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1. Introduction

Human immunodeficiency viruses 1 and 2 (HIV-1 and HIV-2) infection leads to immunological
failure and Acquired Immunodeficiency Syndrome (AIDS). During transmission and dissem‐
ination within a new host, HIV must overcome several cellular mechanisms aiming to inhibit
or restrict its infection and its spread to other host cells. Not surprisingly, as a well-adapted
human pathogen, HIV has evolved in order to counteract and subvert these cellular inhibitory
factors. Defining how viral and cellular proteins interact remains a critical area of research
with direct implications in the knowledge of transmission, pathogenic mechanisms, vaccine
design and molecular targets for therapeutic intervention.

In this chapter, the mechanisms involved in the inhibitory activity of some cellular proteins
and the way HIV evades those host cell restrictions will be focused on. Particular attention will
be given to the tripartite motif 5 (TRIM5) protein family, involved in viral uncoating; the
retroviral protection factors, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-
like (APOBEC) and Tetherin, involved in the reverse transcription and viral release respec‐
tively; and to the sterile alpha motif [SAM] and histidine/aspartic acid [HD] domain-containing
protein 1 (SAMHD1), which mediates the restriction of HIV-1 replication in dendritic cells.
This review will also delve into the mechanisms of two recently described factors: MxB, which
restricts HIV nuclear import and integration, and cholesterol-25-hydroxylase that converts
cholesterol to a soluble antiviral factor (25-hydroxycholesterol) that blocks HIV fusion with
target cells.
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2. Brief overview on HIV replication cycle

The replication cycle of HIV can be divided into five major steps: (i) virus-receptor interactions
and fusion; (ii) reverse transcription and proviral integration; (iii) HIV genomic DNA tran‐
scription; (iv) HIV mRNA splicing, nuclear export and translation; and (v) viral assembly,
release and maturation (Figure 1).

The first step of the cycle begins with the binding of the virion gp120 surface subunit (SU
glycoprotein) to CD4 receptor present in T-cells, macrophages and dendritic cells. The SU
glycoprotein and the gp41 transmembrane subunit (TM glycoprotein) remain associated by
non-covalent binding. Both SU and TM are proteolytically cleaved from the envelope (Env)
precursor protein by a cellular convertase, furin, within the endoplasmatic reticulum (ER). The
SU glycoprotein allows viral binding to cellular receptors – CD4 and a coreceptor belonging
to the chemokine receptor’s family – while the TM protein is involved in the fusion between
the viral envelope and the host cell membrane [1]. After initial binding to CD4, SU undergoes
structural changes that lead to the exposure (or formation) of the coreceptor-binding site.
Although several chemokine receptors were identified as mediators of HIV entry in vitro, CCR5
and CXCR4 seem to be the two major coreceptors [2, 3]. After SU glycoprotein binding to co-
receptor additional conformational changes are observed, exposing the N-terminal region of
TM (dubbed the “fusion peptide”), which mediates the fusion between the viral and host
membranes (reviewed in [4, 5]). This viral fusion process may occur through a direct pH-
independent fusion mechanism with plasma membrane [6], or via endocytosis and fusion with
endosomes [7].

