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1. Introduction  

A successful evolutionary algorithm is one with the proper balance between exploration 
(searching for good solutions), and exploitation (refining the solutions by combining 
information gathered during the exploration phase). Diversity maintenance is important in 
constrained search space algorithms because the additional pressure set on the population 
to reach the feasible region reduces the diversity. Since reduced diversity promotes 
premature convergence, new exploration and exploitation techniques have been 
incorporated into the PSO main paradigm.  
In this chapter the authors review the standard PSO algorithm, and several proposals to 
improve both exploration and exploitation: local and global topologies, particle motion 
equations, swarm neighbourhoods, and interaction models. For all these approaches the 
common shared feature is the modification of the PSO main algorithm.  
The present chapter, however,  describes a rather different approach: the perturbation of the 
particle memory. In the PSO algorithm, the next particle’s position is based on their flying 
experience (pbest), and the current best individual in either the entire swarm (gbest), or in a 
swarm neighbourhood (lbest). Since the values for gbest or lbest are determined from the 
pbest values available at any generation, in the end, it is the pbest which is mainly 
responsible for the particle’s next position. Therefore, a way to reduce premature 
convergence is to improve the pbest of each particle. 
Our approach aims to prevent convergence to local optima by improving the swarm 
exploration and exploitation through two perturbation operators. These external operators 
improve the memory of the best visited locations, and do not modify the main PSO 
paradigm. 
The rest of this Chapter is organized as follows: In Section 2, we introduce the premature 
convergence problem. We extend this discussion in the context of constrained optimization, 
in Section 3. Our approach is introduced in Section 4; giving a brief explanation about every 
component adopted in the PSO algorithm. In Section 5, a well-known benchmark is used to 
compare our approach against other PSO based methods and evolutionary algorithms 
representative of the state-of-the-art. The conclusion is given in Section 6, complemented 
with future work guidelines in Section 7.  

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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2. Premature Convergence 

A natural problem in evolutionary computation is the premature convergence. It means that 
the evolutionary algorithm could stay trapped in a region containing a local optimum. 
Premature convergence can be caused by the lost of diversity, which occurs when the 
population reaches a suboptimal state where evolutionary algorithm can no longer produce 
offspring which outperforms their parents (Fogel, 1994). A way to attain diversity 
maintenance is by keeping a balance between exploration and exploitation (Holland, 1975). 

2.1 Exploration and Exploitation 

The balance between exploration and exploitation is a well known issue in evolutionary 
computation (Michalwicz & Fogel, 2000). But, why is it hard to find an optimal balance? 
First, we review the classical concepts: exploration is the act of searching for the purpose of 
discovery; and exploitation is the act of utilizing something for any purpose (Agnes, 2004). Then, 
at the context of evolutionary computation, we could define exploration as the act of searching 
through all space regions for discovering promissory solutions; and exploitation as the act of 
utilizing local information for refining the solution.  
Accord with the given definition, Downing explained: exploitation is encouraged by elitist 
selection and smaller population sizes or by using lower mutation rates to promote correlation 
between parent and offspring. Conversely, exploration is encouraged by promoting greater population 
diversity and selecting parents less discerningly, or by increasing mutation rate. (Downing, 2006). 
We can observe that exploration and exploitation are opposite goals; both compete for 
limited resources, for instance, the number of fitness function evaluations. So, a trade-off 
between exploration and exploitation is necessary. The search horizon has to be sufficiently 
close for maintaining exploitation and at the same time sufficiently distant to discover 
significant novelty (Jacoby, 2005). 
The common approach in evolutionary computation about the control of exploration and 
exploitation is framed in terms of balancing variation and selection processes. There are 
several works focused to solve the equilibrium dilemma between variation and selection. 
Even more, there are proposals from other areas (e.g. management, economics) for solving 
related problems (March, 1991). In the following sections, we review some approaches and 
propose a new solution for balancing variation and selection in the PSO algorithm.  

2.2 Diversity Control in PSO 

In PSO, the diversity comes from two sources. One is the difference between the particle’s 
current position and its best neighbor, and the other is the difference between the particle’s 
current position and its best historical value. Although variation provides exploration, it can 
only be sustained for a limited number of generations because convergence of the flock to 
the best is necessary to refine the solution (exploitation).  
In an early analysis, Angeline shows that PSO may not converge, neither refine solutions 
when variation is null, that is, when all the particles rest near by the best spot (Angeline, 
1998). A few months after Angeline’s work, the first formal analysis of a simple PSO was 
developed by Ozcan and Mohan (Ozcan & Mohan, 1998), which obtained the PSO 
trajectories. Based on this work, Clerc and Kennedy analyzed a particle’s trajectory and 
determined the relationship between the acceleration parameters that avoid the divergence 
of the particle (Clerc & Kennedy, 2002). But, when the problem of converge premature 
seemed solved; Van Den Bergh proves that the PSO trajectories does not converge to the 
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global optimal (Van Den Bergh, 2002). In his Ph.D. thesis, Van Den Bergh explains the 
attributes that a hybrid PSO must accomplish to become a global search algorithm. There 
are several proposes related with developing a global search based on the PSO algorithm. In 
this context, we can find approaches for dealing with constraints, which is the topic of this 
chapter.

