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Abstract

A switch-mode rectifier (SMR) can provide adjustable and well-regulated DC output
voltage from the available AC source with good line drawn power quality. Depending
on the input/output voltage transfer characteristics, the schematics, the operation
quadrant, and control, SMRs possess many classifications and application. Typical
potential application examples include grid powered motor drives, battery chargers,
various power electronic facilities, micro-grids, and grid-connected battery energy
storage system (BESS), etc. In micro-grids, the SMR can be employed as the AC
generator-followed converter to yield better generating efficiency. The SMR operation
of its grid-connected inverter let the grid-to-microgrid (G2M) operation be conduct‐
able in addition to the microgrid-to-grid (M2G) operation. As for the electric vehicle
(EV), the bidirectional inverter can be arranged to perform G2V/V2G operations in
idle case, wherein the SMR operation is made in G2V battery charging.

To promote the application potential and improve the operation performance of
SMRs, this article presents the operation controls and applications of SMRs in micro-
grid systems incorporating BESS and EV as supplemental facilities. First, the
classifications, operation principle, and some key issues of SMRs are explored.
Secondly, the configuration of the studied system is introduced. Third, the controls
and operations of SMRs in micro-grid, wind generators, and grid-connected interface
power converters are described. Then the ones in BESS (B2G/G2B) and EV are
introduced. Finally, some conclusions and suggestions are given.

Keywords: Power quality, power factor correction, switch-mode rectifier, control, mi‐
cro-grid, BESS, electric vehicle, battery charger
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1. Introduction

Energy exhaustion, carbon-dioxide emission, and global warming issues have seriously
received attention worldwide in recent years. The use of micro-grid [1-4] incorporating with
various distributed and renewable sources and energy storage devices is an effective means
to reduce these problems. Compared with the AC micro-grid, the DC micro-grid possesses the
merits of simpler interface converters, allowing longer common DC bus length and having
fewer losses [1]. For establishing a high-performance micro-grid, many interdisciplinary affairs
should be properly treated, such as:

i. Interfacing the renewable sources to the system with proper interface converters and
controls. Each specific source possesses its own key issues to be adequately handled.
For a wind AC generator, the SMR is a natural choice to yield better energy conversion
characteristics;

ii. Equipped with proper storage devices and their coordinated controls. If the auxiliary
charging from the mains is arranged, the SMR must also be adopted to have good
charging performance and line drawn power quality; and

iii. Energy management control for the constituted sources, storage devices, and loads.
Recently, many droop control approaches [1,5] have been developed to enhance the
autonomous operation control characteristics of micro-grids.

Similar to micro-grids, the popularization of electric vehicles (EVs) [6] is also effective in
reducing fossil energy consumption and carbon-dioxide emission. Moreover, by regarding EV
as a movable energy storage device and performing its interconnected operations to a micro-
grid (M2V/V2M) [7,8] or utility grid (G2V/V2G) [9-14], the effectiveness in achieving these
goals will be more prominent. Among the commonly used motors, permanent-magnet
synchronous motor (PMSM) is one of the commonly used motors for commercialized EVs
[15,16], owing to its many distinguished features. Battery is the major source of an EV, hence
its type and ratings should be properly chosen [17-19]. Different from the energy type of
battery, the super-capacitor belongs to the power type energy storage device that has faster
response and lower capacity. By incorporating battery with super-capacitor, one can preserve
better total energy utilization characteristics. Then, intermittent battery charging/discharging
operations can be avoided to increase battery life. The super-capacitor can be directly paral‐
leled to the battery [20], or they can be interconnected via various configured interface DC/DC
converters [21,22].

Battery is an important energy source of various portable and movable appliances, such as
laptop computers and electric vehicles [23-25]. To effectively use battery storage energy, the
study of the use of batteries in emergency application for a laptop computer has been presented
in [25,26]. The vehicle-to-grid (V2G)/grid-to-vehicle (G2V) operations have also gradually
received attention [27-29]. Besides, there are specific battery energy storage systems (BESSs)
being developed [30-35]. In addition to the autonomous operation of supplying power to
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critical loads [30-32,35], BESSs also possess grid-to-battery charging and battery-to-grid
discharging capabilities. The line current in grid-side can also be regulated to be nearly
sinusoidal, thanks to its power conditioning control ability. In the studied BESS, its DC-link
voltage (Vdc =400V) is established from the Li-ion battery bank (vB =96V) via an interleaved DC/
DC boost-buck converter that has fault-tolerance capability. For effectively utilizing other
renewable sources, a plug-in energy harvesting system is developed to make battery supple‐
mentary charging from the possible AC and DC sources. As far as the AC source is concerned,
a suitable SMR and its control are needed.

In a DC micro-grid or distributed power system, the DC sources and energy storage devices
must be interfaced to its common DC-link using suited DC/DC converter [36,37]. For batteries
and supercapacitors, bidirectional DC/DC converters are needed to perform charging and
discharging operations. For applications with battery voltage being lower than its interfaced
DC-link, one can apply the one-leg half-bridge boost-buck bidirectional DC/DC converter [20].
To possess lower current ripples and fault-tolerance capability, the interleaved DC/DC
converter [38] can be adopted.