After viral fusion, the viral capsid enters the cytoplasm and the viral RNA is converted to
double-stranded DNA, a reaction mediated by the viral reverse transcriptase (RT), that occurs
in a cytoplasmic complex named the reverse transcriptase complex (RTC). RT has three
essential activities for virus replication: RNA-dependent DNA polymerase (i.e. reverse
transcriptase), RNase H activity that cleaves the genomic RNA in RNA/ DNA hybrids during
cDNA synthesis, and DNA-dependent DNA polymerase activity (for synthesis of the second
strand of the proviral DNA). The result is a double-stranded DNA replica of the original
genomic RNA. The double-stranded viral DNA, as part of the preintegration complex (PIC),
penetrates the host cell nucleus through the pores in the nuclear membrane. Another viral
enzyme, integrase, inserts the double-stranded viral DNA in the host cell chromosomal DNA
(reviewed in [8]). The PIC is composed of several cellular and viral components, e.g. viral DNA,
RT, integrase (IN), capsid (CA), matrix (MA) and Vpr proteins. In activated cells, the proviral
DNA is transcribed, acting as a template for mRNA synthesis. The viral mRNA exists as three
distinct classes: multiply spliced (~2kb), single-spliced (4-5kb) and unspliced (9kb). The
multiply spliced transcripts are the first to accumulate soon after infection and encode the
regulatory proteins Tat, Rev and Nef. The accumulation of Rev protein enables the efficient
nuclear export of single-spliced and unspliced mRNA and to an increase in the levels of these
mRNAs (reviewed in [9]).
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Figure 1. Schematic representation of HIV replication cycle. HIV initiates infection by attaching (1) to cellular recep‐
tors: CD4 and a chemokine receptor (co-receptor). The interactions with both receptors trigger the fusion between viral
envelope with cellular membrane, either after endocytosis (2A) or by direct fusion with plasma membrane (2B). The
release of viral nucleocapside into the cytoplasm (3) precedes the formation of the reverse transcriptase complex (RTC)
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where the reverse transcription takes place (4). The RTC transforms to the preintegration complex (PIC), composed by
several cellular and viral components, that is imported to the nucleus where viral DNA is integrated into cellular chro‐
mosomal DNA (5 and 6). The proviral DNA is then transcribed (7) and mRNA migrates to the cytoplasm and translat‐
ed to viral proteins (8). Assembly of different components of viral particles occurs at plasma membrane (9). After
egress and release of immature virions (10), the proteolytical cleavage of Gag polyprotein takes place leading to ma‐
ture virions (11).

After replication, transcription and translation, the viral genome information is ready to
proceed to the final step: the viral assembly, the release and maturation of recently formed
virions. The nucleocapsid assembly occurs through protein-protein interactions mediated by
the uncleaved Gag polyprotein – through the capsid (CA) domain [10] – that also recruits the
viral genomic RNA, through the interaction between the nucleocapsid (NC) domain and the
RNA packaging signal (Psi sequence) [11]. The NC domain also mediates the formation of the
RNA dimer via a palindromic sequence in the dimer linkage structure (DLS) sequence, which
is located in the Psi sequence. In addition, specific cellular tRNAs are packaged. The assembly
of the virus particle, which final steps occur at the plasma membrane (reviewed in [12]), is
partly regulated by the Vpu and Vif proteins, which play an important role in the assembly of
the virus. At the cell membrane, the immature viruses are released and maturation takes place
through polypeptide cleavage mediated by the viral protease. The mature virus is now able
to infect other cells.

3. Organization of viral genome

The majority of replication competent retroviruses depend on three genes: "group specific-
antigen" (gag), "polymerase" (pol) and "envelope"(env) genes. The “classic” structure of a
retroviral genome is: 5'LTR-gag-pol-env-LTR 3 ' (Figure 2). The non-coding LTR ('long terminal
repeat") represents the two ends of the viral genome and they are linked to host cell DNA after
integration. The gag and env genes encode the core and the viral envelope glycoproteins
respectively. The pol gene encodes for the RT, IN and protease [13]. In addition, HIV contains
in its 9.749 kb RNA, six additional genes: vif, vpu (only in HIV-1), vpr, vpx (only in HIV-2), tat,
rev, and nef) which contribute to their genetic complexity and helps virus in several steps during
replication cycle [14].

Figure 2. HIV-1 genome organization. The major viral proteins encoded by gag, pol and env genes are indicated in red.
Numbers indicate the beginning and ending of each gene according to nucleotide numbering of HXB2CG HIV-1 strain
(GenBank accession number: K03455).
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The vif gene codes for Vif, a protein that increases the infectivity of the HIV particle. This
protein is found inside HIV-infected cells, and its main function is to interfere with one of the
innate immune system's defenses - a cellular protein called APOBEC3G [15].

The "Viral protein U", (coded by vpu gene), enhances the release of new viral particles, helping
them to bud from the host cell. Vpu also works within the infected cell to enhance the degra‐
dation of CD4 protein. This has the effect of reducing the amount of CD4 present in plasma
membrane, therefore reducing the likelihood of superinfection [16].

The "Viral protein R", (coded by vpr gene), is incorporated into viral particles through a specific
interaction with Gag proteins. It has several functions during intracellular steps of viral
replication. For instance, Vpr is present in the PIC and has been shown to influence the reverse
transcription and the nuclear import of viral DNA; it also modulates cell cycle progression and
apoptosis of infected cell [17].