3 Constraint-Handling in PSO 

Real optimization problems are subject to a number of equality and inequality constraints, 
which can be linear or nonlinear. These constraints determine which areas of the search 
space are feasible and which are infeasible. In addition to these constraints, boundary 
constraints are usually imposed to the search space (Michalewicz, 1992). Also, there is the 
possibility that the feasible space is fragmented and separated by infeasible regions, 
requiring that both the feasible and infeasible regions be searched.  
PSO is an unconstrained search technique. Thus, adopting a constraint handling technique 
into the main PSO algorithm is an open research area. There is a considerable amount of 
research regarding mechanisms that allow the evolutionary algorithms to deal with equality 
and inequality constraints. Some constraint-handling approaches tend to incorporate either 
information about infeasibility or distance to the feasible region, into the fitness function in 
order to guide the search. These techniques are based on penalty functions (Parsopoulos & 
Vrahatis, 2002). In their work Parsopoulos and Vrahatis used a multi-stage assignment 
penalty function without diversity control. Other approaches propose a constraint handling 
technique based on maintaining a feasible population (EI-Gallad et al., 2001), and also some 
algorithms require a feasible initial population (Hu & Eberhart, 2002; He et al., 2004). In 
2003, Coath and Halgamuge presented a comparison of the two constraint-handling 
methods in PSO: penalty function and feasibility preservation (Coath & Halgamuge, 2003).  
Their experiments clearly detect the need of some form of diversity control.  
In a more sophisticated approach, Zhang et al. introduced a special technique, called periodic 
mode, to handle inequality constraints. This method consists in keeping the global-best near 
the boundary thus the flock which is constantly pulled to the border, can sustain exploration 
(Zhang et al., 2004). A few more sophisticated approaches include applying multi-objective 
optimization techniques to handle constraints. For instance Toscano and Coello (Toscano & 
Coello, 2004), use a feasibility tournament proposed by Deb (Deb 2000) to handle constraints 
with PSO. The feasibility tournament applies a set of rules similar to the Pareto dominance 
concept used in multi-objective optimization.  
Notably, equality and inequality constraints demand an intelligence exploration of the 
search space to find the global optimum region. Likewise, an efficient and effective 
exploitation is required in the boundaries of the feasible region, whenever the inequality 
constraints are active or equality constraints are present. PSO should find a solution that 
both optimizes the objective function and satisfies all constraints. 

4. Constrained Optimization via Particle Swarm Optimization  

A brief analysis of the state-of-the-art in PSO to solve constrained optimization problems 
was presented. Now, we are going to introduce our approach called Particle Evolutionary 
Swarm Optimization (PESO) (Muñoz et al., 2005). In this section we explain our approach; 
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and in the next section we perform a comparison with another PSO-based constraint 
optimization works.  

4.1 Interaction Model 

First we should choose an appropriate interaction model for solving constrained 
optimization problems. In an early analysis, Kennedy provided empirically evidence that 
the social-only model is faster and more efficient than the full and cognitive-only models 
(Kennedy, 1997). These models were defined by omitting components of the velocity 
formula. The full model is composed by the cognition component and the social component. 
Dropping the social component results in the cognition-only model, whereas dropping the 
cognition component defines the social-only model. In a fourth model, selfless model, the 
neighbourhood best is chosen only from the neighbours, without considering the current 
individual. Carlisle and Dozier tested these four models in dynamic changing environments 
(Carlisle & Dozier, 2000). They empirically prove that the social-only model consistently 
found solutions faster than the full model, but the reliability of the social-only model is lower 
than the full model.  
We test the four models proposed by Kennedy, (Kennedy, 1997). We confirm that the social-
model is faster than the full model, but it is not enough robust due to its premature 
convergence behaviour.  Therefore, we adopt the full model which is more reliable for 
constrained optimization. 

4.2 Social Network Structure 

In the PSO topology, each particle moves following a leader; this fact is modelled by one of 
three components of the velocity formula. A leader can be global to all the flock, or local to a 
flock’s neighbourhood. In the latter case there are as many local leaders as neighbourhoods. 
Having more than one leader in the flock translates into more attractors or good spots in 
space. Therefore, the use of neighbourhoods is a natural approach to fight premature 
convergence (Mendes et al., 2004). 
Particles in the same neighbourhood communicate with one another by exchanging 
information for moving towards a better position. The flow of information through the 
flock, depends on the neighbourhood structure. Figure 1 presents a few neighbourhood 
structures developed for PSO. 
In a highly connected neighbourhood structure, the information about the best particle in 
the swarm is quickly transmitted through the whole flock. This means faster convergence, 
which implies a higher risk to converge to a local minimum. Also, Kennedy & Mendes 
empirically shows that the star neighbourhood is faster than the other topologies, but it meets 
the optimal fewer times than any other one (Kennedy & Mendes, 2002). They suggest trying 
the Von Neumann neighbourhood structure, which performed more consistently in their 
experiments than the topologies commonly found in current practice. However, in the 
experiments developed by Kennedy & Mendes, they used a set of unconstrained 
optimization problems. However, based on their recommendation, we propose a new 
neighbourhood structure, which we define as singly-linked ring.     
The singly-linked ring rises from analysing the ring neighbourhood as a double-linked list; like 
it is showed in Figure 2-a. Suppose that every particle is assigned a permanent label which is 
used to construct the neighbourhoods. Then, a particle k has two neighbours, particles k-1
and k+1. In turn, particles k-1 and k+1 have particle k as a neighbour.  In this way, there is a 



