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Abstract

Actinobacteria produce diverse and huge amounts of enzymes that are widely used
in different industrial purposes. Specific properties of enzymes allow to run the re‐
actions under milder conditions with improved yield and reduced wastes. Further
redesign for  natural  enzymes is  very essential  because they are often not  suitable
for  biocatalytic  processes.  Recently,  new  microbial  natural  and  creating  enzymes
are discovered synchronous with the late advanced technologies of genomics, meta‐
genomics,  proteomics,  efficient  expression  systems  and  emerging  recombinant
DNA.  The  ongoing  development  of  enzyme  biotechnology  aids  in  the  improve‐
ment of the industrial  biocatalysis field.  Thermophilic actinobacteria produce ther‐
mostable  enzymes  that  are  widely  used  in  industrial  processes.  In  contrast,
psychrophilic actinobacteria grow well at low temperatures and subsequently their
enzymes  are  more  effective  at  low temperatures.  The  advanced DNA sequencing
technique  allows  determining  and  identifying  the  sequences  and  functions  of  all
the  genes  that  synthesize  proteins  that  are  widely  use  in  the  industry.  Recombi‐
nant  strains  can be obtained by using certain biotechnological  tools  to  potentially
increase  enzymes  production  on  a  large  scale.  The  ongoing  development  in  this
field  will  lead  to  the  improvement  of  different  industrial  purposes  such  as  food,
chemicals, textiles, leather, pharmaceuticals, and so on.

Keywords: Actinomycetes, biocatalysts, enzyme biotechnology, industrial microbiolo‐
gy

1. Introduction

Actinobacteria are recognized by their morphology thin, elongated cells with branching
filaments, as its name denotes. Nevertheless, morphology alone is not enough to add an
organism to the actinobacterial group, so the advanced identification depends on other
techniques such as cultural, physiological, biochemical and molecular characteristics. More‐
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over, phylogenetic analysis is necessary to distinguish between true actinobacteria and those
that have closely phylogenetic affinities, and at the same time to precisely determine the
similarity among different species of the same genus. A lot of enzymes produced from
actinobacteria are used in industries thus they are called "industrial enzymes". These enzymes
employ in the industry of paper, leather, detergents, textiles, pharmaceuticals, chemicals,
foods, beverages, biofuels, animal feed, personal care, and others [1]. The sustainable industry
based on enzymes technology depends on the biotechnological development, which is
represented in the modern molecular techniques such as metagenomics and genomics. The
latter allows the discovery of new potential recombinant-biocatalytic enzymes used in
different industries needed by society. These industrial enzymes are employed to yield over
500 products [2, 3]. Although chemical and organic methods are used in industries, they have
several disadvantages non-economic, unfriendly to the environment, lacking of enantiomeric
specificity for chiral synthesis, need for high temperature, low pH and high pressure and leads
to organic waste and pollutants. On the other hand, enzymes are more useful in industrial
applications because they act at mild reaction conditions, have a long half-life, and are friendly
to the environment [4]. Moreover, gene-encoded enzymes can be modified to improve their
properties stability, substrate specificity and specific activity. There are many competitive
companies that participate in the enzyme industry Novozymes being the largest one followed
by DSM and DuPont among others. The companies' competition relies on certain criteria such
as product quality, performance, use of intellectual property rights, and the ability to innovate.

2. Enzymes detection

Recently, new enzymes can be detected by using certain biotechnological tools such as
metagenome screening [5, 6], microbial genome mining [7, 8], and exploring the diversity of
extremophiles [9, 10].

