widely distributed in marine and freshwater
environments, as well as soil habitats [83, 84]. In Pseudomonas, the alkane hydroxylase (mon‐
ooxygenase) system consists of three components: alkane hydroxylase (AlkB), rubredoxin, and
rubredoxin reductase. This system is responsible for the first oxidation step in the utilization
of n-alkanes [85]. Similar alkane hydroxylase systems have been found in a variety of alkane-
degrading bacteria [86, 87]. Alcanivorax sp. strain 2B5 will degrade C13–C30 n-alkanes and
branched alkanes (pristine and phytane) from crude oil as the sole carbon source via a novel
alkane hydroxylase gene (alkB). Other Acinetobacter are able to use n-alkanes with chain length
C10–C40 as a sole source of carbon. In addition, the presence of multiple alkane hydroxylases
in two Rhodococcus strains were characterized and both organisms contained at least four
alkane monooxygenase gene homologs (alkB1, alkB2, alkB3, and alkB4) [76, 88].

A bioinformatics approach was used to identify these potential hydrocarbon degradation
pathways among the sequenced Frankia strains. Functionally analyzed genes for the known
hydrocarbon degradation pathways [84, 88] were used to probe the Frankia genome database
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and identify potential pathways. Our preliminary results (Rehan unpublished data) revealed
that the F. alni ACN14a genome possesses a putative alkane-1 monooxygenase (Alkane omega-
hydroxylase) gene (FRAAL1986), which is one of the known enzymes involved in the break‐
down of n-alkanes (Figure 8). Furthermore, a similar gene (Franean1_2192) was also found in
the Frankia sp. EAN1pec genome. These bioinformatics results support the hypothesis that
Frankia may be able to degrade oil-spill-derived hydrocarbons. However, these preliminary
results need further study.

Figure 8. Potential alkane-1 monooxygenase identified in F. alni ACN14a.

6. Future aspects

Clearly, we have only begun to scratch the surface of the metabolism of Frankia and its
biodegradative potential. These initial studies correlating metabolic capacity to gene function
are the first step in exploiting the bacteria for their bioremediation ability. Further bioinfor‐
matics data mining are necessary to elucidate the unique metabolic potential of Frankia.
However, these in silico studies require “wet lab” experiments to confirm these capabilities.

From limited field studies, actinorhizal nodule occupancy seems to be under control by
environmental conditions. The presence of Frankia lineage III strains inside alder nodules
found under PAH-stressed soils suggests that this lineage may have a greater metabolic
potential. The larger genome size of this lineage compared to the other infective strains also
supports this hypothesis. However, further experiments are required to confirm this postulate.
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