Robust PSO-Based Constrained Optimization by Perturbing the Particle’s Memory 61

mutual attraction between consecutive particles, forming overlapped clusters. Also, the slow 
convergence of the ring structure has been empirically showed (Kennedy, 1999; Kennedy & 
Mendes, 2002; Carlisle & Dozier, 2000).  

Figure 1. Neighbourhood Structures. A representation of the social networks applied in PSO 

The successful of the Von Neumann neighbourhood is due to the interaction that each 
particle has with other particles, an average of 5 neighbours. This promotes the 
exploitation, but unfortunately fails to provide the exploration required by the 
constrained optimization problems. Thus, we propose the topology presented in Figure 2-
b. The singly-linked ring keeps two neighbours for each particle, but breaks the mutual 
attraction between neighbours. Besides, the information through the whole swarm is 
transmitted faster than in the original ring topology. Therefore, the singly-linked ring keeps 
the exploration at the search space, and increases the exploitation of the best solutions 
(Hernández et al., 2007). 



Swarm Intelligence: Focus on Ant and Particle Swarm Optimization 62

Figure 2. Ring Neighbourhood Structures. a) Original ring topology, b) Singly-Linked ring 

4.3 Feasibility Tournament     
The first step for developing a PSO-based constraint optimization is to choose a constraint-
handling method. There are three methods that have been used by other approaches: penalty 
function, feasibility preservation and feasibility tournament.
The penalty function method involves a number of parameters which must be set right in any 
problem to obtain good solutions. This fact has motivated sophisticated penalty function 
approaches and extensive experimentation for setting up appropriate parameters 
(Michalewicz & Schoenauer, 1996).  According with Deb (Deb, 2000), there are two problems 
associated with the static penalty function: the optimal solution depends on penalty 
parameters and the inclusion of the penalty term distorts the objective function. 
Now, we give the details of the feasibility preservation method. There are two main problems 
associated with this method: it needs a feasible initial population and special operators to 
keep the population into the feasible region. Also, the method could be unreliable handling 
problems with active constraints, since it does not allow unfeasible solutions and has not 
information about the boundaries.
The feasibility tournament proposes to use a tournament selection operator, where two 
solutions are compared at time, and the following criteria are always applied: 
1. Any feasible solution is preferred to any infeasible solution. 
2. Among two feasible solutions, the one having better objective function value is 

preferred.
3. Among two infeasible solutions, the one having smaller sum of constraint violation is 

preferred.
The feasibility tournament does not require tuning parameters or applying special operators. 
Just a simple comparison is used to choose the best individual. Even, in any of the above 
three scenarios, solutions are never compared in terms of both objective function and sum of 
constraint violation. This method was implemented by Toscano and Coello in a PSO with 
global topology, obtaining competitive results (Toscano & Coello, 2004). Our approach 
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applies this method in a local topology, allowing feasible and infeasible solutions in the pbest
particles. It enriches the information about the search space, especially at boundaries. 
Nevertheless, for handling equality constraints, it is not enough just converting them into 
inequality constraints: 

 g(x) = δ-|h(x)| (1) 

Our approach applies a dynamic tolerance for handling equality constraints. First, we rewrite 

them as inequality constraints of the form |h(x)|< δ, where δ is called the tolerance. Then, 
the tolerance is linearly decremented from 1.0 to a specified target value (1E-06 in our 
experiments) during the first 90% of function evaluations. For the last 10% the tolerance is 
kept fixed; thus, the particles have additional time to achieve convergence. This technique 
proved to be very effective in the test problems that we present in the Section 5.  