2.1. Metagenome screening

Metagenome is a new manner for microbial screening based on the function and/or sequence
of the gene [6, 11, 12]. Function-based screening is a method by which gene isolation is carried
out depending on the desired gene function through phenotype detection, heterologous
complementation, and induced gene expression [13]. Whilst sequence-based screening is a
method performed by either polymerase chain reaction (PCR) or hybridization procedures.
Strains producing industrial enzymes are isolated from different environments such as
volcanic vents, arctic tundra, cow rumen [14], marine environments [15], and termite guts [16]
such as lipase [17, 18], oxidoreductase [19, 20], amidase [21], amylase and nitrilase [22], beta-
glucosidase [23, 24], decarboxylase, and epoxide hydrolase [25]. Function-based screening
method has main disadvantages due to its inefficiency and biased expression of foreign genes
in Escherichia coli as an alternative host [12]. To overcome these problems, alternative bacterial
host and expression systems are currently being examined including Streptomyces lividans,
Pseudomonas putida and Rhizobium leguminosarum, among others [26, 27]. Target rate depends
on other factors such as gene size and the assay method. Enzyme activity can be assayed by
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agar plate method, which has a sensitivity developed by using cell lysates [28], toxics resistant
genes [29, 30], correlation of enzyme activity with a phenotypic characteristic such as green
fluorescent protein (GFP) [31], or β-galactosidase [32]. Also, development of flow cytometry-
based screens as SIGEX are leading the way as they enable more rapid screening of large
metagenomic libraries [33].

2.2. Microbial genome mining

New enzymes particularly used in industries are explored from huge genome sequence
databases [34]. The advanced genome sequencing programs, such as 454 from Roche, Solexa
from Illumina, or SoLiD from ABI, reduce time and cost. Using these programs support the
complete and accurate reading of multiple whole genomes in less than two weeks [35]. Two
approaches are being followed to discover new enzymes [36].

2.3. Exploring the diversity of extremophiles

More than 30 papers were published on extremophiles in a special issue [37]. Extremophiles
are promising microorganisms for enzyme production because they can grow under extreme
physical conditions such as temperature (2-12°C, 60-110°C), pressure or radiation, and/or
geochemical conditions such as salinity (2-5% NaCl) and pH (< 2, > 9). High biodiversity for
extremophiles is present under all extreme conditions mentioned [10, 38]. For example, there
are some thermostable enzymes such as proteases, lipases, cellulases and amylases that are
successfully used in different industrial applications [10, 39]. Thermostable enzymes are
isolated from different thermophilic bacteria such as Clostridium, Thermus, Thermotoga, and
Bacillus, as well as Archaeabacteria such as Pyrococcus, Thermococcus or Methanopyrus. The most
common thermostable enzyme is Taq DNA polymerase which isolated from Thermus aquati‐
cus [40]. Moreover, thermostable enzymes are greatly used for detergent manufacturing.
Polymer-degrading enzymes such as cellulases and xylanases are used for pulp and paper
industries, and are also used with other applications such as extraction and clarification of fruit
juices, improvement of bakery products, polishing and stone-washing of textiles, and biore‐
mediation of waters contaminated with oils or hydrocarbons [10, 41 - 43]. Halophites are
produced for specific enzymes that tolerate salt stress by containing a considerable number of
negatively-charged amino acids that prevent precipitation [44]. The most common halophites
that used in industrial applications are Halobacterium, Halobacillus and Halothermothrix [45, 46].
Thermoalkaliphilic enzymes, such as proteases and lipases, are produced by microorganisms
that grow under extreme pH values and used as additives in laundry and dishwashing
detergents [10, 47].

3. Improvement of microbial enzymes

Improvement of enzyme properties can be carried out by creating a growing demand [40].
Industrial enzymes usually need further fine tuning to achieve industrial scale production [48].
Using recombinant DNA technology in large industrial scales is very urgent due to the increase
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in production by 100-fold [49]. There are two main manners for enzymes modification to adapt
their functions rational redesign and combinatorial methods.

3.1. Rational redesign

This strategy is based on using direct mutation to hit amino acid substitutions, which require
complete information about the 3D structure and chemical mechanism of the enzymatic
reaction. Databases include protein structures and sequences, so the sequence comparison of
a new enzyme with the references can identify related enzymes whose functions or/and
structures are already known [50 - 54].