Tat and Rev are regulatory proteins coded by tat and rev genes. They are present in the nucleus
of infected cells and bind to defined regions of the viral DNA and RNA. These proteins
enhances the transcription of proviral DNA into mRNA, promote the RNA elongation,
stimulate the transport of HIV-1 mRNA from the nucleus to the cytoplasm and also are
essential for translation [9].

Tat is a regulatory transactivator protein, which enhances the activation of HIV long terminal
repeat (LTR) increasing the efficiency of HIV genomic transcription. This enhancement is also
the result of additional interaction between Tat and cellular transcription factors such as NF-
κB and SP-1. Furthermore, Tat also plays a crucial role in AIDS pathogenesis, especially in the
development of HIV-associated dementia, dysregulation of cytokine expression and induction
of apoptosis [9]. As referred earlier in this chapter, Rev facilitates the nuclear export of single-
spliced and unspliced viral mRNAs (~4 kb and ~9 kb mRNAs respectively). The molecular
mechanism underlying Rev activity involves a direct interaction between Rev protein and a
cis-acting sequence-specific target named RRE (Rev-responsive element). RRE is found within
the env gene in all incompletely spliced mRNAs [9, 18]. It has been shown that Nef protein has
several functions. It induces down-regulation of CD4 [19] and the HLA class I and II molecules
from the surface of HIV infected cells [20], which may represent an important escape mecha‐
nism for the virus to avoid recognition by CD4+ T cells. Nef may also interfere with T cell
activation, as a result of selective binding to various proteins that are involved in intracellular
signaling [21].

4. Cellular factors with inhibitory activity on HIV replication and
implications in viral pathogenesis

Innate immunity had evolved as a mechanism to defend eukaryotes from bacterial and viral
infections. These mechanisms rely on different cellular restriction factors that suppress the
replication of the pathogens, namely retroviruses [22].
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During HIV-1 infection, incoming viral RNA triggers a TLR7/8-mediated innate immune
response, resulting in the production of type I interferon (IFN). In particular IFNα has been
shown to be up-regulated after TLR sensing during acute infection with HIV-1 or SIV [23-25].
Accordingly, initial observations in vitro revealed that pre-treatment of macrophages with
type-I IFN inhibited the replication of HIV-1, indicating that potent inhibitory factors were
induced after IFN exposure [26, 27]. Most of them are still uncharacterized.

The identification of cellular restriction factors and the viral proteins that antagonize those
restrictions have stimulated an active area of research that explores crucial mechanisms
underlying HIV interference with cellular restriction factors and innate immunity. In this
subchapter specific cellular factors with inhibitory activity on HIV replication are discussed
including how viral-encoded proteins counteract these factors.

4.1. TRIM5α

The search for the mechanisms underlying the innate cellular resistance to retroviral infections
shown by different non-human primate species, has led to the identification of a cytoplasmic
factor that prevented infection of Old World monkeys by HIV-1 [28]. This factor – TRIM5α –
was identified as a member of the tripartite motif (TRIM) family of proteins, a large family of
cellular proteins with distinct biological activities including innate immune signaling [29].
After its initial identification in rhesus macaques (rhTRIM5α) [28] and owl monkeys (TRIM‐
Cyp) [30], TRIM5α was also identified as a retroviral restriction factor in humans [31, 32] that
is induced by both type I and type II IFN [33].

Different models have been proposed for retroviral inhibition mediated by TRIM5 proteins
[34]. They suggest that these proteins mediate restriction by directly binding to specific
determinants in the viral CA protein, blocking HIV replication soon after viral release in host
cell cytoplasm. The TRIM proteins family is defined by three domains (RING, B-Box2, and
Coiled- Coil), which are present in all members of this family. The N-terminal RING domain
possesses E3 ubiquitin ligase activity that is crucial for retrovirus restriction [35, 36]. The B-
Box2 and Coiled Coil (CC) domains are thought to contribute to the higher and low order
multimerization of TRIM5α, respectively. The TRIM5α also possesses a C-terminal capsid
binding domain that mediates specific recognition and restriction of certain retroviruses [37].
The recognition of viral capsid determinants (CA protein) relies on three variable regions
present in the C-terminal domain of TRIM5α, and apparently they are equally involved in
retrovirus recognition and restriction [38-41].