4.4 Perturbing the PSO Memory 

In Section 2, we mention the Van Den Bergh’s PhD thesis and his contributions in the PSO 
context. He gives a set of requirements that an evolutionary algorithm must accomplish to 
be a global search algorithm. Also, he shows that the PSO algorithm is not in fact a global 
search algorithm (Van Den Bergh, 2002). Nevertheless, Van Den Bergh gives a theorem 
which specifies under which conditions an algorithm can be considered a global  
optimization method. The theorem implies that a general algorithm, without a priori
knowledge, must be able to generate an infinite number of samples distributed throughout 
the whole of S in order to guarantee that it will find the global optimum with asymptotic 
probability 1 (Van Den Bergh, 2002).  
This can be achieved by periodically adding randomised particles to the swarm. 
Nevertheless, resetting the position of the particles is not a trivial task; a bad decision affects 
directly in the exploitation of the best solutions. We propose, based on the observation that 
the pbest particles drive the swarm, perturbing the pbest of each particle.  
Our approach has three stages. In the first stage, an iteration of the standard PSO algorithm 
with the features described in this Section 4 is applied. Then the perturbations are applied to 
pbest in the next two stages. The goal of the second stage is to add a perturbation generated 
from the linear combination of three different particles for every dimension. This 
perturbation is preferred over other operators because it preserves the distribution of the 
population. This operator is used for reproduction by the Differential Evolution algorithm 
(Price et al., 2005). In our approach this perturbation is called C-Perturbation. It is applied to 
the members of pbest to yield a set of temporal particles tempC. Then each member of tempC
is compared with its corresponding father and pbest is updated applying the feasibility 
tournament. Figure 3 shows the pseudo-code of the C-Perturbation operator.  
In the third stage every vector is perturbed again so a particle could be deviated from its 
current direction as responding to external, maybe more promissory, stimuli. This 
perturbation is implemented by adding small random numbers to every design variable. 
The perturbation, called M-Perturbation, is applied to every member of pbest to yield a set of 
temporal particles tempM. Then each member of tempM is compared with its corresponding 
father and pbest is updated applying the feasibility tournament. Figure 4 shows the pseudo-
code of the M-Perturbation operator, where LL and UL are the lower and upper limits of the 
search space. The perturbation is added to every dimension of the decision vector with 
probability 1/d, where d is the dimension of the decision variable vector.  
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Figure 3. C-Perturbation Operator. Pseudo-code of the C-Perturbation applies by PESO 

These perturbations have the additional advantage of keeping the self-organization 
potential of the flock since they only work on the pbest particles, as we can observe in Figure 
5. The current PSO population is not perturbed, but few or may be several pbest particles 
have been moved to a better position. This is an improved form for adding randomised 
particles to the swarm, compared with those propose by Van Den Bergh (Van Den Bergh, 
2002). Our approach not only resets the position of the pbest particles, also improves them; 
probably driving the swarm to a promise region. 

Figure 4. M-Perturbation Operator. Pseudo-code of the M-Perturbation applies by PESO 

For k = 0 To   n

For   j = 0   To   d

        r = U ( 0 , 1 ) 

        If r < 1/d   Then

             
            Temp [ k , j ] = Random ( LL , UL )
         
        Else 

            Temp [ k , j ] = Pi+1 [ k , j ] 

    End For 

End For

For k = 0 To   n

    For   j = 0   To   d

        r = U ( 0 , 1 ) 

        p1 = k

        p2 = random ( n ) 

        p3 = random ( n ) 

        Temp [ k , j ] = Pi+1 [ p1 , j ] + r * ( Pi+1 [ p2 , j ] - Pi+1 [ p3 , j ] )  

End For 

End For
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Figure 5. Effects of the perturbation operators. (a) Shows the movement of particle at 
iteration T+1 without perturbing the PBest in the iteration T. (b) Shows the movement of 
particle at iteration T+1 with the influence of PBest at iteration T+1, which is the final 
position after applying the perturbation operators on the PBest in the iteration T 

4.5 PSO Parameters 

The parameters play an important roll in the successful of any evolutionary algorithm. 
There are several works that discuss a number of control parameters like swarm size (Van 
Den Bergh, 2001), neighbourhood size (Suganthan, 1999), or acceleration coefficients 
(Ratnaweera et al., 2002a; Ratnaweera et al., 2002b). 
Our approach generally uses a swarm size of n=100 particles, a neighbourhood size of k=2, 
and the following set of acceleration coefficients: w=U(0.5, 1.0), c1=1.0, c2=1.0, where U is a 
uniform distribution. These parameters have not been deeply studied; only the 
neighbourhood size, which has been explained in this Section. Nevertheless, the acceleration 
coefficients accomplish the mathematical model gave by Clerc & Kennedy to avoid 
divergence of the particle trajectories (Clerc & Kennedy, 2002).  

4.6 Our Approach PESO 

In summary the proposed algorithm, PESO, is a local PSO with a singly-linked ring 
neighbourhood. PESO handles constraints adopting a feasibility tournament complemented 
with a dynamic tolerance for handling equality constraints. The main components of PESO 
are the C-Perturbation and M-Perturbation operators applied to the pbest population.
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5. Experiments

PESO is applied to solve the benchmark used in the Special Session on Constrained Real-
Parameter Optimization, CEC-06 (Liang et al., 2006). The benchmark is an extended version 
of 24 functions from the original benchmark of Runnarson and Yao, with 13 functions 
(Runnarson & Yao, 2000). It is integrated by linear and non-linear functions with linear and 
non-linear constraints. The benchmark was proposed by Mezura, in his Ph.D. thesis 
(Mezura, 2004). 