Basically, SMR is formed by inserting a suited DC/DC converter between the diode bridge
rectifier and the output filtering capacitor. The surveys for single-phase and three-phase SMRs
can be found in [39-43]. For three-phase plants with less stringent power quality requirement,
one can adopt the three-phase single-switch (3P1SW) SMR [44,45]. By operating it under
discontinuous conduction mode (DCM), the power factor correction is inherently preserved
without current feedback control. If higher efficiency is desired, the bridgeless DCM three-
phase SMR presented in [35] can be employed. To yield good line drawn current waveform
tracking control with the minimum switch number, the three-phase three-switch (3P3SW)
Vienna SMR [46,47] is a good choice. However, these two types of SMRs possess only AC-to-
DC unidirectional power flow capability. For interfacing the output of a wind AC generator,
such as wind permanent-magnet synchronous generator (PMSG), to the common DC-bus in
DC micro-grid, a suited AC/DC converter is needed. The de-rated characteristics for various
AC/DC followed converters can be found in [48]. From the compromised considerations in
switch number, switch voltage stress, conversion loss, operation quadrant number, and control
performance, the Vienna rectifier [49-51] with three switches is a better choice to be the interface
converter of AC wind generators. On the other hand, the standard three-phase six-switch
(3P6SW) SMR [35] should be used for conducting bidirectional power transfer operations.

SMR can directly provide adjustable and well-regulated DC output voltage from the available
AC source with good line drawn power quality. This article presents the operation controls
and applications of SMRs in micro-grid system incorporating BESS and EV as supplemental
facilities. The contents of this article mainly include: (i) Exploration of classifications, operation
principle, and some key issues of SMRs; (ii) Functional description of the studied system; (iii)
Introduction to the controls and operations of SMRs in micro-grid, wind generators, grid-
connected interface power converters, BESS, and EV; (iv) Experimental evaluations for the
studied plant in various operation cases.
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2. System configuration

System configuration of the studied system is shown in Fig. 1. It mainly consists of a grid-
connected DC micro-grid, an EV PMSM drive with G2V/V2H/V2G functions, and a grid-
connected BESS. The detailed schematics of the constituted plants are shown in Fig. 2. The key
system components and features of these three power stages are:

A. DC Micro-grid

a. Sources: DC source and wind PMSG and their interface converters. For the latter, the
advantages of using SMR in de-rated characteristics and generation efficiency enhance‐
ments are presented. The other possible harvested AC and DC sources can also be plugged
into the system via embedded interface converter schematics.

b. Hybrid energy storage system that consists of a battery bank, a super-capacitor (SC) bank,
and a PMSM-driven flywheel. Each device is interfaced to the common DC bus via a
bidirectional DC-DC boost-buck converter. The output of the flywheel system can be
directly connected to the micro-grid common-DC bus for its voltage boosting ability.

c. Bidirectional single-phase three-wire (1P3W) load inverter wherein the following
operations are allowed: (i) M2G operation: the inverter can power the local load to reduce
the power fed from utility. Moreover, the programmed power can be sent back to the
utility grid; (ii) G2M operation: the single-phase SMR is formed to allow the utility supply
power to the micro-grid for energy supporting or making the battery supplementary
charging. The EV can also perform the G2V/V2G operations via its own schematics or via
the micro-grid interface converters (G2M+M2V)/(V2M+M2G).

B. EV PMSM Drive

The developed battery/SC powered EV IPMSM drive possesses G2V/V2H/V2G operation
capabilities. The battery bank and SC bank are integrated to the common DC-link, respectively,
via an interleaved and a standard bidirectional front-end DC/DC converter. And the SC bank
is connected to the battery bank through a diode to allow the restored regenerative braking
energy in SC be charged to battery automatically. Through proper arrangement, the G2V
charging and V2H/V2G discharging operations are applicable using the integrated converters
and inverters formed by the motor drive embedded components.

In idling G2V operation mode, the battery bank can be charged by the utility grid. A single-
phase boost SMR and a three-phase boost SMR are formed to charge the battery bank through
the bidirectional interleaved buck DC/DC converter with satisfactory line drawn power quality
from the mains. The interconnected operations of the EV to the micro-grid and BESS are also
conductible. Moreover, the V2G/G2V via micro-grid or BESS is achievable.

C. BESS

The DC-link voltage (400 V) is established from the 96 V battery bank via an interleaved
bidirectional interface DC/DC converter with two cells. A multifunctional inverter is estab‐
lished to perform the autonomous and grid-connected operations:
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Figure 1. System configuration of the studied micro-grid incorporating with EV and BESS.
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Figure 2. Schematics of all constituted power stages in the studied system: (a) BESS and microgrid; (b) EV PMSMdrive.

a. Autonomous operation

The BESS is independent from the utility grid and supplies power to the load.

b. Grid-connected operation

The BESS with three-phase six-switch bidirectional inverter can be arranged to operate in three
modes: (i) battery-to-grid (B2G) discharging mode: the BESS provides all load powers and
sends the preset real power to the utility grid; (ii) grid-to-battery (G2B) charging mode: the
utility grid supplies the load real power and also charges the battery bank with good line drawn
power quality; (iii) floating mode: all load real powers are supplied by the utility grid. The
BESS can compensate all load reactive and harmonic powers under all grid connected
operation modes.