Several studies have addressed the mechanisms by which TRIM5α protein prevents viral
infection and different models have been proposed to explain this restriction. The “accelerated
uncoating” model was based on the observation that cytosolic CA protein was specifically
dissociated in rhTRIM5α-expressing cells [42] leading to the proposal of a “proteasome
independent capsid degradation” mechanism. This model suggests that the stripping of capsid
protein prevents viral RTC to proceed to subsequent steps in infectious replication cycle,
namely the reverse transcription and nuclear import [42]. An alternative model was primarily
based on the observation that proteasome inhibitors allows reverse transcription and integra‐
tion, without affecting the TRIM5α-mediated restriction [43, 44]. Accordingly, a “two-step
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restriction mechanism” was proposed, suggesting that restriction activity of TRIM5α occurs
by both proteasome-dependent and -independent pathways. The relative contribution of each
pathway is apparently dependent on host cells-viruses combinations [45].

4.2. APOBEC3

One  important  form  of  intrinsic  immunity  against  retroviral  infections  is  provided  by
apolipoprotein  B  mRNA-editing  enzyme  catalytic  polypeptide-like  (APOBEC)  family
proteins,  and  particularly  by  human  APOBEC3G  (A3G)  and  APOBEC3F  (A3F)  [46-49].
These two proteins are cellular antiretroviral factors that possess inhibitory activity against
HIV-1 replication [22, 48, 50].

APOBEC proteins act on single-stranded DNA or RNA substrates and their main function is
to induce alterations in the nucleotide sequence through cytidine deamination, converting
cytidines to uridines (C to U) or deoxycytidines (dC) to deoxyuridines (dU).

The A3G protein, which expression seems to be regulated at a transcriptional level through
NFAT and IRF binding to specific sites located in A3G promoter region [51, 52], is packed
inside newly formed HIV-1 virions by a specific interaction with the amino-terminal region of
NC domain of HIV-1 Gag polyprotein [53-57]. As expected due to the interaction with NC,
A3G is present in viral core as a ribonucleoprotein complex together with genomic RNA, NC,
IN and Vpr [58]. Interestingly, binding of A3G to HIV genomic RNA led to inactivation of
deaminase activity, while the action of HIV RNase H, which degrades the RNA chain during
reverse transcription activates its enzymatic activity [58]. After viral entry into a new cell and
during reverse transcription, the released A3G targets the minus-strand DNA product and
induces a dC to dU deamination resulting in a dG to dA hypermutation in the HIV-1 double-
stranded DNA genome of the replicating virus. This hypermutation activity ultimately
introduces mutations and stop codons that disrupt the normal expression and function of viral
proteins [46, 59]. A3G can also interfere directly with viral reverse transcriptase preventing
RT-dependent cDNA elongation independently of deaminase activity [60]. Finally there is also
evidence suggesting that A3G reduces the integration of HIV-1 DNA by interfering with PIC
functions [61, 62]. In addition to A3G, also A3F seems to exhibit inhibitory activity against
HIV-1 replication [47, 49, 63, 64].

Despite their ability to hinder HIV replication, these proteins only show their potent inhibitory
effect with HIV-1 mutants lacking a functional vif gene, since the Vif protein expressed by wild-
type HIV-1 blocks the function of these host cell proteins [50, 65-70]. Basically, Vif binds to
A3G in the cytoplasm of infected cell and directs it for polyubiquitination and proteasomal
degradation, preventing its inclusion into the newly formed virions thus overcoming the
inhibition of viral replication mediated by A3G [67-69, 71]. A cellular E3 ubiquitin ligase
complex consisting of cullin5, elonginB, elonginC and RING finger proteins that binds an E2
ubiquitin-conjugated enzyme, induces the polyubiquitination of A3G. This complex is
recruited by Vif that connects it to its substrate inducing the polyubiquitination of A3G [67-69,
71-73]. Additionally, Vif also interferes with the translation of A3G mRNA, reducing its
intracellular pool [72, 74].
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Besides A3G and A3F proteins, the human genome also contains genes encoding five others
members of the APOBEC3 family. However, of these five additional genes, apparently only
three (APOBEC3A, APOBEC3B and APOBEC3C) are expressed in human cells. Recent data
shows that APOBEC3A is recruited at post-entry HIV-1 replication complexes [75-79]. Its
expression is induced in monocyte-derived macrophages (MDM) by interferon-alpha (IFN-α)
and it seems to promote resistance to HIV-1 infection in MDM [75]. The APOBEC3C protein
is a weak inhibitor of wild-type or vif-deficient HIV-1 [63, 64, 80] although it was described,
together with APOBEC3B, as a potent inhibitor of simian immunodeficiency virus (SIV)
replication [81]. As for A3G, the APOBEC3B protein is also packed inside HIV-1 virions due
to a specific interaction with the NC protein. It induces a potent inhibition of HIV-1 replication
and it seems to be resistant to HIV-1 Vif protein [82]. However, APOBEC3B is expressed at
very low levels in human tissues, in contrast to A3G and A3F [82].

