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Abstract

Herbicide use while being of a great benefit in controlling weeds in agricultural systems
can also pose a threat to environmental quality due to off-target and off-site impacts. The
increasing concern about risks associated with agricultural chemicals and specifically
their impact on surface and groundwater quality is a national and international concern.
In Kentucky, herbicide off-site movement occurs, allowing them to enter the Kentucky
River watershed and impact surface and groundwater quality. Accordingly, it is necessa‐
ry to assess the distribution and degradation/dissipation of herbicides in agricultural soils
and runoff water after field application and develop management practices and/or reme‐
diation techniques to mitigate environmental pollution by agrochemicals. The overall
goal of the best management practices is to develop sustainable agricultural techniques
that strike an acceptable balance between crop production benefits and ecological conser‐
vation by reducing herbicide impact on environmental quality to 1) protect watersheds
by reducing the mobility of herbicides from soil into runoff and seepage water using
binding agents; 2) enhance soil microbial activity that mineralizes herbicides in soil; and
3) enhance growers’ knowledge about bioremediation techniques (soil amendments, bio‐
filters, biochar, and soil microorganisms) that could be implemented to reduce herbicide
mobility and protect natural water resources.

Keywords: Biofilter, Biochar, Soil amendments, Organic matter, GC-MSD

1. Introduction

In Kentucky agriculture, herbicides (metribuzin, bensulide, dacthal, halosulfuron, carfentra‐
zone, trifluralin, napropamide, and pendimethalin) are applied according to crop production
guidelines [1]; however, their application period typically coincides with seasonal rainfall. In
intensively cultivated areas, agriculture is a significant source of herbicides associated with
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runoff. According to the US Environmental Protection Agency (EPA), over 441 million kg of
conventional pesticides were used in the USA in 2001 [2]. Of that total, about 340 million kg
were used in agricultural applications, and 48 million kg were used for home and garden
purposes. In the USA, pesticide residues caused about 1,200 water-body impairments [3]. The
USEPA also reported the consumption of 3 billion kg of herbicides during 2001 [4].

Pesticides play an important role in the success of modern farming and food production [5].
A commonly quoted estimate is that farmers save $ 3 to $ 5 for every $ 1 spent on pesticides
[6]. In the USA, herbicides are used on > 90 % of most crops. Prior to the adoption of herbicides,
120 hours of labor and 16 cultivation trips per acre were used to control weeds. Without
herbicides, the US food and fiber production would be reduced by 13.3 billion due to less
effective weed control. Pesticides play an important role in the success of modern farming and
food production [7]. The total loss in production would amount to 288 billion pounds, which
represents approximately 21 % of the national production. In addition, the adoption of no-till
practices prevents annual erosion of 304 billion pounds of soil every year [7]. Approximately
41,511 water-body impairments across the USA are attributed to pesticides, and of that total,
1,300 water-body impairments are within the state of Kentucky [8]. Based on estimated
pesticide sales data for agricultural applications in 2000, a total of 1.5 million pounds of
herbicides were applied in the Kentucky Green River Basin. Five herbicides (atrazine, sima‐
zine, metolachlor, tebuthiuron, and prometon) were detected in eight karst springs water in
the Green River drainage basin [9]. Runoff water and sediment are frequent in sloping areas
where most of the arable lands are highly erodible. Concerns about soil erosion, nutrient
runoff, loss of soil organic matter, and the impairment of environmental quality from sedi‐
mentation and pollution of natural water resources by agrochemicals, N, P, trace elements,
and other environmental contaminants have stimulated interest in proper management of
natural resources. Herbicides cause water pollution by running off agricultural fields and
domestic gardens into nearby water sources. Although agriculture has been identified as a
source of pesticides found in surface water, other sources exist. Other sources may be pesticide
manufacturing industries, industries using pesticides in their processes (such as woolen goods
manufacturers), and direct application of herbicides to surface waters to control aquatic plants,
lawn care, and golf course care.

A wide range of active ingredients are used as pesticides, and millions of tons of so-called
“inert” ingredients are added to pesticide formulations as carriers, stabilizers, emulsifiers, etc.
Some of these ingredients are dangerous in their own right. Ethylene dichloride, a nerve
poison, is an example of an inert ingredient linked with damage to the eyes, heart, liver, and
adrenal glands [10].

Portions of the active ingredient may transport to neighboring water bodies via drift during
pesticide spraying, wind erosion, and runoff. Accordingly, it is necessary to assess and monitor
the distribution and degradation/dissipation of herbicide residues in soil and water after field
application. Runoff from agricultural watershed is found to carry enormous amounts of
pesticides [11]. Following natural rainfall events, water flow may change from < 1 to > 10,000
ft3/s-1 (1 ft3 is equal to 28.3 L) in a matter of minutes to hours, enhancing pesticide transport to
receiving water [12]. Streams and their tributaries that drain into the Kentucky River add

Herbicides, Physiology of Action, and Safety4



fertilizers and herbicides. In Kentucky, the watershed lies above thick layers of easily dissolved
limestone that form carbonate aquifers. Groundwater flows through channels in the limestone,
so caves and springs—and sinkholes—are common in regions with this karst geology [13].
Accordingly, Kentucky’s citizen who uses fertilizer, herbicides, and other chemicals on his
lawn, landscaping, and gardens adds to this water pollution problem.

A significant association was found between the season of elevated agrichemicals in surface
water in April–July and higher risks of birth defects in live births in the USA [14]. The most
frequently detected herbicides in surface waters include several triazines (atrazine, cyanazine,
and simazine), acetanilides (metolachlor and alachlor), and 2, 4-dichlorophenoxyacetic acid
(2, 4-D) [15]. In Missouri men, high urine levels of atrazine and alachlor were associated with
abnormal sperm [16]. Concentrations of the herbicide atrazine and other pesticides also were
higher in the months of April–July. Chlorophenoxy herbicides are widely used in the USA for
broadleaf weed control in grain farming and park maintenance. In Minnesota, Montana, North
Dakota, and South Dakota, about 85 % of the spring and durum wheat acreage is treated with
chlorophenoxy herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-
methylphenoxyacetic acid (MCPA).