The BESS energy can be supported from the possible AC sources and DC sources via the
developed plug-in energy harvesting system, i.e., the energy-harvester-to-BESS (E2B) opera‐
tion mode. Various AC sources and DC sources can be connected to the BESS via the three-
phase bridgeless discontinuous current mode (DCM) SMR through proper schematic and
control arrangements. Similarly, the interconnected operations of the BESS to the micro-grid
and EV are also applicable. Specifically, the EV can be charged by the BESS employing its
harvested renewable energies.
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3. Classification of SMRs

From the viewpoints of schematics and control approaches, the SMRs can be categorized as
follows.

3.1. Schematics

The SMR schematics can be categorized into: (i) Single-phase or three-phase, the three-phase
SMR is a natural choice for the plants with larger ratings; (ii) Non-isolated or isolated, normally,
the latter type SMR possesses lower energy conversion efficiency; (iii) Buck, boost, or buck/
boost: the boost-type SMR possesses the best PFC control ability since its AC input current is
directly related to the energy storage inductor current. As for the buck and buck/boost SMRs,
the input low-pass filter is necessary for the inherently discontinuous current; (iv) Single-stage
or multi-stage; (v) One-quadrant or multi-quadrant: the multiple quadrant SMR possesses
reverse power flow capability from DC side to AC source to achieve the regenerative braking
of a SMR-fed AC motor drive; (vi) Hard-switching or soft-switching; (vii) Standard or
bridgeless: the bridgeless SMR possesses slightly larger efficiency for the reduced diode
voltage drop; (viii) Single-module or interleaved multi-module: the interleaved SMR may have
the advantages of rating enlargement, higher reliability owing to redundancy, and smaller
current and voltage ripples.

3.2. Control methods

a. Low-frequency control: for the single-phase boost SMR, only v-loop is needed and only
one switching per half AC cycle is applied. It is simple but subject to having limited power
quality characteristics.

b. High-frequency voltage-follower control: without current control loop, only some specific
SMRs operating in DCM possess this feature; see for example, the standard buck-boost
SMR and the flyback SMR.

c. High-frequency standard control: it belongs to multiplier-based current-mode control
scheme with cascade v- and i-control loops.

4. Single-Phase SMRs

4.1. Operation and schematics

For a properly designed single-phase SMR, the AC input current iac can be regulated to be
sinusoidal and kept in phase with vac, then the SMR can be regarded as an emulated resistor
with the effective resistance of Re viewing from the utility grid. However, the double line
frequency output voltage ripple always exists. It can be derived to obtain the peak to peak
value of output ripple voltage:
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where Rdc =  equivalent DC load resistance, ω =2π f 1 and f 1 =60Hz.

In reality, the operation characteristics of an SMR including DC output voltage and AC input
power quality are highly affected by the energy storage inductor current PWM control
behavior.

Figs. 3(a) to 3(e) show some typical single-phase boost SMR circuits, including: (a) standard
type SMR; (b) bridgeless SMR: its efficiency is increased by reducing one diode voltage drop
in each half AC cycle; (c) curret-fed push-pull (CFPP) isolated SMR: the higher voltage boosting
ratio is obtained by the duty ratio control and the turn ratio; (d) zero-voltage transition (ZVT)
soft-switching SMR: the ZVT soft switching is achieved by adding an auxiliary resonant branch
[52]; (e) four-quadrant SMR: the H-bridge converter based SMR possesses four operation
quadrants. A bidirectional battery energy storage system [25] is shown in Fig. 3(e)

The single-phase standard buck SMR is depicted in Fig. 4(a), the input filter is needed for its
discontinuous input current. The power factor will become worse for the higher output DC
voltage. Figs. 4(b) to 4(c) correspond to the standard, the Cuk continuous, and the flyback
isolated buck/boost SMRs, respectively. Except for the Cuk SMR, the input filtering is still
necessary for the other two types of buck/boost SMRs. In control aspect, the simple voltage-
follower control scheme can be applied for these buck/boost SMRs operated in DCM.

4.2. Some key issues

Some key issues for a boost SMR and a buck/boost SMR are indicated in Fig. 5 and Fig. 6. Some
comments are given as:

a. The input filter is needed for buck/boost SMRs due to the discontinuous input current.

b. The ripples and ratings of the power circuit constituted components must be properly
designed and implemented.

c. For the boost SMR in CCM operation, the standard cascade multiplier-based control
scheme with v and i loops must be adopted.

d. The voltage follower control scheme without inner current loop can be applied for the
buck/boost SMR in DCM operation owing to its inherent PFC capability.

e. In treating the control affairs, the sensed inductor current and output voltage should be
filtered with suited low-pass cut-off frequencies. The feedack controller must first be
properly designed considering the desired transient and static performances and the
effects of comtaminated noises in sensed variables. Normally, the voltage dynamic
response speed is: << (2 f 1 =120Hz), whereas the inner current dynamic response is set as:
<< switching frequency, but >> (2 f 1 =120Hz).
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Figure 3. Some typical single-phase boost SMR circuits: (a) standard SMR; (b) bridgeless SMR; (c) CFPP isolated SMR;
(d) ZVT soft-switching SMR; (e) four-quadrant SMR.
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5. Three-phase SMRs

