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Abstract

We aim from this chapter to declare for the readers, what are the exciton and trions
in quantum dot and we will present complete theoretical discussion for the behavior
of exciton ,its bound state ,binding energy and its stability in quantum dot with
different sizes and different confinement potentials .The charged complex particles as
negative and positive trions will be investigated theoretically using variational
procedure in both strong and weak confinement regime . Good agreement with
experimental data was found and discussed.
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1. Introduction

During  the  optical  excitation  of  carriers  in  a  semiconductor,  the  minimum  energy  re‐
quired to form free carriers is called the band gap. The energy below that value cannot
excite free carriers. However, low-temperature absorption studies of semiconductors have
shown excitation just below the band gap [1]. This excitation is associated with the formation
of an electron and an electron hole bound to each other, otherwise called an exciton. It is
an electrically  neutral  quasiparticle  like  in  a  hydrogenic  state.  At  low temperatures,  the
bound states are formed and the Coulomb interaction between the electron and the hole
becomes prominent [2].  The negative trion (X-)  is  created due to the additional electron
bound to a pre-existing exciton and if a hole is bound to an exciton, a positive trion (X+) is
created. Both the negative and positive trions are complex electronic excited states of the
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semiconductors and therefore, the 3-body problem is raised. Although Lampert [3] in 1958
originally and theoretically predicted the negative trion in semiconductors, K.Kheng et al.
experimentally achieved a negative trion in Cd Te/Cd Zn Te quantum well [4].

The rapid progress of semiconductor technology in the recent years has allowed the fabrication
of low dimension electronic nanostructures. Such nanostructures confine charged particles in
all three space dimensions. In low dimensional, especially in quantum dots [5,6] (three
dimension confinement), the picture is different because it is below a nanometer wide, a few
nanometers thick, and in various shapes. The quantum confinement increases highly, and this
quantum confinement leads to more stability of the excitons and trions by increasing their
binding energy. The stability of such particles remains up to room temperature. A proper
identification of the (X-) was not achieved until the early 1990’s in remotely doped, high-quality
quantum-well (QW) structures [7-9]. Since then, extensive work has been carried out on (X-)
inside the two-dimensional (2D) [wide quantum wells [7-11]] and quantum dots, which the
first observations of the QD-confined charged excitons (trions) were performed on ensembles
of the QDs [12]. There are many theoretical studies devoted to excitons [13-15] and trions [16-
25] in quantum dot. Most of such studies have treated and considered the spherical[26-28],
lens shaped [29,30], square flat plated [31,32], and cylindrical [33,34] quantum dots.

In the present chapter, we study the influence of the 3-D quantum confinement on the binding
energy of the exciton (X), negative trion (X-), and the positive trion (X+) in a semiconductor
cylindrical quantum dot manufactured in GaAs surrounded by Ga1-xAlxAs. Using a variational
approach and the effective mass approximation with finite confinement – potential. There have
been concerns as to whether the effective mass approximation could still be valid in the
quantum dot limit when the size of the exciton could be similar to the average lattice constants
of bulk semiconductor [35].

2. Theoretical model

Within the effective mass approximation and non-degenerated band approximation, we can
describe the exciton and trions in the following semiconductor structure: a symmetric cylin‐
drical QD of radius R and height L made of GaAs surrounded by Ga1-xAlxAs. In our model,
the electrons and the holes are placed in the external potential V e(re, ze) and Vh (rh , zh ),
respectively and coupled via Coulomb potential. We choose the potential in GaAs (well) to be
zero and equals V e or Vh  in the barrier material.

2.1. Exciton

The Hamiltonian of an exciton confined in cylindrical QD, using the relative coordinate
r = | r̄ e − r̄h | , can be written as[36]:

Quantum Dots - Theory and Applications28



2 2 22 2 2 2

* 2 2

2 2 22 2 2 2

* 2 2

2 2 2

2 2 2
0

1
2

1
2

1 ( , ) ( , )
2 ( ) ( )

e h

e e e ee e e

h e

h h h hh h h

e e e h h h

e h e h

r r rH
r r r r r rm r z

r r r
r r r r r rm r z

eV r z V r z
r rr r r z zm e e

ì ü- +- ¶ ¶ ¶ ¶ï ï= + + +í ý
¶ ¶ ¶¶ ¶ï ïî þ

ì ü- +- ¶ ¶ ¶ ¶ï ï+ + +í ý
¶ ¶ ¶¶ ¶ï ïî þ

ì ü- ¶ ¶ï ï+ + + -í ý
¶¶ï ï - + -î þ

h

h

h

(1)