Schreinemachers [17] found that infants in these four wheat-producing states conceived in
April–June, the time of herbicide field application, were more likely to have circulatory/
respiratory (excluding heart) malformations compared to births conceived during the other
months. According to the EPA’s most recent data, public water systems using groundwater
as a drinking source serve about 105 million people nationwide [18]. The total number of
people drinking groundwater increases when factoring in households supplied by private
drinking water wells. Halosulfuron-methyl is a pyrazole sulfonylurea (Figure 1) used as a
selective broadleaf postemergence herbicide. When applied preemergence or to the paddy
water, intact halosulfuron-methyl was not detected or recovered in maize, sugarcane, and rice,
indicating extensive metabolism of halosulfuron-methyl, probably initiated by a breakdown
of the molecule in the soil or water. Chlorosulfonamide acid was the major metabolite
identified in all commodities tested [19]. Halosulfuron-methyl exhibited very high to medium
mobility in soil. Toxicological studies were carried out on two metabolites. The metabolite
chlorosulfonamide acid (CSA) was found in plants and in groundwater at levels potentially
exceeding 0.1 µg L-1, whereas its metabolite halosulfuron-methyl showed low acute toxicity.
Mitigation of herbicides, fungicides, and insecticide residues in soil and natural water
resources could be achieved using modern management practices such as biofilters [20],
adsorption techniques [21, 22] or biochar [23], soil microorganisms and the enzymes they
produce [24], and wetland microcosms [22]. Among these management practices is the use of
soil amendments.

The USA produces nearly 15 million dry tons of municipal sewage sludge each year, and the
tonnage is increasing due to population growth. In addition, the rapid growth in poultry
industry has resulted in significant manure generation. More than 11.4 million tons of poultry
litter was generated in the USA [25]. Sewage sludge and chicken manure, that must be
disposed, are excellent fertilizers [26-29]. Addition of soil amendments such as chicken manure
and sewage sludge to native agricultural soil increased water infiltration, lowering runoff
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FIGURE 1. Chemical structures of metribuzin [4-amino-6-tert-butyl-4, 5-dihydro-3-

methylthio-1, 2, 4-triazin-5-one]; dacthal [1, 4-Benzenedicarboxylic acid, 2, 3, 5, 6-

tetrachloro-, dimethyl] ester; and sethoxydim [2[1(ethoxyimino) butyl]-5-[2-(ethylthio) 

propyl]-3-hydroxy-2-cyclohexen-1-one]; carfentazone, ethyl (RS)-2-chloro-3-{2-chloro-5-

[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-

Figure 1. Chemical structures of metribuzin [4-amino-6-tert-butyl-4, 5-dihydro-3-methylthio-1, 2, 4-triazin-5-one]; dac‐
thal [1, 4-Benzenedicarboxylic acid, 2, 3, 5, 6-tetrachloro-, dimethyl] ester; sethoxydim [2[1(ethoxyimino) butyl]-5-[2-
(ethylthio) propyl]-3-hydroxy-2-cyclohexen-1-one]; carfentazone, ethyl (RS)-2-chloro-3-{2-chloro-5-[4-
(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-4-fluorophenyl}propionate; pendimethalin; Prowl
3.3 E, N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine; halosulfuran methyl (Sandea 75 DF), 3-chloro-5-[(4, 6-dimethoxypyri‐
midin-2-yl) carbamoylsulfamoyl]-1-methyl-pyrazole-4-carboxylic acid methyl ester; bensulide [O, O-diisopropyl S-2-
phenylsulfonylaminoethyl phosphorodithioate]; trifluralin [Treflan, (2,6-dinitro N,N-dipropyl-4-trifluoromethyl)
benzenamine]; and napropamide [Devrinol, (N, N-diethyl-2-(1-naphthyloxy) propionamide)].
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water volume and herbicide residues in runoff following natural rainfall events. Studies
revealed that increasing soil organic matter by the addition of soil amendment to native soil
reduced the transport of dimethyl tetrachloroterephthalate (DCPA, dacthal) herbicide down
the land slope into runoff water [30]. The use of sewage sludge in land farming could become
a useful technique for trapping herbicides such as trifluralin [31] and dimethazone [32, 33],
metribuzin [30], and napropamide [34]. In addition to soil amendments, slot-mulch techniques
(biobeds or biofilters—a cavity in the ground filled with a mixture of composted organic
matter, topsoil, and a grass layer on top) provide a potential solution to herbicide contamina‐
tion of surface waters arising from agricultural fields. Antonious [20] installed the first biofilter
in the USA (www.biobed.org) for mitigation of herbicides in runoff water from vegetable
fields. The use of biobeds and adsorption techniques are unique ways of treating contaminated
soil and agricultural runoff. The filling materials of biobed systems (mixture of straw, peat
moss, and native soil) have increased sorption capacity and microbial activity for degradation
of pesticides [35]. The mechanism of biosorption process includes chemisorption, complexa‐
tion, adsorption, diffusion through the pores, and ion exchange [36]. Biobeds were tested for
their ability to retain and degrade chlorpyrifos (an insecticide), metalaxyl (a fungicide), and
imazamox (an herbicide) using farm-available materials (vine branch, citrus peel, urban waste,
and green compost). Degradation of the three pesticides in biobeds was found to be faster than
published values for degradation of these pesticides in soil. The half-life of the three pesticides
used was less than 14 days compared to literature values of 60–70 days in bare soil [37]. In
addition, microorganisms in biobeds and soil are capable of degrading both sorbed and bound
pesticide residues [38]. These findings indicated that biobeds or biofilters could substantially
reduce pesticide concentrations in agricultural runoff. The biobed system can also be built on
the farmland using locally available materials. This developed methodology to mitigate the
impact of pesticides on the ecosystem is urgently needed. The risk of groundwater contami‐
nation resulting from rapid leaching of dimethazone and trifluralin herbicides was minimized
through herbicide adsorption on the biobed filling materials under field conditions [20, 22]. In
addition, biobeds (biofilters) have been used in northern Europe for minimizing point-source
contamination of water resources by pesticides [39]. Antonious [20] provided evidence that
biobeds enhanced dimethazone (a hydrophilic herbicide) and trifluralin (a lipophilic herbi‐
cide) dissipation and reduced their residues in runoff. To the best of the author’s knowledge,
the use of biobeds at Kentucky State University (KSU)/College of Agriculture (Frankfort, KY)
represents the first field application of biobed systems in the USA for reducing runoff water
loss and mitigation of off-site movement of herbicides. Installing biobeds in Kentucky farms
(current project at KSU), where most of the arable lands are highly erodible, is a unique way
of mitigating environmental pollution by herbicides before they enter rivers and streams.

Biochar, a product of the pyrolysis of organic material, has been credited with many desirable
properties as a soil amendment, including soil conditioning [40], enhanced soil fertility [41],
and sorption of pollutants [23] and soil hormones [42], and as an agent of C sequestration
[43-45]. Although one study did report enhanced biological N fixation in biochar-amended
soils [46], the effects of biochar on the biological activity of soil need greater investigation to
evaluate the potential repercussions of wide application of such material when amended with
municipal sewage sludge or chicken manure used for land farming. Currently, little informa‐
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tion exists in literature if biochar amendment to soil can reduce the plant uptake of pesticide
residues and/or trace-element bioavailability. Such practice, if found effective, can assist in the
management of contaminated agricultural and urban soils from current and past use of
herbicides and other contaminants. Interest in biochar, made by pyrolysis of biomass, as a
multifaceted solution to agricultural and pesticide pollution issues is growing at a rapid pace
both nationally and internationally. The use of biochar in the US agricultural field is a new
area of research. The infiltration of harmful quantities of nutrients and herbicides into
groundwater as well as soil erosion and runoff into surface waters could be limited with the
use of biochar [47] as a soil amendment. Biochar reduced the release of nitrous oxide [48].
About 40 % decrease in nitrous oxide emissions has been reported when biochar was applied
to soil. This gas is approximately 310 times stronger than CO2 in terms of global warming
potential [49].