5.1. Operation and schematics

Detailed surveys for the existing three-phase SMR circuits can be referred to [41-43]. The
complexities of schematic and control mechanism depend on the control ability and the desired
performances. Some commonly used three-phase boost SMRs shown in Figs. 7(a) to 7(e)
include:

a. Three-phase, single-switch (3P1SW) DCM SMR (Fig. 7(a)): by operating it in DCM, the
PFC is naturally preserved without applying current PWM control. However, it possesses
the following limiations: (i) Having higher input peak current and switch stress; (ii) The
input line current contains significant lower-frequency harmonics with the orders of 6n
±1, n=1, 2,..., and the dominant ones are the 5th and 7th harmonics. Thus, suitably designed
AC-side, low-pass filter is required to yield satisfactory power quality; (iii) The line drawn
power quality is limited, typically the power factor is slightly higher than 0.95; (iv) It
possesses only one-quadrant capability.

b. Bridgeless, three-phase DCM SMR: As shown in Fig. 7(b) [35], one diode drop is elimi‐
nated in each line-current path to increase the efficiency compared to 3P1SW SMR.

Figure 4. Some typical single-phase buck and buck/boost SMR circuits: (a) standard buck SMR; (b) standard buck/
boost SMR; (c) Cuk buck/boost SMR; (d) flyback isolated SMR.

c. Three-phase Vienna SMR [46,47] (Fig. 7(c)): it uses only three switches to achieve good
current command tracking control. It can be regarded as a simplified version of three
single-phase PFCs connected to the same intermediate bus voltage. The major features of
this SMR are: (i) three output voltage levels (0.5vo, vo, -0.5vo) providing larger switching
control flexibility; (ii) lower switch voltage rating of, 0.5 vo rather than v0 ; and (iii) lower
input current distortion. However, it has only unidirectional power flow capability, and
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needs a complicated power switch and two serially connected capacitors. The specific
power switch (VUM 25-05) for implementing this SMR is available from IXYS Corpora‐
tion, USA.

d. Three-phase six-switch standard SMR (Fig. 7(d)): the standard three-phase six-switch
SMR [41,42] possesses four operation quadrants and high flexibility in power conditioning

Figure 5. Some key issues of single-phase boost SMRs.
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control. For a motor drive equipped with such SMR, it may possess regenerative braking
ability. However, the switch utilization ratio of this SMR is low, and its control is com‐
plicated.

e. Neutral-point clamped (NPC) three-phase standard SMR: the three-level NPC three-
phase SMR is shown in Fig. 7(e) where the voltage ratings of its constituted power switches
and diodes can be only one-half of the DC-link voltage, rather than the full voltage for the
standard SMR shown in Fig. 7(d).

Three-phase single-switch (3P1SW) DCM SMR:

For a well-regulated three-phase single-switch (3P1SW) DCM SMR shown in Fig. 7(a), it can
be regarded as a loss-free emulated resistor Re viewing from the phase AC source with line

Figure 6. Some key issues of single-phase buck/boost SMRs.
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drawn current having dominant 5th and 7th harmonics [44]. Hence, the three-phase line drawn
instantaneous power can be approximately expressed as:
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where δ pac = ripple AC power and the average AC power Pac is:
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The AC charging current flowing the output filtering capacitor is:

2
cos6

35
dc dc
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dv VC t
dt R

w= (4)

Thus, one can derive the peak-to-peak output voltage ripple from (4):

2
105

dc
dc

dc dc

Vv
R Cw

D = (5)

Three-phase Vienna SMR and three-phase six-switch standard SMR:

For the Vienna SMR and three-phase six-switch standard SMR with satisfactory current mode
control, the three-phase line drawn currents will be balanced without harmonics. Hence, from
(2) one can find that the DC output voltage ripple will be nearly zero.

5.2. Derated characteristics of a PMSG followed by different AC-DC converters

The total derate factor of a surface-mounted PMSG (SPMSG) and an interior PMSG (IPMSG)
followed by various AC-DC converters can be derived to be [48]:
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where, Ias = rms value of armature phase current ias, Ias1 = rms value of fundamtal armature
phase current ias1, TH Di = total harmonic distortion of ias, δ = the power angle between the back-
EMF eas and the terminal voltage vas, Pe = electromagnetic developed power, Pf  = magnetic field
developed power, Pr  = reluctance developed power.

Figure 8. The de-rated characteristics of a PMSG with various AC-DC followed converters and operation control
modes.

The de-rated characteristics of a wind PMSG followed by various AC-DC converters and
operation control modes are shown in Fig. 8. Obviously, the conventional diode rectifier
possesses significant derate. The three-phase Vienna SMR is a good candidate for being the
followed interface converter of the PMSG from the following compromised considerations: (i)
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minimum switch number; (ii) winding current PWM control ability; (iii) the commutation shift
control ability for an IPMSG; and (iv) only one operation quadrant is required.

6. SMR operations and performances

6.1. Wind IPMSG based micro-grid

In the developed wind IPMSG-based DC micro-grid shown in Fig. 2, its common DC bus
voltage vdc =400V is established by the interleaved DC/DC boost converter from the possible
harvested DC sources (here a DC power supply with vd =35V is used as a substitute), and also
by the plug-in Vienna switch-mode rectifier (SMR) from the wind PMSG or other possible
harvested AC sources. The equipped hybrid energy storage system consists of battery/SC/
flywheel. The M2G/G2M operations can be made by the developed 1P3W inverter. The micro-
grid incorporating with EV can allow the V2G/G2V operations to be applicable via the 1P3W
inverter in the established micro-grid. The EV on-board battery can supply power to the micro-
grid local loads, and even send the programmed power back to the utility grid.