4.3. Tetherin/ BST-2

In early 2008, an additional restriction factor dubbed Tetherin, previously referred to as BST-2,
CD317 or HM1.24, was described [83, 84]. The main function of this IFN-induced protein [85,
86] remained elusive until it was identified as an intrinsic antiviral factor that restricts the
egress of HIV and other enveloped viruses by tethering mature virions to the host cell
membrane [83, 84, 87-91]. Tetherin is a type II membrane protein highly expressed at the
plasma membrane of B cells at all differentiation stages, bone-marrow CD34+ cells and T-cells
[92]. It has an unusual topology consisting of an amino-terminal cytoplasmic tail (CT), followed
by a transmembrane region that anchors tetherin to the plasma membrane and a coiled-coil
extracellular domain that is also linked to the plasma membrane by a carboxy-terminal
glycophosphatidylinositol (GPI) anchor [93, 94]. Due to the presence of this GPI anchor,
tetherin is mainly located in cholesterol-rich microdomains also referred as “lipid rafts”.
Tetherin is involved (through the CT domain) in the organization of subapical actin cytoske‐
leton in polarized epithelial cells [95] and unlike other GPI-anchored proteins, is endocytosed
from lipid rafts in a clathrin-mediated pathway [96].

Coincident with the identification of tetherin as an antiviral factor, it was also found that it was
the target of the HIV-1 accessory protein Vpu, providing a plausible mechanism for the well-
established but ill-defined, virus-release function of Vpu [83]. The Vpu is a small transmem‐
brane (TM) protein encoded by the vpu gene present in the genomes of HIV-1 and some SIV
strains, but absent in HIV-2. It is anchored to the plasma membrane of the infected cell by its
amino-terminal region. Initial studies showed that Vpu protein besides its ability to degrade
CD4 protein [97], was also required for efficient replication of HIV-1 in some cell types and that
the restriction factor counteracted by Vpu was a protein located at cell surface [16, 98-101]. This
factor was found to be IFNα-inducible and showed the ability to block the release of Vpu-
defective virions by directly tethering them to the plasma membrane of virus-producer cells.
The trapped virions are subsequently internalized by endocytosis and probably degraded in
lysosomes [83, 85]. Remarkably, the lipid rafts localization of tetherin is coincident with the
preferential site for budding and egress of enveloped viruses [102, 103], providing further
explanation for the mechanism by which tetherin blocks virion release. Several aspects of the
Vpu-mediated antagonism of tetherin are still controversial. It was initially proposed that Vpu
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impairs the transport of newly synthetized tetherin by sequestering it within the trans-Golgi
network [104-106]. Additionally, Vpu might block the recycling of tetherin after its internaliza‐
tion from the lipid rafts [104, 106, 107]. Finally, it was also proposed that Vpu might directly
internalize tetherin from cell membrane [108-110]. Interestingly, it was observed that treat‐
ment with proteasomal inhibitors lead to increased levels of tetherin and loss of Vpu-mediat‐
ed  enhancement  of  HIV-1  release.  These  results  suggest  that  the  Vpu-induced  down-
regulation of tetherin might at least in part involve proteasomal degradation of the restriction
factor  [111-113].  The  exact  mechanisms  of  tetherin  down-modulation  from  cell  surface,
intracellular  sequestration or  degradation remain to  be  determined.  These  three  distinct
mechanisms may act cooperatively counteracting tetherin to varying degrees in different
cellular contexts. Regardless the model that is preferentially observed, binding of Vpu to tetherin
through TM-TM interaction seems to be crucial for Vpu antagonism of the restriction factor
[108, 111, 114, 115].