Where m *
e
 and m *

h
 is the effective mass of the electron and the hole, respectively, μ is the

reduced mass of exciton μ =me mh /me +mh , and (re, ze) and (rh , zh ) are the spatial coordinates
of the electrons and hole in the cylindrical frame, respectively. The first three terms of equation
(1) represent the kinetic energy of the electron, hole, and exaction's center of mass existing in
the structure under consideration. The last three terms represent the confinement potentials
followed by the Coulomb interaction term. ε is the relative static dielectric constant for the
used material and ε0 is the permittivity of free space. We can write the expressions of V e(re, ze)
and Vh (rh , zh ) as:

i i
i i

o i i

0 r   R and z L 
V (r ,z )
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ì £ £ï= í
> >ïî

(2)

Here the indices i stand for the electron (e) or the hole (h).

The Schrödinger equation for the exciton in the quantum dot is:

( ) ( ), , , , , , , ,e h e h e h e hH r r r z z E r r r z zY = Y (3)

By choosing the following trial wave function, it takes into account the electron–hole correla‐
tion and the Ritz variation principle that are used to solve this equation. Thoroughly, we are
able to determine the exciton ground state (Eex),

( )22( , , , , ) ( ) ( ) ( ) ( )exp ( )e h eh e h e h e h e h e hr r r z z f r f r g z g z r r z zaæ öY = - - + -ç ÷
è ø

(4)

The variation parameter α is determined by minimizing the value of the exciton energy:

( ) / ,exE Ha = Y Y Y Y (5)
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The binding energy of the exciton is given by:

b e h exE E E E= + - (6)

Where f (re) , f (rh ) , g(ze) , g(zh ) and Ee, Eh  are the ground wave functions and energies of both
the electron and the hole [37].

2.2. Negative trion

The negative trion (X-) is created when an additional electron is bound to a pre-existing exciton
(X). The negative trion Hamiltonian in a cylindrical coordinate can be written as:
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The first three terms of equation (7) represent the kinetic energy terms of the three particles
existing in the structure under consideration. The second three terms represent the confine‐
ment potentials followed by the three Coulomb interaction terms. We use equation (2) for
expressions of V e(re, ze) and Vh (rh , zh ).

The present model is fully three dimensional and is applicable to the confinement potentials
of finite range and depth, i.e., it is adequate for QD nano-crystals embedded in an insulating
medium, e.g. GaAs [38] and InAs [39, 40]. The quantum well potential given above does not
commute with the kinetic energy operator at the center of the mass motion. Therefore, the
Hamiltonian (7) cannot be separated from the center of the mass and Hamiltonians of the
relative motion.

The full three dimension Schrödinger equation for the negative trion in quantum dot is:

( ) ( )1 2 1 2 1 2 1 2
, , , , , , , , , ,

e ee e h e h e e h e hH r r r z z z E r r r z z zY = Y (8)

Hence, the ground state wave function for the negative trion confined in the cylindrical
quantum dot has dependent on the six coordinate parameters appearing in equation (8). Here,
we adopt the variation approach to estimate the ground state of the negative trions (X-), their
binding energy, and their wave functions. We choose the following trial wave function:

Quantum Dots - Theory and Applications30



( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2

, , , , ,trion e e h e e h e e h e e hf r f r f r g z g z g z r r r z z zjY = (9)

Where, f (re1), f (re2), f (rh ), g(ze1), g(ze2) and g(zh ) are the single particle eigenfunctions [37],
and the trial wave function ϕ describes the internal motion of the trions (X-) defined as:
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Here β1 , β2 and β3 are the variation parameters. The form of the wave function given in
equation (9) satisfies not only the strong interaction region requirements (such as in a very
narrow quantum dots), but also yields the correct results near the bulk limits (weak interaction
region).