A. System Components

1. AC source: wind IPMSG followed by Vienna SMR

• IPMSG: 1 kW, 3.23 N-m, 3,000 rpm, 4.8 A. An SPMSM (2 kW, 9.8 N-m, 2,000 rpm, 9.6
A) is served as the prime mover for driving the IPMSG.

• Vienna SMR:

• L b1 =3.28mH/60Hz,  L b2 =3.28mH/60Hz, L b3 =3.29mH/60Hz, Cdc1 =Cdc2 =2200μF/400V

• Possible plug-in sources: Various harvested AC and DC sources as indicated in Fig. 1
can be plugged into the micro-grid via the input of the Vienna SMR.

2. DC source interleaved DC-DC boost converter

• vd =35V, vdc =400V, Pdc =1kW.

• L 1 =2.17mH/30kHz, L 2 =2.16mH/30kHz, Cd =100μF/400V

• Possible plug-in DC sources: Photovoltaic, fuel cell, battery, or other possible harvested
sources. A DC source is employed here as an alternative.

3. Storage device interface DC-DC converters

• Battery: 96 V/15 Ah; SC bank: 96 V/40 F; SPMSM driven flywheel: 2 kW, 2,000 rpm, J
= 0.9263 (kg-m2).

• L 4 =965.7μH, L 5 =947.3μH/30kHz, Cdc =2200μF/450V.

4. 1P3W load inverter
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It can yield the 220 V/110 V AC voltages for powering the domestic appliances and
performing the M2G/G2M bidirectional operations.

• AC output: 220 V/110 V 60 Hz, 1 kW.

• L o =401.62μH/30kHz, Co =10μF / 400VAC.

5. Dump load: RD =36Ω / 2kW

B. Control Schemes

In the DC micro-grid shown in Fig. 2, the control scheme of the wind IPMSG with followed
Vienna SMR is shown in Fig. 9(a), and the differential mode (DM) and common mode (CM)
control schemes of the 1P3W inverter are depicted in Fig. 9(b). The detailed design description
is being neglected here. The designed controllers are [51]:

1. Wind IPMSG followed Vienna SMR

3

4

675 0.6( ) 4.5 , ( )
1 1 1.59 10
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1 1 1.59 10
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+ + ´

= + = =
+ + ´

2. 1P3W inverter G2M SMR charging mode: The micro-grid can be supported energy from
the mains via the SMR formed using the power devices of the 1P3W inverter with power
factor correction by the control scheme as shown in Fig. 9(b). The single-phase SMR with
220V/60Hz input is formed by (Q7, Q8, Q11, Q12). The predictive current control is applied
to yield fast tracking response. And the voltage and active power controller are set as:

2

2.5 150 1( ) 0.1 , ( ) 5 , : ( )
1 1.591 10cv apc LPG s G s LPF H s

s s s
-= + = + =

+ ´

By properly selecting the current magnitude command Î as and the commutation shift angle
β, the developed IPMSG with Vienna SMR can be operated in voltage control mode (Î as = Î asv,
β =βv) and in MPPT control mode for a wind generator (Î as = Î asw,  β =βw).

C. Experimental Results

a. IPMSG with followed Vienna SMR

Using the estimated parameters of the IPMSG and the given torque command Te from the
wind power MPPT control mechanism, the relationship of its phase current magnitude
command Î asw and the commutation shift angle βw can be found [51]. The developed wind
generator torque command is preset as Te =3.23(N−m), and the corresponding optimal
variables found are (βw, Î asw)= (−7.8 , 5.7A). The measured steady state (vdc, θr ,  θ̂r , ias) at
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(ωr =2000rpm,  Rdc =200Ω) and Î asw =5.7A under (βw = −7.8  and βw =0 ) are compared in Figs. 10(a)
and 10(b), wherein θ̂r =θr + β denotes the shifted rotor angular position for making current

PWM switching control. The measured DC-bus voltages vdc under four βw values are (βw = −15 ,

vdc =372.1V), (βw = −7.8 , vdc =374.3V), (βw =0 , vdc =369.6V), (βw =15 , vdc =355.8V). The results

indicate that βw = −7.8  yields the highest value of vdc(=374.3V). This implies that the MPPA for
the wind IPMSG with followed Vienna SMR can be achieved. Good IPMSG armature current
waveforms are also observed.
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Figure 9. Control schemes of the developed wind IPMSG based DC micro-grid system: (a) IPMSG with followed Vien‐
na SMR; (b) DM and CM control schemes of 1P3W inverter in M2G/G2M modes.

b. Inter-connected operation between EV IPMSM drive, micro-grid, and utility grid-G2V via
micro-grid:
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The grid-connected micro-grid is connected to the DC-link of the EV, and the 1P3W inverter
load resistors in Fig. 2 are set as (ZA =201.7Ω, ZB =201.7Ω, ZAB =484Ω). Let the EV on-board
battery be charged from the mains (G2V) via the micro-grid and the EV interfaced DC/DC
converter. Figs. 11(a) to 11(c) show the measured EV, micro-grid and grid variables. Good
operation performances and line drawn power quality can be observed from the measured
results.