Despite the wide cellular distribution of tetherin and the need to counteract its viral restriction
action, most primate lentiviruses do not contain a vpu gene. Some (e.g. SIVsmm, SIVmac, and
SIVagm) use their Nef proteins to antagonize tetherin function [116-118]. This is not surprising
since Nef protein - a myristoylated protein coded by nef gene essential for HIV replication in
vivo - is known to act as an adaptor protein interacting with different cellular proteins. Through
these interactions Nef manipulates cellular trafficking, signal transduction and gene expres‐
sion in HIV infected cells (reviewed in [119]). Apparently, Nef targets the cytoplasmic tail of
tetherin reducing its expression at host cell membrane [116, 118]. In alternative to Nef, HIV-2
relies on its envelope glycoprotein Env to antagonize tetherin. The proposed mechanism
suggests that Env interacts directly with the ectodomain of tetherin, sequestering it away from
sites of virus budding and targeting it to clathrin-mediated endocytosis [120].

Besides the referred lentiviruses, the antiviral activity of tetherin was also demonstrated
against a broad range of unrelated viruses, such as filoviruses [87, 88], arenaviruses [88] and
herpesviruses [121, 122]. For some of these viruses specific viral encoded antagonists has been
described. For example, human herpesviruses 8 (HHV-8, also known as Kaposi's Sarcoma
herpesvirus) uses K5/MIR2 - a viral protein belonging to the membrane-associated RING-CH
ubiquitin ligase family - to ubiquitinate tetherin and target it for degradation [121]. In Ebola
virus - a filovirus associated with hemorrhagic fever outbreaks - the tetherin-mediated
restriction is counteracted by viral envelope glycoprotein [123] in a process similar to the
described sequestration of tetherin by HIV-2 Env.

4.4. SAMHD1

Myeloid-lineage cells, including monocytes, dendritic cells (DCs) and macrophages, play a
multifaceted role in HIV-1 initial infection and viral dissemination during acute infection. In
particular, the interactions between HIV and DCs are connected with all aspects of HIV
infection in vivo, including transmission, pathogenesis and immune control (recently reviewed
in [124]). DCs exposed to HIV during sexual transmission help viral dissemination and
systemic infection by two distinct mechanisms: by becoming productively infected or by
transferring HIV to CD4+ T cells during immunologic synapse (IS), even in the absence of DCs
infection [125-127].
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Although DCs can be infected, HIV replication is generally less productive compared with CD4+
T cells. Nevertheless, extensive viral replication takes place once DCs come into contact with
CD4+ T cells in lymphoid tissue in the context of IS [128]. This implies that HIV must be able to
evade DC’s innate immune sensing and endolysosomal degradation and then make use of DC
maturation and migration to draining lymph nodes to be transmitted to highly susceptible T
cells during antigen presentation process within lymph nodes (reviewed in [129]).

Infection by DNA or RNA viruses triggers innate immune responses when host recognizes
specific viral molecular structures (e.g. nucleic acid and surface glycoprotein), called pattern-
associated molecular patterns (PAMPs) [130-132]. These PAMPs are recognized by pattern-
recognition receptors (PRRs), such as Toll-like receptors (TLRs), RIG-I-like helicases (RLH),
and cytosolic DNA sensor proteins. Inside the cytoplasm, viral nucleic acid can be detected by
different PRRs depending on the cell type. For example, TLR7 and TLR9 are responsible for
detection of viral RNA and DNA, respectively, in plasmacytoid dendritic cells (pDCs), whereas
RLHs detect viral RNA in conventional DCs, macrophages and fibroblasts [133, 134]. The
recognition of PAMPs by the PRRs activates several transcription factors, namely nuclear
factor-κappa binding (NF-κB) and IFN regulatory factors (IRFs). This activation leads to the
production of pro-inflammatory cytokines and type-I IFNs (IFN-α and IFN-β), respectively
(reviewed in [130]). The production of type-I IFNs induces the expression of hundreds of
interferon-stimulated genes (ISGs) [135], providing crucial mechanisms of antiviral defense
by inhibiting viral replication and spread. For example, during HIV Infection, viral single-
stranded RNA (ssRNA) is recognized by TLR7/8 initiating anti-HIV immune response by
inducing type I IFN. However, as a well-adapted human pathogen HIV must be able to avoid
– at least in part – these cell sensing mechanisms in order to evade host innate immunity.