Let χe1 =
re1
R , χe2 =

re2
R , χh =

rh
R and ςe1 =

ze1
L , ςe2 =

ze2
L , ςh =

zh
L ,

where 0≤χi ≤ 1 and −1≤ςi ≤1. Now, we rewrite the arguments of the negative trion wave
functions in terms of χ ,s , and ς ,s and define, χ1 = |χh −χe1 | , χ2 = |χe2−χh | , χ3 = |χe1−χe2 |  and
ς1 =(ςh −ςe1) , ς2 =(ςe2−ςh 1

) , ς3 =(ςe1−ςe2),

By using the new variables, the trial wave function can be expressed as follows:
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The ground state energy of the charged exciton system is given by:

1 2 3( , , ) trion trion
trion

trion trion

H
E

y y
b b b

y y
= (11)

Following some tedious algebra to minimize the above equation with respect to the variational
parameters β1 , β2 and β3, we obtained the ground state energy of the negative trion. The
variational method is used to calculate the ground state of the negative and positive trions.

The integral form of the nominator in the R.H.S of equation (11) is:
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The equation (12) is presented in terms of χ ,s , and ζ ,s as:
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The denominator in the R.H.S (normalization term) of equation (11) is:

( )
1 2 1 2

1 2 1 2 1 1 2 1 22

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 0 0 0
2 6 2

( ) ( ) ( ) ( ) ( ) ( )

[ ( , , , , , )]

trion trion e e h e e h

e e h e e h e e e e h h e e h

f f f g g g

R L d d dx d d d

c c c V V V

j c c c V V V c c c c c V V V
- - -

Y Y =

´ ´

ò ò ò ò ò ò (15)

Substituting equations (14) and (15) in equation (11), we get the ground state energy of the
trion (Etrion).

2.3. Positive trion

The positive trion (X+) is created when an additional hole is bound to a pre-existing exciton
(X), the positive Trion Hamiltonian can be obtained from equations (7) and (8) by interchanging
the indices e2 ↔  h and ascribing the indices 1 and 2 to the holes.
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By the same mathematical method that was done with the negative trion, we can have the
energy of a positive trion (Etrion).

The binding energy of the charged exciton (negative or positive trion) is defined as:

b i ex trionE E E E= + - (17)

Where Ei is the ground state energy of the free electron or the free hole [27], Eex is the ground
state energy of the exciton in the quantum dot as presented by equation (5), and Etrion is the
ground state energy of the negative or positive trion calculated from equation (11).
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3. Results and discussion

Applying this methodology for the GaAs cylindrical QD, we consider the following values of
the confinement potential [13]: V o

e =0.57(1.155x + 0.37x 2)eV  for the electron and
V o
h =0.43(1.155x + 0.37x 2)eV  for the hole. In our calculation, the Al concentration in the barrier

material AlxGa1-xAs is taken as x. Furthermore, we used the following material parameters [13]:
the relative dielectric constant for GaAs is ε =12.58 and the effective masses are
me

* =0.067mo, m
*
h

=0.34mo for the electron and the isotropic hole mass, respectively, where mo
is the mass of the free electron.

Figure (1) shows the calculated the exciton binding energy for the ground state as a function
of the quantum dot radius for three different values of the width L/2 = 4, 7, and 10 nm. The
calculated values show the presence of the well-known peaks of the binding energy curves in
nanostructures, which depend strongly on the QD radius (R values), but its dependence on
the QD width (L/2 values) is not strong. These results are in a good consistence with the
previous data obtained by Le Goff and Stebe [41].
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Fig(1): The binding  energy  of  the  exciton  as  a function  of  R.  The
Three  curves  are  at  different  values  of  QD  disc  width  L (as  indicated).
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Figure 1. The binding energy of the exciton as a function of R. The Three curves are at different values of QD disc
width L (as indicated).

Here, we would like to add that the peak positions of the binding energy as a function of L/2
also occur at almost one value of R = 3nm. We notice the sudden decrease of the exciton binding
energy with the decrease in radius values. When R increases from 7-10nm, the binding energy
changes almost by 10meV, and changes almost by half this value if the disc width L/2 increases
from 7-10nm.
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Figure (2) displays the variation of the exciton binding energy as a function of R, but for two
different values of Al concentration (x= 0.15, 0.4). Here, a right shift of the peak position by
almost 1nm and by 20 meV in height is observed when the quantity of Al increases by a ratio
of 0.25. The height of the peak translated to higher values by increasing the barrier height (large
x), which is due to the more confinement of the particles. Here, the position of the exciton
binding energy peaks can be estimated to occur around L/2 ≅ 4nm and R ≅ 3nm or a diameter
≅ 6nm for the quantum dot disc.
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Fig(2): The  variation  of  the  exciton  binding  energy  with  R,
At  two  different  values  of  Al  concentration,  x = 0.15,  and  0.4.
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Figure 2. The variation of the exciton binding energy with R, At two different values of A1 concentration, x=0.15, and
0.4