Greenhouse gas emission reductions might be 12 %–84 % greater if biochar is land applied
instead of combusted for energy purposes [47, 48]. Biochar’s fate as a viable component of the
long-term solution to mitigate climate change by way of carbon sequestration depends upon
further development by the scientific and technology transfer communities. Little is known
about how biochar could successfully be implemented in the agricultural fields. Improving
methods of pesticide detection and monitoring the performance and impact of soil amend‐
ments (such as sewage sludge, chicken manure, and biochar) and soil management practices
on concentrations and transport of pesticides, nutrients, and trace elements into runoff and
seepage water are the main focus of the current agricultural remediation methods. About $ 2.1
million was spent in 2009 on biochar research by the Agricultural Research Service (ARS) [50].
Converting biomass into biochar and bio-oil at various labs nationwide is one of ARS’s
priorities. The USA could use biochar to sequester 139 Tg of carbon annually if it were to
harvest and pyrolyze 1.3 billion tons of biomass [50]. A series of presentations delivered at the
United Nations Climate Change Conferences elevated interest in biochar as an immediate
response to mitigate climate change, given its carbon sequestration ability. Biochar sequesters
carbon while simultaneously enhancing the fertility of the soil. In addition, Ute et al. [51] found
that some microorganisms were able to live on biochar as C source. The activity of purified N-
acetyl glucosaminidase increased 50 to 75 % following biochar exposure, suggesting a chemical
enhancement of enzyme function [52].

Biochar also is a potential solution to environmental contamination by herbicides. A survey of
current adsorbents indicated that the large surface area of activated carbon (ranging from 500
to 2,000 m2 g−1) makes it a perfect candidate for pesticides and trace-element adsorption.
Adsorption on activated charcoal occurs through van der Waals forces that allow it to adsorb
different types of pollutants including pesticides [53-55]. Knowledge about the environmental
problems and adoption of appropriate solutions and practices to enhance and protect our
national water quality from environmental pollution by herbicides require timely delivery of
research and educational technology. The development of production systems and mitigation
techniques that reduce the introduction of agrochemicals like herbicides into the environment
presents a continuing challenge.

Herbicides, Physiology of Action, and Safety8



2. Literature review

Soil erosion reduces crop productivity by decreasing soil depth, removing nutrients required
for plant growth, and altering soil physical properties resulting in less water infiltration, poorer
crop establishment, and root penetration. Intensive use of herbicides and other pesticides in
many parts of the USA increases the potential for non-point source contamination of soil and
receiving water. One of the major problems with the application of pesticides is targeting the
chemicals to the pest. Often, less than 0.1 % of the pesticides applied to crops under field
conditions reach the target pests. The remaining 99.9 % residues can have a number of adverse
effects that include health risks to both humans and wildlife. The amount of herbicides
reaching target weeds is generally much higher. From 0.1 to 5 % of postemergence herbicides
applied reach the target weeds [56]. Occurrence of herbicides and other pesticides in runoff
and infiltration water [32-34, 57-64] increases the potential impact on human health and
environmental quality. The lack of pesticide field dissipation data and the increasing concern
about herbicides and other agricultural chemicals and their impact on surface and ground‐
water quality have made environmental pollution by herbicides a national concern.

In addition, an increase of organic waste originating from different human and productive
activities is a continuous concern. Waste application to soil is a solution to disposal. This
practice is popular in the agricultural fields because of the value of this waste as organic
fertilizer. Application of organic amendments to agricultural soils makes good use of natural
resources and reduces the need of synthetic fertilizers. Recently, increased interest has been
focused on assessing the influence of organic waste added to the soil on pesticide (herbicides,
fungicides, and insecticides) adsorption, movement, and biodegradation. There is a continuing
search for inexpensive, locally available sources of organic matter for use in growing horti‐
cultural crops. The addition of organic amendment to soil normally results in an increase in
the microbiological activity [24, 65-67] due to the availability of simple organic molecules such
as sugar and amino acids. Composting provides an organic amendment useful for improving
soil structure and nutrient status [65] and generally stimulates soil microbial activity [24, 68,
69]. Among the major parameters of soil fertility and biological properties, special emphases
are given to enzyme activity. As more sewage sludge treatment districts turn to composting
as a viable means of sludge stabilization, sewage sludge will become available in increasing
quantities. With the increased interest in recycling waste, there is a need to monitor the three
enzymes (invertase, urease, and phosphatase) of the C, N, and P cycles, respectively, as
indicators of increased soil microbial populations in the rhizosphere of growing plants [24].
Soil microorganisms (bacteria, fungi, protozoa, algae) in sewage sludge and chicken manure
excrete ureases, invertases, dehydrogenases, cellulases, amylases, and phosphatases to
degrade herbicides in soil and water ecosystems. Microorganisms produce sticky substances
(polysaccharides) that help soil particles adhere to one another and help the soil resist erosion
that could diminish agriculture productivity [70]. Emphasis has been given to soil enzymes in
relation to reclamation management and the enzymatic processes that play a significant role
in bioremediation of pesticides and heavy metals. Work carried out by Antonious [22, 24] has
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provided detailed information on enzymatic and microbial population responses in soil in a
series of ecosystems. Remediation of contaminated soils is based on the degrading activity of
soil microbiota. However, sewage sludge and chicken manure contain significant amounts of
heavy metals that may impact soil microorganisms and the enzymes they produce by blocking
of either the enzyme or substrate when present in excessive concentrations [71]. Accumulation
of trace elements in plants grown in biosolids (sewage sludge) varied among plant species and
even among accessions of the same species [72]. The application rate of sewage sludge and
chicken manure applied to agricultural soil is proposed according to soil nitrogen, phosphorus,
and potassium requirements, with a maximum application rate of 15 t year−1 [73]. In fact, a
specific rule for animal manure application to soil does not exist, but is proposed through good
agricultural practices for use as fertilizer and as herbicide binding agent due to its organic
matter content. Several studies have shown that an increase in soil pH results in an increase
in soil microbial biomass and enzymatic activities, favoring a rapid growth-linked degradation
of phenylurea isoproturon herbicides as a result of interaction between degradative Sphingo‐
monas spp. and pH [74] and biodegradation of fenamiphos [75]. Therefore, the question here
is what can be done to increase soil pH? The answer is the use of either lime (CaO) or biochar
mixed with native soil.