Sterile alpha motif (SAM) and histidine/aspartic acid (HD) domain-containing protein 1
(SAMHD1), an analogue of the murine IFN-y-induced gene Mg11 [136], was identified as a
HIV-1 restriction factor that blocks early-stage virus replication in DCs and other myeloid cells
[137, 138]. It acts by depleting the intracellular pool of deoxynucleoside triphosphates (dNTP),
thus impairing HIV-1 reverse transcription and productive infection [139-141]. The expected
lower replication in DCs may enable HIV-1 to avoid intracellular viral sensor that would
otherwise trigger IFN-mediated antiviral immunity [142, 143]. It seems that while SAMHD1
effectively renders DCs less permissive to HIV-1 infection, it is somewhat paradoxically
responsible for the HIV-1 evasion of immune sensing and subsequent poor priming of adaptive
immunity.

HIV-2 brings in a new and interesting element: Vpx (an accessory protein encoded by vpx gene,
present in SIVsm/SIVmac and HIV-2), that is believed to have originated by duplication of the
common vpr gene present in primate lentiviruses [144], possibly to compensate for a theor‐
ised low HIV-2 RT affinity for dNTPs [145, 146]. This accessory protein antagonizes the effect
of SAMHD1 by targeting it for proteasomal degradation using the host cell E3 ubiquitin ligase
complex, in which Vpx interacts with the DCAF1 subunit of the CUL4A/DDB1 ubiquitin ligase
to degrade SAMHD1 via the proteasome [137, 139, 147, 148]. The degradation of SAMHD1
renders HIV-2-infected DCs much more permissive to productive infection and viral replica‐
tion, allowing faster accumulation of full length viral DNA [148]. This results in a widely positive
DC-specific effect in the innate immune sensing of HIV-2 infection [143, 146, 148, 149] and it
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may be related to the lower viral load and slower progression to AIDS that is characteristic of
HIV-2 infection (reviewed in [150]). The immunologically positive effects of Vpx was also
demonstrated in monocyte-derived DCs (MMDCs) infected with HIV-1 where an increased
type I IFN production and up-regulation of CD86 was only observed in the presence of Vpx
[146]. Hence, by avoiding productive infection of MDDCs through preservation of SAMHD1
function,  HIV-1 may also control  viral  antigen presentation,  resulting in qualitatively or
quantitatively minor CD8+ and CD4+ responses [146, 149, 151]. Furthermore, individuals with
low SAMHD1 activity or silenced SAMHD1, present an enhanced immune response to HIV-1
infection, as previously hypothesised [139, 143] [139, 143] and demonstrated [146].

4.5. MxB

The myxovirus resistance (Mx) genes were discovered in the 1960s when it was observed that
wild mice were resistant to influenza viruses, whereas inbred mice were susceptible [152]. This
trait was later mapped to a locus on mouse chromosome 16 [153-156]. Mx family proteins are
found in almost all vertebrates, demonstrating their evolutionary importance for host organ‐
isms [157]. Humans Mx gene resides on chromossome 21 [158] and encodes two proteins, called
MxA and MxB, that belong to the family of dynamin-like large GTPases. The MxA protein has
been recognized as a potent cell restriction factor with antiviral activity against pathogenic
DNA and RNA viruses [159].

The X-ray crystal structure of human MxA showed that this protein can be divided into a
globular GTPase head, a largely C-terminal α-helical stalk domain and a series of α-helices
found in sequences adjacent to these domains which fold in the protein tertiary structure to
form the bundle signaling element (BSE) [160]. On the basis of sequence homology and
computer modeling the predicted structure of MxB is almost superimposable with that of MxA,
having 63% amino acid sequence identity.

In contrast to human MxA protein that inhibits a variety of viruses [161], MxB was initially
described as lacking antiviral activity against influenza or vesicular stomatitis virus [162].
Instead, MxB was solely related to cellular functions, such as regulating nuclear import and
cell-cycle progression [163, 164].

This view was challenged in 2011, when Schoggings and collaborators addressed an overex‐
pression screening to test the antiviral activity of more than 380 human interferon stimulated
gene (ISGs) products against a panel of viruses, where they first uncovered an antiviral activity
of human MxB against HIV-1 [165].