TP Optimal Best Median Mean Worst S.D. 

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 0 

g02 -0.803619 -0.803619 -0.803617 -0.801320 -0.786566 4.59E-03 

g03 -1.000000 -1.000005 -1.000005 -1.000005 -1.000003 3.15E-07 

g04 -30665.538 -30665.53867 -30665.53867 -30665.53867 -30665.53867 0 

g05 5126.49811 5126.498096 5126.498096 5126.498096 5126.498096 0 

g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0 

g07 24.306209 24.306209 24.306210 24.306212 24.306219 3.34E-06 

g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0 

g09 680.630057 680.630057 680.630057 680.630057 680.630057 0 

g10 7049.248 7049.248020 7049.248638 7049.250087 7049.263662 3.61E-03 

g11 0.750000 0.749999 0.749999 0.749999 0.749999 0 

g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0 

g13 0.053950 0.053950 0.053950 0.053950 0.053965 2.76E-06 

g14 -47.764411 -47.761108 -47.747212 -47.741430 -47.670921 2.15E-02 

g15 961.715172 961.715171 961.715171 961.715171 961.715171 0 

g16 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 0 

g17 8876.98068 8856.502344 8863.875542 8877.812811 8941.344349 30.1195 

g18 -0.8660 -0.866025 -0.866025 -0.866001 -0.865568 8.74E-05 

g19 32.386 32.349645 32.386872 32.411596 32.571543 6.30E-02 

g20 0.096737 *0.204095 *0.209711 *0.212003 *0.233281 6.94E-03 

g21 193.778349 205.852693 279.309106 273.298016 303.454837 23.8556 

g22 382.902205 *157.5136 *3161.1026 *5376.2265 *18732.7838 5.01E+03 

g23 -400.0025 -361.856637 -136.564268 -138.407772 3.775736 84.5217 

g24 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 0 

Table 1. PESO results in the Benchmark. *Infeasible Solution 

5.1 PESO Results 

In Table 1, we present the results of PESO in the benchmark problems, where S.D. means 
standard deviation. For every test problem 30 runs was developed, and in each run 350,000 
fitness function evaluations were applied to test our. In only two test problems, g20 and g22, 
PESO did not find a feasible solution. These problems have 14 and 19, equality constraints 
respectively. Also, PESO presents a poor performance in test problems g21 and g23, where it 
did not reach the optimal value, but always found a feasible solution at the 30 runs. In the 
rest of the benchmark, PESO attains the global optimal. PESO was able to outperform the 
best know solution in test problems g03, g05, g11, g13, g17 and g19, due the conversion of 
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equality constraints to inequality constraints with a tolerance value of 1E-06. The whole 
benchmark was resolved using the same parameters, but there are several test problems, 
which were solved with less than 350000 fitness function evaluations. This fact is showed in 
Table 2.   

TP Best Median Mean Worst S.D. F.R. S.R. 

g01 90800 95000 95396.67 99400 2613.29 30 30 

g02 142900 175800 179395.45 232100 28120.18 30 22 

g03 315100 315100 315123.33 315600 97.14 30 30 

g04 59600 65100 65086.67 70000 2713.28 30 30 

g05 315100 315100 315256.67 315900 245.91 30 30 

g06 47100 54200 53410.00 57000 2577.80 30 30 

g07 185500 227600 233400.00 304500 32253.97 30 30 

g08 3600 6850 6470.00 8500 1381.94 30 30 

g09 69900 78500 79570.00 102400 7154.65 30 30 

g10 167200 221300 224740.00 307200 38407.87 30 30 

g11 315100 315100 315100.00 315100 0 30 30 

g12 400 6900 6646.67 10400 2606.98 30 30 

g13 315100 315150 315546.67 318100 710.87 30 30 

g14 326900 326900 326900.00 326900 0 30 1 

g15 315100 315100 315100.00 315100 0 30 30 

g16 37200 41000 40960.00 45400 2210.88 30 30 

g17 315100 316100 316608.70 318800 1061.69 30 23 

g18 102200 153600 167088.89 252900 43430.30 30 27 

g19 206800 259650 264414.29 331000 36456.84 30 14 

g20 NR NR NR NR NR 0 0 

g21 NR NR NR NR NR 30 0 

g22 NR NR NR NR NR 0 0 

g23 NR NR NR NR NR 30 0 

g24 14900 19350 19156.67 22200 1927.24 30 30 

Table 2. Convergence of PESO in the Benchmark. NR Optimal not reached 

In Table 2, we present the number of fitness function evaluations that PESO requires to 
attain a value within 1E-4 of the optimal. Also, the number of feasible runs, F.R. and the 
number of successful runs, S.R. are showed. We define like F.R. that run, which finds at least 
one feasible solution in less than 350000 fitness evaluations. On the other hand, when the 
best value found is within 1E-4 of the optimal the run is successful. Only the successful runs 
were used to calculate the measures presented in Table 2. Test problems with equality 
constraints require at least 315000 fitness function evaluations, due the dynamic tolerance 
applied in PESO. The experiments show a poor performance of PESO in test problems g20, 
g21, g22 and g23. These problems have several equality constraints; in fact the problems g20 
and g22 have more than 10 of them. Now, we compare our approach against other PSO 
based methods and evolutionary algorithms representative of the state-of-the-art. 
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5.2 Comparison PESO versus Turbulent PSO 