It has been shown in reference (35) that there is a scaling rule for circular and square quantum
wires of the form L/2R = 0.9136 such that a square wire of width L is equivalent to a circular
wire of diameter 2R if the ratio of 0.9136 is achieved. Using this scaling rule, the critical
confinement width for a quantum square wire of width L=5.4nm is equivalent to the present
quantum disc with a radius R≅3nm. From the behavior of the binding energy positions
discussed above, we may conclude that the bulk effect sets in along one spatial axis around L/
2 ≅4.5 to 6nm, fairly independently of the confinement conditions. The present results should
be useful for designers of nanoscale devices.

Concerning the discussion above about the quantum size effect, we present in figure (3) the
exciton binding energy (Eb) and the corresponding exciton energy H  as a function of the disc
radius R at two different values of L/2 = 4,7, and 10nm.

In figure (3-a), there is no intersection between the exciton energy and the exciton binding
energy ( H  / Eb >1) all the time so the exciton stability is small. At the intersection point figures
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(3-b and 3-c), we have the binding energy equal to the expectation value of the Hamiltonian
and equal to half the free particles energy (Ee+ Eh). Before the intersection point where H  /Eb

>1, the exciton state directs to annihilation faster than after the intersection point where H  /
Eb<1. The crossover of the binding energy curve with the Hamiltonian curve confirms our
above discussion. In order to obtain a large exciton binding energy, we should choose quantum
dots with radius from 3nm to 10nm. However, if the radii of quantum dots are beyond the
nanostructure scale, the principle of quantum theory is unavailable and the electronic prop‐
erties of dots belong to the region of bulk materials.

One of main goals of this chapter is to estimate the best theoretical model with an available
data to fit, and to clarify the paradoxes about the trion binding energy, which are discussed in
previous researches. Since the available existing experimental data are given in the work of
Backer et al. [42], to match our parameters with theirs we therefore used the anisotropic hole
effective mass (hole effective mass in the z-direction (m *

hz
) is different from its value in the in-

plane direction (m *
hxy), such as: m *

hz
=0.377mo and m *

hxy
=0.112mo). The results of the charged

exciton binding energies as a function of the half-height (L/2) of the QD are shown in Figure
(4) and are evaluated at x = 0.3 with a QD radius (R) equal to 15 nm. The curves with solid
squares and solid circles correspond to our theoretical calculations of the negatively charged
exciton binding energy (Eb−) and positively charged exciton (Eb+), respectively, whereas, the
opened square points and opened circle points indicate the experimental values of the binding
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Figure 3. The exciton energy (<H>) and the exciton binding energy (Eb) versus the radius R. a) at L=4nm, b) at L=7nm,
c) L=10nm.
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energies [42] of the negative and positive trion, respectively. For each curve, we see that the
binding energy increases as the dot half height decreases, which leads to the trions being more
stable at small QD (strong confinement regime). When the half-height becomes greater than
the effective electron Bohr radius for Ga As (aB=9.9 33 nm), the binding energy of X − decreases
rapidly and reaches values less than the binding energy of X +. At a small QD size, the gain of
the binding energy as a function of the size of QD comes from the Coulomb interaction related
to the distances of the interparticles where the Coulomb interaction between the electrons (Vee)
in X − is larger than the Coulomb interaction between the holes (Vhh) in X +, and the Coulomb
interaction at this size is more effective than the massive localization of the system, so Eb− >
Eb+. Our theoretical values for both trions are shifted approximately by 0.3 meV (7%) from the
experimental value.

Figure 4. Trion binding energy (Eb) as a function of QD half-height (L/2) at radius R=15 nm, for an anisotropic effec‐

tive hole mass. The closed circles and closed squares represent the theoretical results of (Eb+) and (Eb−), respectively.

The experimental data for (Eb+) and (Eb−) are indicated by opened circles and opened squares, respectively.

In table (1), we summarize our theoretical results, compared with the experimental data and
other theoretical data calculated by using the Path Integral Monte Carlo method (PIMC) (Ref
(42)). Table (1-a) and Table (1-b) show the negative and the positive trion data, respectively.