3. Overview of soil amendments and herbicide field studies

At Kentucky State University H.R. Benson Research and Demonstration Farm (Franklin
County, KY), studies were conducted on a Lowell silty loam soil of 12 % clay, 75 % silt, and 13
% sand. Plots (18) of 22 × 3.7 m each were established on 10 % slope to investigate herbicide
mobility in relation to soil amendments under field conditions. The plots were separated using
metal borders 20 cm above ground level to prevent cross contamination between adjacent
treatments (Figure 2). In the first year, three soil management practices were used: i) sewage
sludge (Figure 3) obtained from Nicholasville Wastewater Treatment Plant, Versailles, KY,
was treated with lime (CaO) at 1:10 (w/w) ratio and mixed with yard waste compost (made
from yard and lawn trimmings and vegetable remains) at 15 t acre-1 (on dry-weight basis) with
a plowing depth of 15 cm, ii) sewage sludge was mixed with native soil at 15 t acre-1 (on dry-
weight basis) with a plowing depth of 15 cm, and iii) a no-mulch (NM) control treatment
(rototilled bare soil) was used for comparison purposes to monitor the herbicide bensulide
(Figure 1) and its metabolite mobility. In year 2, the three soil management practices were
chicken manure, sewage sludge (Figure 3), and no-mulch native soil used for comparison
purposes to monitor the impact of soil amendments on metribuzin and DCPA (dacthal)
herbicide mobility under field conditions. In subsequent years, the persistence of trifluralin
and napropamide herbicides (Figure 1) was also investigated. Herbicides selected in this
research are commonly used in Kentucky agriculture and were applied according to Kentucky-
recommended rates of application [1]. Following herbicide treatment, total runoff water loss
per runoff event per each 0.02-acre plot was used to monitor mobility of herbicides tested.
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Figure 3. Soil amendments, chicken manure (left) and sewage sludge (right) used for mitigation of herbicide residues
at Kentucky State University/College of Agriculture (Franklin Conty, KY).

3.1. Runoff water measurement

Runoff water was collected and quantified at the lower end of each plot throughout the
growing season using a tipping-bucket runoff metering apparatus (Figure 4). Buckets were
calibrated (one tip represents 3 L of runoff) and maintained to provide precise measure of
amount of runoff per tip. Numbers of tips were counted using mechanical runoff counters
(ENM Company, 5617 Northwest Highway, Chicago, IL 60646). Collection of samples in 3.79
L borosilicate glass bottles was carried out through a flow-restricted composite collection
system (approximately 40 mL per tip was collected). Following rainfall events, runoff water
samples were transported on ice to the laboratory, stored at 4 OC for extraction and analyses
of herbicide residues. Runoff water volume (L acre-1) from each soil treatment was based on
total runoff water loss per runoff event per 0.02-acre plots.
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FIGURE 4. Surface runoff water collection using tipping buckets installed down the field slope. A 
gutter was installed across the lower end of each plot with 5% slope to direct runoff to the tipping 
buckets and collection bottles for runoff water measurement and sampling 

 
 
 
 
 
 
 
 

 
 

FIGURE 5. Pan lysimeters installed down the soil column (2 m deep) at the end of field plots  
for collection of infiltration water (Kentucky State University (Franklin County, KY). 
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Figure 4. Surface runoff water collection using tipping buckets installed down the field slope. A gutter was installed
across the lower end of each plot with 5% slope to direct runoff to the tipping buckets and collection bottles for runoff
water measurement and sampling

3.2. Leachate measurement

Pan-lysimeters (18) were used to monitor herbicide seepage and presence or absence of
herbicides like bensulide residues and/or its metabolites in the vadose zone (the unsaturated
water layer below the plant root). Pan-lysimeters (Figure 5) were 4 ft2 each and were installed
in a tunnel at 2.0 m underground, leaving the soil column above it intact. This system allowed
the collection of infiltration water under normal field conditions (zero tension). Leachate water
percolated into the vadose zone was collected in borosilicate amber bottles. Volumes of water
collected were recorded following each rainfall or irrigation event.
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Figure 5. Pan lysimeters installed down the soil column (2 m deep) at the end of field plots for collection of infiltration
water (Kentucky State University, Franklin County, KY).
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3.3. Monitoring herbicide residues in soil

Soil samples (6 replicates per treatment) were collected from the different treatments using a
soil core sampler (Figure 6) equipped with a plastic liner tube (Clements Associates, Newton,
IA) of 2.5 cm ID for maintenance of sample integrity. Soil samples were taken to a depth of 15
cm from the rhizosphere of growing plants within the treatments prior to and after herbicide
application during the course of the study. Samples were air-dried in the dark at room
temperature for 48 h and sieved to a size of 2 mm for herbicide residue analyses. At KSU College
of Agriculture, nine biobed systems were installed. A low-cost biobed system (a hole filled
with a mixture of chopped wheat straw, peat moss, and top soil) was developed and used in
Sweden since 1993 [35] to degrade pesticides from point sources. High-quality compost made
from garden residues or municipal waste contains numerous microorganisms with differing
activities and has provided a good retention capacity for pesticides [37]. The soil in biobeds
provides sorption capacity and degrading microorganisms, and the peat contributes to high
sorption capacity and regulates the humidity of the system. The grass layer (living fescue) that
covers the biobed system helps to keep the system humid. Castillo et al. [76] reported that a
straw to peat to soil ratio of 50:25:25 % is a recommended biomixture composition for biobeds.
This is because organic amendments that increase soil organic matter content offer enhanced
pesticide sorption capacity [77, 78]. Concentration of herbicide residues adsorbed to yard
waste, sewage sludge, or chicken manure-amended soils was calculated as described by
Antonious et al. [21]. The adsorption coefficient (Kd) was calculated using the Freundlich
equation (q = Kd C 1/n), where q is the amount of solute (pesticide) adsorbed per unit mass of
soil, C is the equilibrium concentration of the solute, and n is the correction factor. Plotting the
linear form of the above equation as log q vs (1/n log c + log Kd) provides the slope of the
regression line as 1/n and the intercept with the y-axis as log Kd. Pesticide residue data from
three soil treatments and from adsorption isotherm experiments were statistically analyzed
by analysis of variance (ANOVA) and Duncan’s multiple range test for mean comparisons.
Replacement of some of the original materials in the Swedish biomixture (straw, peat, and soil)
can also change the performance of the biobed system [76].
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FIGURE 6. Collection of soil samples using a core sampler equipped with a plastic liner tube (left 
photo) and a schematic representation of sorption on soil particle (right sketch). 
 