First we compare PESO against another PSO approach which applies feasibility tournament to 
handle constrained optimization problems. In Section 3, we mention that Toscano and 
Coello proposed a constraint handling technique for PSO (Toscano & Coello). Their 
approach handles constraints through a feasibility tournament, and keeps diversity by adding 
mutations to the velocity vector using a turbulence operator. They test the original 
benchmark with 13 test functions (Runnarson & Yao, 2000). The comparison is shown in 
Table 3. TC-PSO (Toscano and Coello’s PSO) performed 340,000 fitness function evaluations, 
10,000 less than PESO, but it is not significative for the comparison. The performance of 
PESO is better than TC-PSO on test problems g02, g05, g07, g09, g10 and g13. 

TP Optimal PESO TC-PSO 

g01 -15.000000 -15.000000 -15.000000 

g02 -0.803619 -0.803619 -0.803432 

g03 -1.000000 -1.000005 -1.004720 

g04 -30665.538 -30665.53867 -30665.500000

g05 5126.49811 5126.498096 5126.640000 

g06 -6961.8138 -6961.813876 -6961.810000 

g07 24.306209 24.306209 24.351100 

g08 -0.095825 -0.095825 -0.095825 

g09 680.630057 680.630057 680.638000 

g10 7049.248 7049.248020 7057.590000 

g11 0.750000 0.749999 0.749999 

g12 -1.000000 -1.000000 -1.000000 

g13 0.053950 0.053950 0.068665 

Table 3. Comparison of two PSO with feasibility tournament for handling constraints. Best 
results of PESO and TC-PSO into 30 runs 

5.3 Comparison PESO versus Feasible PSO 

Now, we compare PESO against the approach proposes by Hu and Eberhart (Hu & 
Eberhart, 2002). They apply a global PSO based on feasibility preservation for handling 
constraint problems. They only test the first 12 test functions of the benchmark. The 
comparison is shown in Table 4. HE-PSO (Hu and Eberhart’s PSO) performed 100,000 
fitness function evaluations. For developing a real comparison, PESO performed 100,000 
fitness function evaluations. Nevertheless, the comparison is not equal since we do not take 
into account the number of constraint evaluations that HE-PSO performs to preserve 
feasibility. Also, we must mention that the randomly initialized particles are not always in 
the feasible space. So initialization may take a longer time. The performance of PESO is 
better than HE-PSO on test problems g02, g06, g07, g09 and g10. Even, there is not available 
information about the performance of HE-PSO at test problem g05. We should observe that 
PESO is robust to the number of fitness function evaluations. It is not a surprise, since in 
Table 2 we can observe the convergence rate of PESO for every test problem. In the first 12 
test problems there are 3 with equality constraints; therefore, their convergence rate is 
driven by the dynamic tolerance. In the rest, there are 6 test problems with a best 
convergence rate lower than 100,000 fitness function evaluations. Only test problems g02, 
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g07 and g10 have a best convergence rate upper than 100,000, which cause a little decrease 
in their best solution found around 30 runs. 

TP Optimal PESO HE-PSO 

g01 -15.000000 -15.000000 -15.0 

g02 -0.803619 -0.803613 -0.7130 

g03 -1.000000 -1.000005 -1.0 

g04 -30665.538 -30665.53867 -30665.5 

g05 5126.49811 5126.498096 - 

g06 -6961.8138 -6961.813876 -6961.7 

g07 24.306209 24.306248 24.4420 

g08 -0.095825 -0.095825 -0.0958250

g09 680.630057 680.630057 680.657 

g10 7049.248 7049.250802 7131.01 

g11 0.750000 0.749999 0.75 

g12 -1.000000 -1.000000 -1.0 

Table 4. Comparison of PESO against HE-PSO. Best results of PESO and HE-PSO into 30 
runs

5.4 Comparison PESO versus Periodic Mode PSO 

In Section 3, we mention the special technique for handling inequality constraints 
introduced by Zhang et al., called periodic mode (Zhang et al., 2004). Their method keeps the 
global-best near the boundary thus the flock which is constantly pulled to the border, can 
sustain exploration. They only tested the 9 functions with inequality constraints of the 
benchmark proposed by Runnarson and Yao (Runnarson & Yao, 2000). The comparison is 
shown in Table 5.  