Figure 10. Measured steady state (vdc, θr , θ̂r , ias) of the wind IPMSG with Vienna SMR at (ωr =2000rpm,

Rdc =200Ω and Î asw =5.7A) under: (a) βw≅ −7.8  ; (b) βw =0 .
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Figure 11. Measured results for EV battery charging (Ib
∗=3A) from the mains (G2V) via the micro-grid at resistive

loads of (ZA =201.7Ω, ZB =201.7Ω and ZAB =484Ω): (a) dynamic responses of (vdc, vb, ib) ; (b) dynamic respons‐

es of (vdc, vAB,  iuA, i1) ; (c) steady-state waveforms of (vAB, iuA, i1).
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6.2. Grid-connected BESS

The system configuration and schematic of the developed grid-connected BESS is shown in
Figs. 1 and 2. It can be operated under floating, discharging, and charging modes. All load
reactive and harmonic powers can be compensated by the BESS. In charging mode, the
bidirectional inverter is operated in SMR mode to let the BESS be supported energy from the
grid (G2B).

In addition, a plug-in energy harvesting system is also equipped for the grid-connected BESS.
The harvested AC and DC sources can be inputted to the system via a three-phase bridgeless
DCM SMR to establish a 350 V DC-link. Then, it is connected to the developed BESS common
DC-link (400 V) via a LLC resonant DC/DC isolated converter.

A. System Components

The constituted system parameters are listed below:

a. Interleaved DC/DC converter

i. Battery bank voltage: vB =96~105.6V

ii. DC-link: Vdc =400V (nominal), Cdc =6400μF / 450V

iii. Storage energy inductor: L 1 = L 2 =1.74mH / 30kHz

iv. IGBT: STGW35NC60WD by STMicroelectronics Company

b. Grid-connected inverter

i. Isolation transformer: Y- Δ connected using three single-phase transformers of
60Hz, 127 V/220 V (1/1.73), 1 kVA

ii. Inverter output filter: L =1.71mH / 30kHz, C =3.3μF / 400V

iii. IGBT: STGW35NC60WD by STMicroelectronics company

iv. Inverter output: 3φ AC, vab = 220V / 60Hz, 2kW

v. Utility grid: 3φ AC, vab = 220V / 60Hz

c. Plug-in energy harvesting system

i. Storage energy inductors (at 20kHz): L c1 =41.12μH, L c2 =40.95μH, L c3 =41.55μH

ii. DC-link: Vd =350V (nominal), Cd =2200μF / 500V

iii. Power devices: IGBT: MG100J2YS50 by Toshiba Semiconductor; Diode: fast
diode IXYS DSEP 2x-61-12A

B. Control Schemes

Fig. 12(a) shows the control schemes of the BESS in charging mode including the battery
interface interleaved DC/DC converter and the bidirectional grid-connected three-phase
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inverter. Figs. 12(b) and 12(c) are the control schemes of the 3P1SW SMR and LLC resonant
DC/DC converter in the developed plug-in energy harvesting system.

a. Bidirectional DC/DC interleaved converter

The current and voltage feedback controllers under discharging and charging modes are:

1. Discharging mode

10 21.6( ) 3 , ( ) 1.2Ii Iv
ci Pi cv Pv

K KG s K G s K
s s s s

= + = + = + = +

2. Charging mode

500 90( ) 4.2 , ( ) 3Ii Iv
ci Pi cv Pv

K KG s K G s K
s s s s

= + = + = + = +

b. Grid-connected inverter

1. Current feedback controller: Gcbi(s)=4.5

2. Disturbance and command feed-forward controllers:

4 4

4 5
1.133 10 1.133 10( ) 1.333, ( ) 0.603, ( )

(1 5.305 10 ) (1 5.305 10 )dfi fdi cfi
s sG s G s G s

s s

- -

- -

´ ´¢ ¢¢= = + =
+ ´ + ´

3. Active power controller: Gpc(s)=3 +
135

s

4. Charging mode controller: Gcp(s)=3 +
150

s

C. Experimental Results

a. BESS battery charging from grid (G2B)

In making the test, the local loads in BESS are set as linear resistive and motor reactive loads
with: (Ra = Rb = Rc =104Ω), AC motor with (V IM =110Vrms). The utility grid supplies the local load
real power and also charges the battery bank. The inverter establishes the 400V DC link and
also compensates reactive and harmonic powers of local loads. The battery bank charging is
conducted via the bidirectional interface DC/DC converter in buck mode. Initially, the battery
is charged under constant current mode with IB =5A(0.33C) until the voltage is raised to 114 V,
then the constant voltage floating charging is applied instead. The measured results are shown
in Figs. 13(a) and 13(b). Satisfactory line drawn current waveform and power quailty can be
observed from the measured results.
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b. BESS battery charging from harvested three-phase AC source (E2B)

The harvested three-phase auxiliary AC sources are inputted to the system via the three-phase
bridgeless DCM SMR. Through the LLC resonant DC/DC converter, the well-regulated BESS
400 V DC bus voltage is established. And the battery bank is charged from the DC bus via the
BESS interleaved DC/DC interface converter in buck mode. The measured (vdc, vd , van, ian) and
(vB, iL , iL 1, iL 2) are shown in Figs. 14(a) and 14(b). Normal and good operation characteristics
of all the constituted power stages can be seen from the results. The corresponding measured
steady-state characteristics are:

• Pin =  721.91, PB =564.25, η =  0.78.