 
 
 
 
 

 
  
 FIGURE 7. Preparation of soil cavity for biofilter installation at Kentucky State  
 University (Franklin Connty, KY) for trapping herbicides residues in 
 surface runoff water. 

 
 

Figure 6. Collection of soil samples using a core sampler equipped with a plastic liner tube (left photo) and a schematic
representation of sorption on soil particle (right sketch).
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The biobed system has been modified and sometimes renamed as biomassbed in Italy, biofilter
in Belgium, and Phytobac and biobac in France. The potential of using biobeds to contain and
degrade pesticides has been evaluated in a series of experiments using laboratory-scale biobeds
located in greenhouses in Utah, USA. The study was performed by EarthFax Development
Corporation and funded by the US EPA. The study in Utah involved application of selected
herbicides to the surface of the biobed system, which were prepared to assess various factors
(e.g., substrate mixtures with and without fungal inoculation). In Utah, the herbicide degrad‐
ing potential of the biobed substrate mixtures was determined by analyzing soil/peat/straw
(or corn stover or corn cob) mixture of subsamples taken from various depths in the beds to
determine residual herbicide concentrations over time. Accordingly, the degradative per‐
formance of biobeds for several of the most commonly used herbicides in the USA was
exceptional, particularly for the most heavily used herbicide in the USA (atrazine). Biobeds
have been used in northern Europe for minimizing point-source contamination of water
resources by pesticides [39]. Biobeds were tested for their ability to retain and degrade
chlorpyrifos (an insecticide), metalaxyl (a fungicide), and imazamox (an herbicide) using farm-
available materials (vine branch, citrus peel, urban waste, and green compost). The filling
materials (mixture of modified straw, peat moss, and native soil) of biobeds have increased
sorption capacity and microbial activity for degradation of pesticides. Degradation of the
pesticides in biobeds was found to be faster than published values for degradation in soil. The
half-life of pesticides tested was less than 14 days compared to literature values of 60–70 days
in soil [37]. Biobeds also reduced the concentration of sediment, so they might reduce the
concentration of pesticides that are strongly sorbed to sediment. Little is known regarding
biobed used in the USA. The installation and application of biobed system under field
conditions (Figures 7 and 8) is the first application of biobed systems for reducing runoff water
loss and mitigation of off-site movement of herbicides in runoff (non-point source contami‐
nation) in Kentucky agriculture, where most of the arable lands are highly erodible. In
Kentucky agriculture, nine biobeds were used for testing the performance of these systems in
treating residues of the two herbicides dimethazone and trifluralin (Figure 1) in runoff and
seepage water arising from agricultural production under three soil management practices
(municipal sewage sludge, sewage sludge mixed with yard waste, and no-mulch native soil).
Methodologies to mitigate the impact of pesticides on the ecosystem are urgently needed. Since
1991, Kentucky State University (KSU) Water Quality & Environmental Toxicology Research
of the Land Grant Program in Franklin County, KY (USA), has been involved in several field
and laboratory projects to investigate the relationships between soil farming practices, soil
erosion processes, vegetable yield, fate of pesticides and pesticide metabolites in soil, runoff,
and infiltration water. Various agricultural and management practices have been used to
mitigate environmental pollution by herbicides. Planting living fescue strips against the
contour of the land slope reduced runoff but has the disadvantage of increasing the potential
of soil infiltration by pesticides [61, 79], whereas, plastic mulch, which can cover between 50
and 70 % of a field, increased surface water runoff from both rainfall and irrigation [32]. This
means that much of the herbicides applied in living fescue strips used as frequent barriers to
runoff or in plastic-mulched fields may seep into groundwater or leave the field into surface
runoff. In addition, bensulide (O, O-diisopropyl S-2-phenylsulfonylaminoethyl phosphorodi‐
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thioate) is one of the few herbicides from the organophosphate group used for control of weeds
that threaten numerous crops. Half-life (T1/2) values of bensulide in soil were 44.3, 37.6, and
27.1 d in sewage sludge mixed with yard waste at 1:1 ratio, sewage sludge alone, and no-mulch
bare soil treatments, respectively. The addition of sewage sludge mixed with yard waste and
sewage sludge alone to native soil increased water infiltration, lowering runoff water volume
and bensulide residues in runoff following natural rainfall events.

Figure 7. Preparation of soil cavity for biofilter installation at Kentucky State University (Franklin Connty, KY) for
trapping herbicides residues in surface runoff water.

4. Herbicide residue analysis

Soil samples (100 gm) was shaken with methylene chloride: acetone (1:1 v/v) for 1 h using a
Multi-wrist shaker (Lab-Line Instruments Inc., Melrose Park, IL, USA) to extract the herbicide
bensulide. The solvent mixture was filtered through Whatman 934-AH glass microfiber discs
(Fisher Sci., Pittsburg, PA). Extracts were passed through anhydrous Na2SO4 to remove any
traces of water and concentrated by rotary vacuum (Buchi Rotavapor Model 461, Switzerland)
and N2 stream evaporation. Each concentrated extract was subsequently passed through a 0.45
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µm GD/X disposable syringe filter (Fisher Scientific, Pittsburg, PA). One µL of the concentrated
extracts was injected into a gas chromatograph (GC) equipped with an NP detector. The gas
chromatograph (HP 5890, Hewlett Packard, Palo Alto, CA) was equipped with a 30 m (0.23
mm diameter, 0.33 µm film thickness) fused silica capillary column with HP-5 (5 % phenyl
polysiloxane, 95 % methyl polysiloxane) liquid phase. Operating conditions were 230, 250, and
280 OC for injector, oven, and detector, respectively. Area units were obtained from 1 µL
injections. Linearity over the range of concentrations was determined using regression analysis
(R2 > 0.95). Quantification was based on average peak areas from three consecutive injections
obtained from external standards of bensulide. Peak identity was confirmed by consistent
retention time and coelution with standards under the conditions described. Bensulide
residues were also confirmed using a gas chromatograph/mass selected detector (GC/MSD,
Hewlett Packard Model 5971a, Palo Alto, CA) operated in total ion monitoring with electron
impact ionization (EI) mode and 70 eV electron energy. Under these conditions, retention times
(Rt) of bensulide averaged 19.6 min. Bensulide standard material of 99 % purity was obtained
from Chem Service (West Chester, PA, USA). Bensulide standard solutions in acetone ranging
from 0.1 to 15 ng L-1 were prepared and used to spike blank soil, runoff, and infiltration water
samples obtained from soil treatments for evaluating the reproducibility and efficiency of the
analytical procedures used. After fortification at 30 and 45 µg g-1 soil and 30 and 45 µg mL-1

water samples, bensulide in fortified samples was extracted and determined using the same
procedures described above. Bensulide residues detected in soil were used to calculate half-
lives in each of the three soil treatments. Half-lives were calculated from regression lines using
the equation T1/2 = ln 2/K, where K = -2.302 × slope of the line. Quality control (QC) samples
included three field blanks to detect possible contamination during sampling, processing, and
analysis. Three sets of duplicate samples and three sample-matrix spikes were used to evaluate
potential bias of the data collected and the ability of the analytical procedure to recover the
analyte from field samples. Residues of bensulide in soil and water and volume of runoff and
infiltration water were related to soil management technique and statistically analyzed using
ANOVA procedure and Duncan’s multiple range test for mean comparisons.