TP Optimal PESO PM-PSO 

g01 -15.000000 -15.000000 -15.000000

g02 -0.803619 -0.803613 -0.64330 

g04 -30665.538 -30665.53867 -30665.54 

g06 -6961.8138 -6961.813876 -6961.814 

g07 24.306209 24.306248 24.306 

g08 -0.095825 -0.095825 -0.095825 

g09 680.630057 680.630057 680.630 

g10 7049.248 7049.250802 7049.5 

Table 5. Comparison of PESO against PM-PSO. Best results of PESO and PM-PSO into 30 
runs

The PM-PSO algorithm (periodic mode PSO) performed 1,500,000 fitness function 
evaluations. Although, PESO performed four times less fitness function evaluations than 
PM-PSO, we did not increase the number of fitness function evaluations, because PESO 
performance is competitive with the general parameters applied in these experiments. The 
performance of PESO is better than PM-PSO on test problems g02 and g10. 
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5.5 Comparison PESO versus Diversity-DE 

Now, we compare PESO against other evolutionary algorithms. We believe that could be 
interesting a comparison against a Differential Evolution algorithm, since PESO applies a C-

Perturbation similar to the operator used for reproduction in this algorithm. Mezura et al. 
modified the Differential Evolution algorithm in a way that every parent may have 
more than one offspring (Mezura et al., 2005). The winner is the best child but then 
the child is compared to the current parent. Another tournament is performed but 
this time the winner is found by tossing a coin and comparing by fitness value, or 
by constraint violation; similar to Stochastic Ranking (Runnarson & Yao, 2000). The 
comparison of the first 13 test functions is shown in Table 6; the number of fitness 
evaluations for both algorithms is 225,000. The performance of PESO and 
Diversity-DE is very similar. A little advantage is shown by PESO on test problems 
g09 and g13. 

TP Optimal PESO Diversity-DE

g01 -15.000000 -15.000000 -15.000000 

g02 -0.803619 -0.803618 -0.803619 

g03 -1.000000 -1.000005 -1.000 

g04 -30665.538 -30665.53867 -30665.539 

g05 5126.49811 5126.498096 5126.497 

g06 -6961.8138 -6961.813876 -6961.814 

g07 24.306209 24.306211 24.306 

g08 -0.095825 -0.095825 -0.095825 

g09 680.630057 680.630057 680.638 

g10 7049.248 7049.248435 7049.248 

g11 0.750000 0.749999 0.75 

g12 -1.000000 -1.000000 -1.000000 

g13 0.053950 0.053950 0.053941 

Table 6. Comparison of PESO against Diversity-DE. Best results of PESO and Diversity-DE 
into 30 runs 

5.6 Comparison PESO versus SMES 

The extend benchmark was proposed by Mezura in his Ph.D. thesis (Mezura, 2004). 
Therefore, it is interesting to compare PESO against the approach developed by Mezura, 

called SMES. SMES works over a simple multimembered evolution strategy: (µ+λ)-ES. The 
modifications introduced into SMES are the reduction of the initial step size of the sigma 
values to favour finer movements in the search space. A panmictic recombination operator 
based on a combination of the discrete and intermediate recombination operators. Also, 
SMES changes the original deterministic replacement of the ES, sorting the solutions by 
applying a comparison mechanism based on feasibility. This allows remaining in the next 
generation, the best infeasible solution, from either the parents or the offspring population. 
In Table 7 we show the comparison of PESO and SMES. In this case both algorithms 
performed 240,000 fitness function evaluations. It can be seen that PESO is clearly better 
than SMES in problems g05, g07, g10, g13, g14, g15, g17, g19, g21 and g23. PESO and SMES 
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were unable to find feasible solutions for test problems g20 and g22. But, PESO finds 
feasible solutions for test problems g17, g21 and g23, where SMES could not find feasible 
solutions in any single run. 

TP Optimal PESO SMES 

g01 -15.000000 -15.000000 -15.000000 

g02 -0.803619 -0.803618 -0.803601 

g03 -1.000000 -1.000005 -1.000000 

g04 -30665.538 -30665.53867 -30665.539 

g05 5126.49811 5126.498096 5126.599 

g06 -6961.8138 -6961.813876 -6961.814 

g07 24.306209 24.306211 24.327 

g08 -0.095825 -0.095825 -0.095825 

g09 680.630057 680.630057 680.632 

g10 7049.248 7049.248871 7051.903 

g11 0.750000 0.749999 0.750000 

g12 -1.000000 -1.000000 -1.000000 

g13 0.053950 0.053950 0.053986 

g14 -47.764411 -47.760600 -47.535 

g15 961.715172 961.715171 *961.698 

g16 -1.905155 -1.905155 -1.905 

g17 8876.98068 8860.030895 *8890.1826 

g18 -0.8660 -0.866025 -0.866 

g19 32.386 32.351376 34.223 

g20 0.096737 *0.204095 *0.211364 

g21 193.778349 236.928359 *347.9809 

g22 382.902205 *157.5136 *2340.6166 

g23 -400.0025 -369.765012 *-1470.1525

g24 -5.508013 -5.508013 -5.508 

Table 7. Comparison of PESO against SMES. Best results of PESO and SMES into 30 runs. 
*Infeasible Solution 