3.2. Combinatorial methods

Combinatorial methods rely on certain factors relevant to an enzyme molecule such as
chirality, biocatalytic effect, catalytic rate, solubility, specificity and stability. Combinatorial
methods are faster and cheaper than methods for finding new enzymes it acts better than
natural methods under specific conditions [3, 55 - 57]. Combinatorial methods, also called
"directed evolution" have random mutagenesis in the protein-encoding gene using different
techniques such as PCR [58], repeated oligonucleotide directed mutagenesis [59], and chemical
agents [60]. The PCR technique introduces both random and point mutations in a large number
of enzymes. These techniques perform random recombinant in vitro, typically between parent
genes with homology higher than 70% [61]. The point mutation is carried out by the target
active site residues (about 10–15 amino acids) and those closest to it (another 20–30 amino
acids) [62]. There is another way, called CAS Ting, which is based on a combinatorial active
site testing in which libraries are generated from groups of two or three residues made from
the active site residues [63]. While running PCR, the amino acid alphabet is reduced and new
proteins composed of only 12 amino acids are synthesized [64 - 66]. Further techniques can
create shuffle exons or domains [67], loop regions [68], random truncations [69], or insertions
and deletions of codons [70]. Moreover, random redesign technology is used to create new
and improved enzymes that have the highest activity, are more stable at different pH values
and temperatures [71], have increased chirality [72], altered substrate specificity [73], stability
in organic solvents [74], novel substrate specificity and activity [75] and increased biological
activity of protein pharmaceuticals and biological molecules [76, 77]. Directed evolution
method could improve the activity of glyphosate-N-acetyltransferase by 10,000-fold and
thermostability by 5-fold [78]. Directed evolution work has resulted in the presence of new
and improved enzymatic proteins in the market since 2000 [79, 80].

4. Production of recombinant microbial proteins

Molecular biology techniques, particularly recombinant DNA, have a great effect in enzyme
production from different microorganisms such as Bacillus spp, Ralstonia eutropha, Pseudomonas
fluorescens, Saccharomyce cerevisiae, Pichia pastoris, Hansenula polymorpha, Aspergillus spp,
Trichoderma and E. coli [81]. The latter is most common bacteria used in this purpose due to its
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accurate genome modification, rapid growth, and good growth on different media [82, 83].
Moreover, the Pseudomonas fluorescens bacteria of the Pfenex Company can produce 20 g/L of
protein [84]. On the other hand, Saccharomyces cerevisiae is more useful than bacteria because
it usually used as a cloning host, it has high cell density, produces heterologous proteins, and
its genetics are more advanced than any other eukaryote. Despite all the benefits mentioned
above, this yeast is not convenient for use in the mammalian proteins industry at the large-
scale because drawbacks may occur such as hyperglycosylation, antigenic response in patients
due to accumulation of α-1,3- mannose residues, and absence of strong and tightly-regulated
promoters [85]. P. pastoris is regarded as one of the most common industrial microorganism
and could produce over 700 proteins [81, 86, 87]. Recombinant protein production had 22 g/L
for intracellular proteins [88] and 14.8 g/L for secreted proteins [89]. P. pastoris can produce up
to 30 g/L of recombinant proteins [90 - 94]. Although DNA recombination technology is more
easy and available, gene insertion and deletion remain difficult [95, 96]. The problem at
industrial level is that non-fungal proteins production is low compared to homologous
proteins. There are many strategies used to overcome this problem such as the establishment
of weak protease strains [97], insertion of a considerable number of gene copies [98], use of
strong fungal promoters, efficient secretion signals [98, 99], and gene fusions with a gene that
encodes part of or an entire well-secreted protein [99]. Chrysosporium lucknowense was found
to have a great ability for protein production (50–80 g/L), and from which low-viscosity and
low-protease mutants have been obtained [100, 101].

5. Biocatalysts

Biocatalysts are widely used in different economic industries such as food industry [102].
Biocatalysis can be carried out by using intact cells, immobilized cells, cell free extracts, purified
enzymes, or immobilized enzymes [103,104]. Microbial industry has been developed rapidly
due to due to using the recent techniques such as genome sequencing, directed evolution,
protein expression, metabolic engineering, and structural biology [105,106].