mixture of  peat moss, top 
soil, and straw 
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- - - - - - - - - 
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Figure 8. A biofilter system installed at Kentucky State University Research Farm for trapping herbicides and other
contaminants in surface water runoff before they enter the Kentucky River.
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5. Quantification of herbicide residues

A mass spectrometer is an excellent tool for identifying the chemical structure of a single
herbicide when present with a mixture of compounds. Bensulide residues were confirmed
using GC/MSD which showed spectral data with molecular ion peaks (M+) at m/z 170, 141, 77,
and 51 (Figure 9) and at m/z 157, 141, 93, 77, and 51 that correspond to benzenesulfonamide
(C6H7NSO2), a bensulide metabolite, along with other characteristic fragment ion peaks (Figure
10). These mass spectral data are in agreement with those reported by the National Institute
of Standards and Technology [80]. The organic carbon sorption coefficient (KOC) of the
herbicide bensulide is 3,900 mL g-1, whereas azafenidin (an herbicide) KOC is 298, which
indicates that azafenidin does not bind strongly to soil particles [81]. Herbicides with a strong
sorption rate remain near the soil surface, increasing the chances of being carried to a stream
via surface runoff. On the contrary, herbicides with high persistence and a weak KOC may be
readily leached through the soil column and are more likely to contaminate groundwater.
Herbicides having high KOC value, i.e., bensulide, will bind to soil and organic matter.
Accordingly, herbicides can be ranked as leachers or non-leachers to assess their potential for
off-site surface or subsurface movements under field conditions. Pesticide adsorption to soil
is related more to soil organic matter than to other soil chemical and physical properties [81,
82]. Therefore, addition of soil amendments having high organic matter content (such as
sewage sludge and chicken manure) is a management practice that should be exploited to trap
nonionic herbicides like bensulide to reduce its surface and subsurface mobility under field
conditions.

Figure 9. Electron impact mass spectrum of bensulide (C14H24NO4PS3) extracted from soil indicating the molecular ions
of m/z 51, 77, 141, and 170, along with characteristic fragment ions.
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Figure 10. Electron impact mass spectrum of benzenesulphonamide (C6H7NSO2), a bensulide metabolite, detected in
soil indicating the molecular ions of m/z 157, 141, 93, 77, and 51, along with characteristic fragment ions.

Humic acids (Figure 11), the fraction of humic substances that is not soluble in water under
acidic conditions (pH < 2) but is soluble at higher pH values, are dark brown to black in color,
whereas fulvic acids, the fraction of humic substances that is soluble in water under all pH
conditions, are light yellow to yellow brown in color. Humin, the fraction of humic substances
that is not soluble in water at any pH value, is black in color. The presence of carboxylate and
phenolate groups gives the humic acids the ability to form complexes with ions such as Mg2+,
Ca2+, Fe2+, and Fe3+. Many humic acids have two or more of these groups arranged to enable
the formation of chelate complexes [83-85]. The formation of chelate complexes is an important
aspect of the biological role of humic acids in regulating bioavailability of metal ions [86] and
binding of pesticides to soil organic matter.

The soil organic matter content and the water solubility of the pesticide are the two most
important characteristics determining soil adsorption of a pesticide. Adsorption of nonionic
pesticides on soil particles depends directly on the organic carbon content (KOC) of the
compound and the adsorbing phase. KOC coefficient represents the sorption on a unit carbon
basis and could be used for comparison of sorption extent on soils with different organic matter
contents. The greater the KOC value of a pesticide, the stronger the binding to the soil [21, 83,
87]. Walker and Welch [88] studied the degradation rates of three herbicides and their strengths
to adsorption; their results showed an order of degradation rate of metribuzin > alachlor >
atrazine and an order of adsorption of alachlor > atrazine > metribuzin. Metribuzin minerali‐
zation to 14CO2 proceeded more slowly in amended soil than in un-amended soil [89].
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FIGURE 11. Chemical structure of a typical humic acid (upper structure) and fulvic acid (lower 

structure) having quinone, phenol, catechol and sugar moieties.  

 

Figure 11. Chemical structure of a typical humic acid (upper structure) and fulvic acid (lower structure) having qui‐
none, phenol, catechol and sugar moieties.

The presence of metribuzin (an herbicide) in soil was confirmed using GC/MSD which showed
spectral data with molecular ion peaks (M+) at m/z 198 along with characteristic fragment ion
peaks at 57, 74, 103, 144, and 171 (Figure 12, upper graph), whereas the presence of DCPA
(dacthal) in soil and water was confirmed using molecular weight of 332 and spectral ions of
m/z 59, 107, 142, 177, 221, 273, and 301, along with characteristic fragment ions (Figure 12,
lower graph). These mass spectral data are in agreement with those reported by the National
Institute of Standards and Technology [80]. DCPA has a low vapor pressure, 2.5 × 10−6 mmHg,
and very low water solubility, 0.5 ppm. DCPA with its low water solubility, <0.5 ppm, high
KOC of 5,900 and stability to UV light has great affinity for binding to soil particles. Conse‐
quently, low residue levels of DCPA would be available on the soil surface. In soil, biodegra‐
dation of DCPA into tetrachlorophthalic acid, which is extremely mobile in the environment,
is slow [90]. Work carried out by Antonious et al. [30] revealed that runoff water volume from
no-mulch soil (200,000 L plot−1) was significantly greater than runoff from soil amended with
chicken manure and sewage sludge-amended soils (45,000 and 85,000 L plot−1, respectively).
This might be due to reduced bulk density and increased soil interspaces after addition of soil
amendments that increased water infiltration into the soil column toward the vadose zone (the
unsaturated water layer below the plant root), reducing surface water runoff from chicken
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manure and sewage sludge incorporated soil. Water infiltration into the vadose zone also
varied between soil treatments. Generally, substantial portions of soil-applied herbicides are
leached from the site of application by percolation into the vadose zone and enter the ground‐
water supply. DCPA residues were detected at very low concentrations in infiltration water
collected from the vadose zone. One should consider that precipitation during June and July
storms resulted in increased water infiltration from chicken manure and sewage sludge
compost treatments compared to no-mulch treatment. The decrease of DCPA residues in
runoff and infiltration water from chicken manure and sewage sludge treatments might be
due to DCPA environmental fate characteristics (i.e., high sorption capacity) that increased its
adsorption to the soil particles and the greater organic matter content of chicken manure (5.37
%) and sewage sludge treatments (5.35 %) compared to 2.2 % in no-mulch treatment which
might have increased DCPA binding to humic substances, reducing its mobility in the soil
column into the vadose zone and down the land slope into surface water. This may be
explained by the nonpolar properties of the herbicide DCPA which increases its adsorption to
soil particles, thereby decreasing its availability in leachate water at lower depth.