5.7 Comparison PESO versus ISRES 

An algorithm representative of the state-of-the-art is the Stochastic Ranking algorithm was 
proposed by Runarsson and Yao (Runnarson & Yao, 2000). Later, the authors provided a 
new improved version, called Improved Stochastic Ranking Evolution Strategy, (ISRES) 
(Runnarson & Yao, 2005). The algorithm is a simple evolution strategy enhanced with a 

stochastic sorting, which decides, through a probability fixed value, performing a 
comparison using only the function value or the constraint violation. The ISRES’s 

code is available at Runarsson’s page, and we used it, for developing the experiments for 
test problems g14 through g24. The parameters used were the same as the suggested by the 
authors (Runnarson & Yao, 2005). The comparison is shown in Table 8. Both algorithms 
performed the same number of fitness function evaluations, 350000. Note that ISRES finds 
the best values for test problems g21 and g23. But PESO is better in problems g13 and g17. In 
test problem g21, PESO found feasible solutions in all 30 runs, whereas ISRES only had 5 
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successful runs. Both PESO and ISRES were unable to find feasible solutions for test 
problems g20 and g22.

TP Optimal PESO ISRES 

g01 -15.000000 -15.000000 -15.000000 

g02 -0.803619 -0.803619 -0.803619 

g03 -1.000000 -1.000005 -1.001 

g04 -30665.538 -30665.53867 -30665.539 

g05 5126.49811 5126.498096 5126.497 

g06 -6961.8138 -6961.813876 -6961.814 

g07 24.306209 24.306209 24.306 

g08 -0.095825 -0.095825 -0.095825 

g09 680.630057 680.630057 680.630 

g10 7049.248 7049.248020 7049.248 

g11 0.750000 0.749999 0.750 

g12 -1.000000 -1.000000 -1.000000 

g13 0.053950 0.053950 0.053942 

g14 -47.764411 -47.761180 -47.761129 

g15 961.715172 961.715171 961.715171 

g16 -1.905155 -1.905155 -1.905155 

g17 8876.98068 8856.502344 8889.9003 

g18 -0.8660 -0.866025 -0.866025 

g19 32.386 32.349645 32.348689 

g20 0.096737 *0.204095 - 

g21 193.778349 205.852693 193.785034 

g22 382.902205 *157.5136 - 

g23 -400.0025 -361.856637 -400.000551

g24 -5.508013 -5.508013 -5.508013 

Table 8. Comparison of PESO against ISRES. Best results of PESO and ISRES into 30 runs. 
*Infeasible Solution

6. Conclusion  

In this chapter, we described a robust PSO for solving constrained optimization problems. 
We discussed the premature convergence problem, which still is an issue in evolutionary 
computation. A brief trip was made through several proposals to attain a balance between 
exploration and exploitation. Also, we briefly review recent works that contribute with 
interesting ideas for handling-constraints in PSO.  
This work presents an algorithm called PESO to handle constrained optimization problems. 
Based on the empirical and theoretical results of several works, we explain and validate 
every component applied in PESO. We empirically show the performance of PESO in a well-
know benchmark. PESO has shown high performance in constrained optimization problems 
of linear or nonlinear nature. Three important contributions of PESO are worth to mention: 
A new neighbourhood structure for PSO, the incorporation of perturbation operators 
without modifying the essence of the PSO, and a special handling technique for equality 
constraints.  
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The first contribution is the singly-linked neighbourhood structure. It increases the 
exploitation of the algorithm, breaking the double-link that exists between the particles 
using the original ring neighbourhood structure. PESO implements a singly-linked ring 
with a neighbourhood of size n = 2, but a general algorithm to build neighbourhoods of size 
n is given by Hernández et al. (Hernández et al., 2007). 
Another relevant idea developed by PESO, is the perturbation of the target to keep flock’s 
diversity and space exploration. Two perturbation operators, C-perturbation and M-
perturbation are applied to the pbest. It is equivalent to perturb the particle’s memory and not 
its behaviour; as it is performed by other approaches that tend to destroy the flock’s 
organization capacity. 
The last feature of PESO is its special technique to handle equality constraints. It is 
performed through a dynamic tolerance that allows unfeasible particles at the first 
generations, but it decreases the tolerance value until reach a desired error. The dynamic 
tolerance helps to keep the flock near the feasible region, while exploring promising regions. 
The results on the benchmark problems provide evidence that PESO is highly competitive. 
So far, PESO performed very well at solving the current state-of-the-art problems, but it 
should be improved to handle problems with a higher number of equality constraints.   

7. Future Research  

PESO shows a competitive performance solving constrained optimization problems, so 
global (unconstrained) optimization and multi-objective optimization problems are 
attractive topics for future research. But, there are other research areas that could be 
explored in this approach. 
As we mention in Section 4, the acceleration parameters have not been studied yet. A set of 

sub-swarms could improve the robustness of the PSO (Liang & Suganthan, 2006). One of the 
main research areas in evolutionary computation is the application to real optimization 
problems. In that field, we used PESO to solve system reliability optimization problems 
(Muñoz, 2004).    
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topics.
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