5.1. Enzymes applications

Enzymes have great importance in industrial processes [107, 108]. These enzymes are used in
the detergent, textiles, pulp, paper, leather, and biofuels industries. Biofuels have the highest
sales [109, 110]. In the textiles industry, enzymes are used as cleaners, reducing the use of raw
materials and waste production [111]. Pectate lyase is used in the cotton industry [112]. Lipases,
xylanases, and laccases are used in removing pitch in the pulp industry [113 - 115]. Cellulases
are widely used in the textiles industry and are also used in the degradation of lignocellulosic
feed stocks. There are several cellulases such as endoglucanases that degrade cellulose
randomly, cellobiohydrolases that release glucose dimers from both ends of cellulose chains,
and beta-glucosidases that hydrolyze oligomer chains to liberate glucose molecules [116 -
118]. The main microbial source of cellulases is Trichoderma reesei which depolymerizes plant
blocks to free sugar molecules [119 - 124].
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5.2. Enzymatic food industry

A certain group of enzymes plays an important role in the food industry and subsequently
achieves great revenue [125]. The mechanism of feed enzyme action supports nutrient
digestion and therefore leads to a much easier feed utilization. Moreover, they hydrolyze
complex components that can be deleterious or have no value [126]. The most common
commercial feed enzymes are phytases, proteases, α-galactosidases, glucanases, xylanases, α-
amylases, and polygalacturonases, which are used in swine and poultry products industries
[127, 128]. Lipase is a distinguishable group of enzymes that is used in the food industry. The
maximum yield obtained from lipases requires optimization of enzyme concentration, pH,
temperature, and emulsion content. The most common recombinant fungal lipases are
produced from Rhizomucor miehi, Thermomyces lanuginosus and Fusarium oxysporum [129, 130].
Protease is also an important group of enzymes that is mainly used in the dairy industry, such
as cheese manufacturing where it hydrolyzes a specific peptide bond that generates para-k-
casein and macropeptides [131]. Recombinant protease of A. niger var awamori can produce 1
g/L of chymosin after nitrosoguanidine mutagenesis and the selection for 2-deoxyglucose
resistance [132, 133]. There are four recombinant proteases that have been registered by the
FDA for cheese production [128, 134]. Although all enzymes mentioned above are the most
common in the food industry, there are others used in this application such as invertase used
for candy and jam manufacture, β-galactosidase (lactase) used for hydrolysis of lactose from
milk or whey, and galactosidase used for crystallization of beet sugar [135 - 137].

5.3. Enzymatic processing of chemicals and pharmaceuticals

The chemicals industry depends on enzyme technology that is low cost, has easy methods,
and high quality [138]. Enzymatic processing requires lower energy, which has many benefits
such as high yield, high catalytic activity, low releasing of wastes and byproducts, and lower
volumes of wastewater streams [139]. Genomic and proteomic technology development
improved enzyme properties which in turn improved the chemicals industry [140, 141]. L-
tyrosine is a main compound for protease conversion [142, 143]. Beta-lactam antibiotics
manufacturing is one of the common pharmaceuticals industries that depend on enzymes
technology [144]. Esterases, lipases, proteases and ketoreductases are used in the industry of
chiral alcohols, carboxylic acids, amines or epoxides [110, 145, 146]. Sometimes, recombinant
microbial enzymes raise the yield percentage up to 100% [147]. A combination of random gene
mutagenesis and ProSAR analysis increase the chirality of ketoreductase enzyme toward
tetrahydrothiophene-3-one from 63 to 99% [148 - 152]. The improved enzymatic biotechnology
supports the production of 2-methyl pentanol as an important intermediate for pharmaceut‐
icals manufacture [153 - 155]. Also, an improved acyltransferase aids the conversion of
cholesterol-lowering agent, lovastatin, to simvastatin [156, 157]. Moreover, lipase is used in
stereoselectivity for acetylation of asymmetrical diol during an antifungal agent production
[158]. Enzymatic biotechnology has many advantages such as higher substrate solubility,
reversal of hydrolytic reactions, and modified enzyme specificity, which result in new enzyme
activities [159].
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6. Industrial enzymes

6.1. Pectinases

Actinobacterial pectinases are widely used in various industrial applications such as food and
beverages industries, as well as fruit treatment including fruit maturation, viscosity rising,
decreasing of must, preliminary treatment of must for wine industries, extraction of tomato
pulp, and tea and chocolate fermentation [160, 161]. Pectinases are also used in the textile and
paper industries in plant fiber degumming [162 - 165]. Moreover, the combination of pectinase
and β-glucosidase supports the scent and volatile substances of fruits and vegetables, and raise
the content of antioxidants [166, 167]. Pectinases are produced from several genera of micro‐
organisms such as Bacillus, Aspergillus, Rhizopus, Trichoderma, Pseudomonas, Penicillium and
Fusarium [168, 169].