Other reports also suggested that the mobility of metribuzin within soils is limited in organic
soils [91, 92] because metribuzin is tightly bound to soils with high clay or organic matter
content. In addition, Nicholls et al. [93] reported little movement (<10 cm) of metribuzin
applied at the surface of sandy loam that was maintained fallow over the entire growing
season. Khoury et al. [94] indicated that soil microorganisms contribute to the rapid degrada‐
tion of metribuzin and the increase in soil organic matter favored microbial development and
subsequently accelerated the degradation of metribuzin. They concluded that the degradation
speed of metribuzin in non-sterile soils was found to be 7–12 times higher than that in sterilized
soils. Benoit et al. [95] investigated metribuzin sorption and found that metribuzin is weakly
sorbed in different soils and concluded that the observed relationship between organic carbon
and herbicide mineralization was related to the activity of soil microorganism.

The persistence of an herbicide is defined as the time in which the molecule remains in the soil
and is usually expressed as half-life (T1/2). The leaching index (LI) of an herbicide can be
calculated using the equation developed by Laskowski et al. [96]

(LI = (S) (T 1/2)/ (VP) (KOC)), where S is the water solubility of a pesticide in mg L−1 at 25 OC, T
1/2 is the half-life of a pesticide in soil in days, VP is the vapor pressure in mmHg at 25 OC, and
KOC is the organic carbon partition coefficient that can be calculated using the equation KOC =
Kd/% soil organic carbon. Using S and VP values from the pesticide manual [97], T1/2 in no-
much soil taken from Antonious et al. [30] and KOC from Kim and Feagley [98], the LI value of
metribuzin in soil was calculated as [LI = (1050) (12)/(5.8 × 10−7) (96)] = 2.26 × 108, whereas LI
value of DCPA in soil was calculated as [LI = (0.5) (26.17)/(1.57 × 10−6) (5900)] = 1.41 × 103,
indicating the weak soil leaching of DCPA and the high leaching of metribuzin into the soil
column.

In other studies conducted in a field experiment, a silty loam soil was sprayed with a mixture
of two preemergent herbicides, dimethazone and trifluralin (Figure 1) formulations. One
hundred twenty-five milliliters of Command 3ME (dimethazone) formulation obtained from
Platte Chemical Company (18th street, Greeley, CO) and 300 mL of Treflan (trifluralin)
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formulation (Dow AgroSciences) were used at the recommended rates of application in
Kentucky [1]. The two herbicides were mixed in a total volume of 15 gallons of water and
sprayed uniformly on the field plots (total area = 0.36 acre) using a portable backpack sprayer
equipped with one conical nozzle operated at 40 psi (275 kPa). Following herbicide spraying,
soil samples were collected, dried, sieved to a size of 2 mm, and extracted with 100 mL of
acetonitrile: hexane: methanol mixture (45:45:10 v/v) using Soxhlet extraction apparatus

Figure 12. Electron impact mass spectrum of metribuzin extracted from soil indicating the molecular weight of 214 and
molecular ions of m/z 57, 74, 103, 144, 171, and 198, along with characteristic fragment ions (upper graph) and DCPA
extracted from soil indicating the molecular weight of 332 and molecular ions of m/z 59, 107, 142, 177, 221, 273, and
301, along with characteristic fragment ions (lower graph).
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(Figure 13). The extracts were dried over anhydrous Na2SO4 to remove any traces of water and
concentrated by rotary vacuum (Buchi Rotavapor Model 461, Switzerland) and N2 stream
evaporation.

Figure 13. Use of soxhlet extraction units and liquid-liquid partition for extraction of dimethazone and trifluralin her‐
bicides from soil.

Trifluralin and dimethazone herbicides were extracted from runoff and infiltration water
samples with a mixture of methylene chloride (CH2Cl2) + acetone (6:1, v/v) and sodium chloride
solution by liquid-liquid partition. The solvent was filtered through a Buchner funnel con‐
taining Whatman 934-AH, of 55-mm-diameter glass microfiber filter (Fisher Scientific,
Pittsburgh, PA), passed through anhydrous sodium sulfate (Na2SO4), and concentrated by
rotary vacuum evaporator to a known volume. Concentrated extracts were injected into a gas
chromatograph (GC) equipped with flame ionization detector (FID). Retention times (Rt) of
trifluralin and dimethazone averaged 16.29 and 17.43 min, respectively (Figure 14). The
molecular weight of trifluralin (335) is greater than that of dimethazone (239). However, a
trifluralin peak appeared before dimethazone. This might be because of the greater vapor
pressure of trifluralin as indicated in Table 1. The electron impact mass spectrum of trifluralin
(Figure 15) showed spectral data with molecular ion peaks (M+) at m/z 306, 290, 264, and 43.
Dimethazone electron mass spectrum (Figure 16) with spectral data at m/z 204, 125, 89, and 41
is consistent with those reported by the National Institute of Standards and Technology [80].
In soil, the ion m/z 204 is formed by loss of the atom of chlorine and the m/z 125 is formed by
the breakage of the molecule of dimethazone at the carbon bond with nitrogen and the
subsequent loss of the –C5H8NO2 of m/z 114.

Results indicated that dimethazone residues extracted from sewage sludge and sewage sludge
mixed with yard waste compost increased by 14 and 50 %, respectively, compared to no-mulch
soil. Similarly, trifluralin residues increased by 17 and 75 % in sewage sludge and sewage
sludge mixed with yard waste compost, respectively (data not shown), compared to no-mulch
native soil. This could be explained by the adsorption properties of dimethazone on soil
particles that varied with increasing percentages of soil organic matter following the addition
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of amendments. Loux et al. [99] proposed hydrophobic bonding to organic matter to be the
primary mechanism of dimethazone sorption and that bioavailability and dissipation of
dimethazone in soil are determined by dimethazone adsorption properties. Soil amendments
such as yard waste compost contain significant concentrations of humic acid, the main
constituent of soil organic matter. Tavares and Rezende [100] indicated that functional groups
in humic acid, namely, carboxylic and phenolic groups (Figure 11) appeared to be the principal
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FIGURE 13 Use of soxhlet extraction units and liquid-liquid partition for extraction of dimethazone 
and trifluralin herbicides from soil. 
 