• ian :THDi =24.17%, PF=0.963.

• ibn :THDi =26.00%, PF=0.955.

• icn :THDi =24.42%, PF=0.962.

D. Plug-in Energy Harvesting System with Single-phase AC Source and DC Source Inputs

a. Schematic
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Figure 12. Control schemes of the developed grid-connected BESS: (a) BESS in charging mode from grid; (b) 3P1SW
SMR in plug-in energy harvesting system; (c) LLC resonant DC/DC converter in plug-in energy harvesting system.
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Figure 13. Measured results of the established BESS in charging modes at linear resistive and induction motor reactive
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The single-phase AC source and DC source can also be inputted to the BESS via the developed
plug-in three-phase DCM SMR. The power circuits and control schemes of these two cases are
shown in Fig. 15(a) and Fig. 15(b). The single-phase bridgeless boost SMR formed in Fig.
15(a) is operated using a standard SMR control scheme in CCM. Only two extra energy storage
inductors (L b1, L b2) are externally added, and the other constituted circuit components are the
embedded ones in the original three-phase SMR. The working switches are s1 and s2 being
operated simultaneously.

Some system parameters are set as: (i) PWM switching frequency: f s =37.5kHz ; (ii) DC output

voltage Vd =350V ; (iii) νac≜ 2V acsinωt , V ac =220V ± 10% ; (iv) The inductor current ripple is
treated at ωt =0.5π, at which the current ripple is maximum; (v) Total energy storage inductance
L = L b1 + L b2 + L c1 + L c2. The measured inductances of the two wound inductors L b1 and L b2

using the HIOKI 3532-50 LCR meter are L b1 = (3.55mH, ESR= 183.4mΩ at 60Hz, and 827.0μH,
ESR = 124.6Ω at 37.5kHz) and L b2 = (3.44mH, ESR= 206.1m Ω at 60Hz, and 794.8μH, ESR =120.7
Ω at 37.5kHz).

b. Control schemes

1. Current control scheme

• Feedback controller: Gci(s)= KPi +
K Ii

s =4.2 + 3150
s

• Robust current error controller (RCEC):

W i(s)=
W i

1 + τis
, W i =0.1, τi =2.652×10−4 (cut-off frequency 1 / 2πτi =600Hz)

And the current sensing factor is set as ki =0.05V/A.

2. Voltage control scheme: Gcν(s)= KPν +
K Iν

s =1.5 + 39.37
s

c. Measured results

A load resistor Rd is placed at the SMR output of Fig. 2 for making the performance test. At the
condition of (νac =200V/60Hz, νd =350V, Rd =150Ω), the measured stead-state (vac, iac, iac

* , iac
' ) of the

bridgeless single-phase boost SMR formed using the embedded components of the developed
plug-in energy harvesting system are plotted in Fig. 16. The corresponding static characteristics
are: (Iac =4.09A, TH Di =3.35%, PF =0.997) and (Pd =839.1W, Pin =867.5W, η =96.72%) with the
efficiency being defined as η≜Pd / Pin . The powers are measured using the power analyzer
PM100. Good power quality and high energy conversion efficiency are observed from the
results.

By replacing the AC input in Fig. 15(a) with the DC source, the DC source harvesting circuit
using the three-phase bridgeless DCM SMR embedded components is formed as shown in
Fig. 15(b). Its control scheme is also depicted in Fig. 15(b). The energy storage inductors
designed in Fig. 15(a) is also suited in this case.
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Figure 15. The schematics and control schemes of the developed plug-in energy havesting system with single-phase
AC source and DC source inputs: (a) single-phase AC source input; (b) DC source input.
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Figure 16. Measured (vac, iac, iac
* , iac

' ) of the bridgeless single-phase boost SMR formed using the embedded compo‐

nents of the developed plug-in energy harvesting system at (vd =350V, Rd =150Ω).

6.3. G2V operation of the IPMSM EV drive with single-phase SMR based battery charger

In the developed EV IPMSM drive shown in Fig. 2, a single-phase and a three-phase boost
SMR based chargers can be formed using its embedded circuit components. By placing the
changeover switch at the position ②, a two-stage single-phase SMR based battery charger is
formed as shown in Fig. 17(a). It consists of an H-bridge boost SMR formed by the two outer
inverter IGBT legs and a followed interleaved buck DC/DC converter based charger. Fig.
17(b) shows the proposed control schemes of the two power stages. The batteries are first
charged under constant current mode with 0.25 C = 3.5 A. The current of 3.5 A is set by ibm

*  in
the current limiter at the output of Gcv(s). When the battery bank voltage reaches vb =165V, the
charging enters constant-voltage floating mode automatically.