6.2. Lipases

Lipases are used in various commercial applications,  such as in the detergents industry.
The  most  common  lipase-producing  microorganisms  are  Penicillium  restrictum,  Candida
rugosa, Candida antarctica, Pseudomonas alcaligenes, Pseudomonas mendocina, Burkholderia cepacia
[72],  Geotrichum  candidum  DBM  4013,  Pseudomonas  cepacia,  Bacillus  stearothermophilus,
Burkholderia cepacia, Candida lipolytica, Bacillus coagulans, Bacillus coagulans BTS-3, Pseudomo‐
nas aeruginosa PseA, Clostridium thermocellum 27405, Yarrowia lipolytica and Yarrowia lipolytica
CL180 [170 - 179].

6.3. Lactases

Lactases or β-galactosidases are hydrolyzing enzymes that catalyze the hydrolysis of lactose
at terminal residues and produce glucose and galactose. The microbial source of lactases are
yeasts such as Kluyveromyces lactis, K. fragilis and Candida pseudotropicalis; bacteria such as
Escherichia coli, Lactobacillus bulgaricus, Streptococcus lactis and Bacillus sp; and fungi, such as
Aspergillus foetidus, A. niger, A. oryzae and A. Phoenecia [180,181]. Beta-galactosidase is widely
used in the dairy industry, and also used in dairy products crystallization such as milk candy,
condensed milk, frozen concentrated milk, yoghurt and ice cream mixtures [182 - 185].

6.4. Cellulases

Cellulases are hydrolyzing enzymes for cellulose substances to produce cellobiose and then
glucose [186]. The combination of cellulases and pectinases provides well in applications in
juice and wine industries [187]. There are a wide array of microorganisms that produce
cellulases, such as Trichoderma, Penicillium, Aspergillus, Fusarium, Phoma, Acidothermus, Bacillus,
Pseudomonas, Staphylococcus, Streptomyces, Xanthomonas, Acetovibrio, Clostridium, Pseudonocar‐
dia, and Thermoanaerobacter [188, 189].

6.5. Amylases

Amylases are used in the textiles, beer, liquor, bakery, infant feeding cereals, and animal feed
industries. Aspergillus and Rhizopus are the most common amylases producers [190,191].
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Amylases are used in the food industry in the conversion of starch into dextrin which in turn
is converted to maltose, which used in the manufacture of soft drinks, beer, jellies, and ice
cream. Maltose can be converted into glucose, which used in the soft-drinks and bakery
industries [192,193]. Amylases are the most used enzymes in bread baking [194]. Amylases
also play an important role in the pharmaceuticals industry [195 - 199].

6.6. Proteases

Proteases are used in the baking, feed and brewing industries. Proteases catalyze the splitting
of peptide linkages in proteins. Proteases are classified into exopeptidases and endopeptidases
according to the site of the concerned peptide bond to be cleaved. Recently proteases represent
60% of industrial enzymes on the market because they are easy to obtain and to recover.
Proteases have high coagulation activity, with fewer risks [200]. Proteases are mainly used in
the industry of soluble proteins, chemicals and pharmaceuticals [201]. Proteases are produced
by Bacillus, Thermus caldophilus, Desulfurococcus mucosus, Streptomyces and Escherichia coli [202].

6.7. Glucose oxidase

Glucose oxidase can oxidize β-D-glucose with the formation of D-gluconolactone. The enzyme
is used to remove harmful oxygen in the food industry to avoid toxicity [203].

6.8. Glucose isomerase

Glucose isomerase catalyzes the reversible isomerase from D-glucose and D-xylose into D-
fructose and D-xylulose respectively. Glucose isomerase plays an important role in the food
industry such as in the production of fructose-rich corn syrup [197]. The cloned gene xylA of
Thermus themophilus is introduced to Saccharomyces cerevisiae to be expressed under the control
of the yeast PGK1 promoter [205,206].

6.9. Invertase

Invertase is produced by Saccharomyces cerevisiae and other microorganisms. The enzyme
catalyzes the hydrolysis from sucrose to fructose and glucose. The supplementation of an
invertase to banana juice is to increase its sweetness and viscosity [207 - 210].
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