We refer the acceptable agreement between our theoretical and the experimental data to the
following two issues. The first issue is that we considered a theoretical model that solved a full
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3-D confinement of the trions inside the QD; the second issue is the choice of the trial wave
function, which describes correctly the internal motion of the trion. Let us discuss the binding
energy of the charged excitons confined inside a cylindrical QD, with an isotropic hole effective
mass (m *

h
= 0.34mo).

We have calculated the negatively charged exciton binding energy (E-b solid squares) and the
positively charged exciton binding energy (E+

b solid circles) as a function of the QD half-height.
The results are shown in figure (5) and are calculated at x = 0.3 and R=15nm. Also, we obtained
a more stable negative trion system than the positive trion system at small QD. Besides, E-b

crosses down E+
b at a larger value of the QD half-height (L/2=15nm) than in the case of an

anisotropic hole effective mass (L/2=11nm).

Now, we come to the second goal of our work on trions, which concerns the paradoxes existing
in most of the previous papers. In Refs (42, 43, and 44), the authors obtained a higher binding
energy of the negative trion than the positive one over all of the QD dimensions they examined.
On other hand, the demonstrated data in Refs (18 and 38) showed that the binding energy of
the negative trion is less than the binding energy of the positive trion. In Ref (18), the author
introduced the correlated hyperspherical harmonics as basic functions to solve the hyper
angular equation for negative and positive trions in a harmonic quantum dot. He introduced,
as an approximation of the center of mass coordinates, to reduce the variables and conse‐
quently simplified the calculations. In Ref (38), the authors formulated the Hartree-Fock
approximation using a calculation method, which is based on the quantum adiabatic theorem,
to study the stability of the charged excitons in QD. Again, we see that the standard tools of
the condensed-matter physics, like the many body techniques relying on the Hartree-Fock
approximation, are often not sufficient since the exchange and correlation energies can notare
not negligible [45]. The full three dimensional calculation is introduced by Szafran et al. [23]
for a trion confined in a spherical quantum dot, and the authors found that the binding energy
of the negative trion is less than the binding energy of the positive trion at a large radius and
vice versa at a small radius. Generally, this agrees with our view. The results shown in figure

L/2 (nm) Ours Eb(x-) meV
Exp. (meV)

Ref [42]
Value(%) shift from

Exp.
PIMC meV)

Ref [42]
Value(%) shift from

Exp.

4.5 3.6 3.9 7.69% 2.9 25.6%

5 3.25 3.4 4.41% 2.5 26.47%

(a)

L/2 (nm) Ours Eb(X-) meV
Exp. (meV)

Ref [42]
Value (%) shift from

Exp.
PIMC (meV)

Ref [42]
Value(%) shift from

exp.

4.5 2.27 2.6 12.69% 2.25 13.46%

5 2.22 2.4 7.5% 2.0 8.33%

(b)

Table 1. (a): The negative trion results; (b): The positive trion results.
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(5) coincide with the results given in Refs. 42, 44, and 45. Here, Eb− > Eb+  as long as the QD size
is small. Also, our results are qualitatively similar to those obtained by the authors in Refs. 18
and 38 in the case of a large QD size where they showed that Eb+ > Eb−  as given in figure (6).

Figure 5. The variation of trion binding energy (Eb) calculated as a function of QD half-height (L/2) at a radius of R=15

nm, for an isotropic hole mass. The closed circles correspond to Eb+ of positive trion and the closed squares corre‐

spond to Eb− of negative trion.

The possibility to observe negative or positive trions depends on its stability against dissoci‐
ation into an exciton and free electron or hole. The corresponding sufficient stability condition
for the charged excitons is [38] Eb±≥0. Concerning the stability of X − and X + in the case of
isotropic and anisotropic hole effective mass, from figures (4) and (5), we observe that the
positive and negative trions are stable, while from figure (6), X- is unstable in a large QD (L >2
aB) and X + is stable even near the bulk limit.

In order to get a physical insight into the stability of X + at large QD size, this can be attributed
to its heavy mass. This heavy mass system becomes more localized and stable even inside large
QDs. As a result, the positive trions binding energy behavior allowed most of experimentalists
to detect X + near room temperature in such large dimensional structures.

At last, a comparison between the ground state energy and the binding energy of the positive
and negative trions and the excitons is shown in figure (7). In figure (7- a), the ground state
energies of the trions X −, X +, and exciton (X ) are plotted as a function of the QD half-height
(L/2) for the isotropic hole mass. Similarly, the binding energies are shown in figure (7-b). From
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this figure, one can see that the neutral exciton has the lowest ground state energy (E X )
compared to that of the trions (X −, X +)(figure7-a).