 
 
 
 
 

 

 
 
FGURE 14 Gas chromatographic (GC) chromatograms of soil extracts prepared in acetonitrile: 
hexane: methanol (45:45:10 v/v) one hour following spraying with a mixture of dimethazone 
and trifluralin formulations. 
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Figure 14. Gas chromatographic (GC) chromatograms of soil extracts prepared in acetonitrile: hexane: methanol
(45:45:10 v/v) one hour following spraying with a mixture of dimethazone and trifluralin formulations.

Figure 15. Electron impact mass spectrum of trifluralin (C13H16N3O4F3) extracted from soil indicating the molecular ions
of m/z 306, 290, 264, and 43 along with other characteristic fragment ions.
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sites for the adsorption and interaction with trifluralin. This might explain why trifluralin
residues were higher in compost-amended soil than in no-mulch bare soil. Due to mechanical
incorporation of the herbicide in the top 10–15 cm of soil, an equilibrium is usually established
between the pesticide adsorbed to the soil and that in solution. This equilibrium reduces the
transport and movement of strongly adsorbed pesticides such as trifluralin [101]. Accordingly,
recyclable wastes have unique properties that should be thoroughly investigated in the soil/
water/plant ecosystem. Binding of pesticides to humus [83] might decrease the amount of
pesticides available to interact with biota, thus reducing the toxicity of the pesticide active
ingredients. Binding might inhibit the mobility of xenobiotics via leaching and runoff, thus
preventing the contamination of aquatic environments. This is particularly important because
the extensive use of herbicides such as trifluralin has a high toxicity to fish (Table 1). Some
herbicides are highly soluble in water, but because of their ionic properties, they bind tightly
to the soil particles and organic matter in recycled waste and pose minimal risk for ground
and surface water contamination.

Table 1 indicated that the soil binding property (Koc) of dimethazone is only 150–562 mL g-1,
while Koc of trifluralin is 8,000 mL g-1. Greater Koc values of trifluralin indicated a tighter
binding to the soil particles [102, 103]. Occurrence of trifluralin at concentrations of 50 to 130
ng g-1 on dry-weight basis has been reported in soils 30 months after the last application [104],
and since the adsorbed herbicide becomes biologically inactive, therefore higher volume
application rates are needed for soils rich in organic matter. Dimethazone is soluble in water

Figure 16. Electron impact mass spectrum of dimethazone (C12H14 Cl NO2) extracted from soil indicating the molecular
ions of m/z 204, 125, 89, and 41 along with other characteristic fragment ions.
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and hence poorly bonds to most soils, giving it a potential for leaching into the soil column.
These findings indicated that soil amendments and farm management practices play a major
role in influencing herbicide residue levels in soil and their off-site mobility into natural water
resources.

6. Conclusion

Herbicide washes off from agricultural fields and the Kentucky River watershed impacts
surface water quality. Analysis of the herbicide metribuzin in the top soil indicated that
considerable residues were detected in soil amended with chicken manure and sewage sludge
compared to native soil. Similarly, soil amended with chicken manure or sewage sludge
retained DCPA residues up to 99 d compared to unamended soils. Runoff water volume from
no-mulch soil (200,000 L plot−1) was significantly greater than runoff from soil amended with
chicken manure and sewage sludge-amended soils (45,000 and 85,000 L plot−1, respectively).
Knowledge about the environmental problems and adoption of appropriate solutions and
practices to enhance and protect our national water quality from environmental pollution by
herbicides require timely delivery of research and educational technology. The development
of production systems and mitigation techniques that reduce the introduction of agrochemicals
like herbicides into the environment presents a continuing challenge. Soil mixed with chicken
manure and sewage sludge increased water infiltration into the soil column toward the vadose

Property Dimethazone Trifluralin Reference

Water Solubility (g L-1) 1.1 0.22 [92]

Fish LC50 (mg L-1)
Rainbow trout
Bluegill sunfish

19
34

0.01-0.04
0.02-0.09

[92]
[92]

Log KOW 
† 2.5 5.1

[100]
[101]

KOC (mL g-1) ‡ 150-562 8,000
[102]
[82]

Vapor Pressure (mm Hg at 29 OC) 1.44 × 10-4 1.99 × 10-4 [92]

Concentration (µg g-1 Soil) 0.4 1.1 [15]

Concentration (mg Plot-1 ) in infiltration water 0.08 0.009 [15]

† Partition coefficient between n-octanol and water (as log value)

‡ Organic carbon partition coefficient

Note that one plot is 0.02 of an acre

Table 1. Physical and chemical properties of dimethazone and trifluralin herbicides sprayed at Kentucky State
University Research Farm, Franklin County, Kentucky, USA and their concentrations in runoff and infiltration water
following natural rainfall.
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zone, reducing surface water runoff down the land slope. Agricultural runoff is the main
contributor to poor water quality. Recycling waste for use as a low-cost fertilizer promoted the
restoration of ecologic and economic functions of soil. Composts provide a stabilized form of
organic matter that improves the physical properties of soils by increasing nutrient and water
holding capacity, total pore space, aggregate stability, erosion resistance, and temperature
insulation and decreasing apparent soil density [105] and binding of herbicides to soil particles
and organic matter in soil amendments through herbicide sorption process that include
chemisorption, complexation, adsorption, diffusion through the pores, and ion exchange [36].
Mobility of herbicides is affected by many site-specific variables, including the amount of soil
organic matter, particle size distribution, porosity, rainfall, and application rates [30]. Field
trials related to the mobility of trifluralin herbicide were conducted on a Lowell silty loam soil
(pH 6.7, 2 % organic matter) of 10 % slope located at the Kentucky State University (KSU) H.R.
Benson Research Farm (Franklin County, KY, USA). The farm is located in the Kentucky River
watershed in the Bluegrass region. Results indicated that yard waste compost mixed with
native soil reduced trifluralin residues in surface runoff water from June to July rainfall by 76
and 84 %, respectively. When sewage sludge and chicken manure were mixed with native soil,
half-life (T1/2) values of metribuzin were 24, 18, and 12 d in chicken manure, sewage sludge,
and no-mulch treatments, respectively, whereas T1/2 values of DCPA (dacthal) were greater in
chicken manure and sewage sludge-incorporated soil (45.8 and 52.2 d, respectively) compared
to NM native soil (26.2 d). A strong positive relationship was found between napropamide (an
herbicide) concentrations and organic matter content in soil leachates. Sewage sludge and yard
waste mixture added to native soil increased water infiltration, lowering surface runoff water
volume and dimethazone (an herbicide) residues in runoff following natural rainfall events.
Accordingly, soil amendments could be used to intercept herbicide-contaminated runoff from
agricultural fields and might provide a potential solution to herbicide contamination of surface
and seepage water from farmlands.
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