A. System Components

The constituted system parameters are listed below:

a. Interleaved buck DC/DC converter

i. Battery bank voltage: V b =  140 ~ 152 V

ii. Maximum battery charging voltage: 165 V
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iii. Maximum battery charging current: ib =  0.25C=  3.5A set by ibm
*

iv. Switching frequency: f s =  25 kHz

v. Energy storage inductors: L b1 =  4.140mH/25kHz, L b2 =  4.029mH/25kHz

vi. IGBT: STGW35NC60WD by STMicroelectronics Company

b. Single-phase SMR

i. DC-link voltage: Vdc =  400V

ii. AC input voltage: V AB =  220V ± 10% / 60Hz

iii. Input energy storage inductors: L 1 =  L 3 =  0.88mH

iv. Output filter capacitor: Cdc =2200μF / 450V

v. Switching frequency: f s =  30kHz

B. Control Schemes

a. Interleaved buck DC/DC converter

The current and voltage feedback controllers are set as:

4

4
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b. Single-phase SMR

The current and voltage feedback controllers are set as:
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C. Experimental Results

In the single-phase H-bridge boost SMR based charging system shown in Fig. 17(a), the AC
input 220 V/60 Hz and the DC-link voltage command Vdc

* =  400 V are set in G2V operation. By
setting the constant current charging with ib* to be ibm

* =0.25C=3.5A, the measured (vAB, iuA) and
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(vb, ib) of the developed charging system are shown in Figs. 18(a) and 18(b). Satisfactory SMR
operation can be observed from the results.

6.4. G2V operation of the IPMSM EV drive with three-phase SMR based battery charger

A. System Components of Three-phase SMR

i. DC-link voltage: Vdc =  400 V

ii. AC input voltage: V AB =  220V ± 10% / 60Hz

iii. Input energy storage inductors: L 1 = L 2 =  L 3 =  0.88mH
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Figure 17. System configuration and control scheme of the established single-phase H-bridge boost SMR based battery
charger: (a) schematic; (b) control scheme.
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iv. Output filter capacitor: Cdc =2200μF / 450V

v. Switching frequency: fs =  30kHz

B. Control Schemes of Three-phase SMR

The current and voltage feedback controllers are set as:

Figure 18. Measured results of the established single-phase charging system at (ib
* =  3.5A, V b =  157.7V, Vdc

* =  400 V,

V AB =  220 V/60 Hz): (a) (vdc, vAB, iuA); (b) (vb, ib, ib1, ib2).
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Figure 19. Schematic and control scheme of the established three-phase SMR based battery charger: (a) schematic; (b)
control scheme.

C. Experimental Results

Under the conditions of (V ab =  220V/60Hz, Vdc
* =  400V, ibm

* =  0.25C=  3.5A), the measured (vas,
ias) and (vb, ib) of the developed three-phase charging system are shown in Figs. 20(a) and 20(b).
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Similarly, good operation performance of the established three-phase SMR based charger is
also seen from the results.

Figure 20. Measured (van, ias) and (vb, ib) of the established three-phase SMR based battery charger at (ibm
* =0.25C=

3.5A, V ab =  220V/60Hz, Vdc =  400V, V b =155.2V): (a) (van, ias); (b) (vb, ib, ib1, ib2).

7. Conclusions

Switch-mode rectifier can provide adjustable and well-regulated DC voltage with good AC
line drawn power quality. Hence, it has been widely applied in many power electronic
equipments to yield improved operation characteristics. However, the schematic and control
scheme should be properly selected, designed, and implemented in accordance with the
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specific application. During the past decades, the development and employment of micro-
grids and EVs have received much attention worldwide for reducing fossil energy comsump‐
tion. This article has presented the applications of switch-mode rectifiers on micro-grids
incorporating with EV and BESS. After introducing the basics and some key issues of SMRs,
the configuration of the studied system is introduced. Then, the applications and performance
evalutions of SMRs in micro-grid, BESS, and EV are presented.

Some conclusions and comments for the practical issues of SMRs in the related plants covered
in this article are summarized as follows:

1. DC Micro-grid: (i) The 3P3SW Vienna SMR is adopted as the followed converter of wind
PMSG. It possesses the advantages of having good compromised characteristics in de-
rate, switch number, single-quadrant operation, current PWM control flexibility, and
commutation shifting ability. (ii) Load inverter: the bidirectional 1P3W inverter is adopted
for providing the 110 V/220 V AC sources for powering the home appliances. It can
successfully perform the M2G and G2M operations. In G2M operation, the single-phase
SMR is formed to allow the utility supply power to the micro-grid for energy support or
for making the battery supplementary charging. The EV can also perform G2V/V2G
operations via the micro-grid interface converters.

2. EV PMSM Drive: The developed battery/SC powered EV IPMSM drive possesses
G2V/V2H/V2G operation capabilities. In G2V operation, a single-phase boost SMR and a
three-phase boost SMR can be formed using the embedded components to charge the
battery bank through the bidirectional interleaved buck DC/DC converter with satisfac‐
tory line drawn power quality from the mains. The interconnected operations of the EV
to the micro-grid and the BESS can also be conducted.

3. BESS: (i) Grid-connected operation: the three-phase six-switch bidirectional inverter can
be arranged to operate in G2B charging mode. The utility grid supplies the load real power
and also charges the battery bank with good line drawn power quality. The latter task is
achieved by arranging the inverter to be operated as a three-phase 4-quadrant SMR with
proper control. The BESS can compensate all load reactive and harmonic powers. (ii) Plug-
in energy harvesting system: Various AC sources and DC sources can be connected to the
BESS via the three-phase bridgeless discontinuous current mode (DCM) SMR through
proper schematic and control arrangements. This type of SMR is chosen owing to the
single-quadrant operation requirement. In addition, the interconnected operations of the
BESS to the micro-grid and EV are also applicable.
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