Figure 7. a) Exciton (X ) and charged excitons (X − and X +) ground state energies as a function of QD half-height L,
at radius R= 15 nm. b) The binding energies of exciton and charged excitons as a function of QD half-height L/2.

Figure 6. The trion binding energy as a function of L/2 at R=25 nm for an isotropic effective hole mass. Closed circles
correspond to the positive trion and closed squares correspond to the negative trion.
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Also, we notice that it decreases monotonically and not rapidly like the trions ground state
energies. In other words, within the examined range of the QD height, we obtained a drop in
E X  by 14 meV, while E X + decreased by 22meV and E X − decreased by 44meV. By looking at
figure (7-b), one can see that the exciton is the most stable system. For small QDs, this stability
(or the largest binding energy) of X  may be referred as the strong confinement regime of the
QD where the exciton is severely restricted in all spatial directions and the quantum confine‐
ment are at a maximum for this system. Defining the neutral exciton binding energy (EbX ) in
the same manner as in equation (6) {EbX =Ee + Eh −E

X }, we find that E X  is the lowest but not
comparable to the single particles ground state energy. However, for positive and negative
trions, their ground state energies compete with the single particle, where E X − is larger and
comparable with Ee, but E X + competes with Eh , therefore their binding energy is low compared
to the neutral exciton. Within the examined QD size, we obtained a drop by 45, 4 and 2 meV
in the binding energy of X , X −, and X +, respectively. The decrease of the exciton binding
energy seems dramatic, but compared with the trions it is not. The binding energy of the
negative trion drops by 80% when the QD half-height changes from 4.5nm to 18nm, while EbX
and Eb+ within the same size range decrease by 70% and 55%, respectively.

4. Conclusion

We have introduced a trial wave function for the positive and negative trions confined in a
cylindrical QD. Using the given wave, we obtained a higher binding energy of negative trions
than the positive trions inside the QD with a half-height less than the effective Bohr radius and
we referred that to the high Coulomb interaction energy between the two electrons compared
to the weak Coulomb interaction between two holes at such small QDs. When the half-height
of the QD increased to values higher than the Bohr radius, the negative trion binding energy
rapidly decreases than the binding energy of the positive trion. An anisotropic hole effective
mass state is demonstrated to compare our model with the experimental results. We obtained
a good agreement with the experimental results up to 0.3 meV (7%). To improve the stability
of the trions (X −, X +), in such structures, it is necessary to operate with a special QD size,
which permits an enhancement of the binding energy.

5. Appendix

We want to prove the formula that given in equation (13)

22
*

2
0

1d d d rdr
r dr drdr

yy y
¥æ ö æ ö

- + =ç ÷ ç ÷ç ÷ è øè ø
ò (18)
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Proof

2 2
**

2 2
0

1 1d d d d rdr
r dr r drdr dr

y y y
¥æ ö ì üï ï- + = - Y +ç ÷ í ýç ÷ ï ïè ø î þ
òQ (19)

Let

2
* *

2
0 0

1 1 ( )d d d dI rdr r r dr
r dr r dr drdr

y y
¥ ¥ì üï ï= - Y + = - Yí ý

ï ïî þ
ò ò (20)

where ψ is a real eigenfunction.

From equation (3)

*

0

d dI r dr
dr dr

y
¥ æ ö

= - Y ç ÷ç ÷
è ø

ò (21)

But from the integration methods we can use the fact that

udv uv vdu= -ò ò (22)

Let

*
* and ( ) ( )d d d du du dr dv r v r

dr dr dr dr
y yY

= Y Þ = = = (23)

By using equation 5 and 6 and substituting in equation 4

*
*

00

dd dI r r dr
dr dr dr

yyy
¥ ¥é ù Y

\ = - +ê ú
ë û

ò (24)

But ψ * r
dψ
d r 0

∞ =0 because ψ(∞)=0 (real eigenfunction condition)

∵ψ is a real function ⇒ψ *ψ =ψ 2, dΨ
d r

d ψ *

d r ⇒ ( dΨ
d r )2

.
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This means we can rewrite equation (7) as

2*

0 0

dd dI r dr r dr
dr dr dr

y¥ ¥ æ öY Y
= = ç ÷ç ÷

è ø
ò ò (25)

From equation 2, 3, and 8, relation 1 is proven.
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