More recently, three additional studies [166-168] showed that MxB overexpression potently
reduces the permissiveness of the cells in a single-cycle HV-1 infection assay. They also
demonstrate that silencing MxB expression reduced the inhibitory potency of the interferon-
α demonstrating its importance in the interferon-mediated response against the early steps of
HIV-1 infection.

The next step was to understand which specific post-entry event of the HIV replication cycle
was affected by MxB expression. Recent studies agreed that MxB expression potently inhibited
HIV-1 infection after reverse transcription but before integration [166-168]. So MxB might be
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interfering with one or more of the following processes: 1) HIV-1 uncoating; 2) nuclear import
of the HIV-1 PIC; or 3) nuclear maturation of the PIC.

Fricke and colleagues [169] suggested a model in which MxB binds to the HIV-1 core in the
cytoplasm of the cell and prevents the uncoating process of HIV-1 through stabilization of
incoming viral capsides. In addition, they demonstrated that MxB requires capsid binding and
oligomerization for effective restriction.

More recently, Matreyek et al. [170] observed that MxB restricts HIV-1 after DNA synthesis at
steps that are coincident with PIC nuclear import and integration.

HIV-1 RNA is reverse transcribed into double stranded linear DNA and carries a fraction of
the viron CA protein [171, 172]. HIV-1 CA protein is known to play a central role in mediating
physical interactions with several host proteins involved in the post-entry step of infection.
Some identified residues of CA involved in binding to cyclophilin A (CypA), TRIM5α, TNP03,
CPSF6, NUP153 and NUP358/RanBP2 are also critical for the sensitivity of HIV-1 to the
antiviral action of MxB. Results obtained by Liu and colleagues indicate that both silencing of
CypA expression or disruption of the CA-CypA interaction by addition of cyclosporine A
abrogated the antiviral activity of MxB, thus CypA binding to the HIV-1 CA appears to be
required for MXB restriction. Furthermore, results obtained by diverse groups indicate that
CA mutations counteracted MxB restriction [165-168, 170].

The viral integrase (IN) protein processes the long terminal repeat (LTR) ends of the viral DNA
to yield the integration-competent PIC, which subsequently transports the viral DNA into the
nucleus for IN-mediated integration [173]. Matreyek and collaborators [170] found evidence
for an additional block in the formation of 2-LTR circular viral DNA (that are only present in
the nucleus, and thus have been utilized as a marker of nuclear entry of viral DNA [174]). In
contrast, results obtained by Liu and collaborators [167] showed that MxB reduces the levels
of integrated HIV-1 DNA, though it does not affect the amount of 2-LTR circles. They con‐
cluded that MxB impairs the integration step and spares the nuclear entry of viral DNA.

Apparently, MxB antiviral activity is independent of its GTPase active site residues or stalk
domain Loop4 (both previously shown to be necessary for MxA function) that confer func‐
tional oligomerization to related dynamin family proteins [166, 168]. There are two locations
in MxB that exhibit the greatest sequence dissimilarity with MxA. The first one is Loop4 that
is not critical for MxB antiviral activity but is important for the MxA inhibition of Influenza A
and Thogotovirus infection [170, 175]. The other part of MxB with greatest dissimilarity to
MxA is the N-terminal region. The specific particular functions conferred by this region are
particularly important for MxB activity and consequent HIV-1 restriction [170].

In a global perspective, the post-entry step of HIV-1 replication cycle appears to be quite
vulnerable to the actions of IFN-inducible restriction factors: TRIM5α, APOBEC3 proteins,
SAMHD1 and, more recently, MxB use distinct mechanisms to prevent integration of this
pathogenic virus in host genome. Certainly it will continue to be of interest to the scientific
community the study of restriction factors of viral infection by antiviral host factors due to its
impact in many areas. These findings raises hope as a potential clinical and epidemiological
relevant approach which could be exploited to control HIV infections and AIDS.
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4.6. Cholesterol-25-hydroxylase

Recently, a new antiviral IFN-induced protein (cholesterol 25-hydroxilase; CH25H) was
identified as being able to block the fusion between viral envelope and target cell membrane.
It exhibits a broadly antiviral activity against several enveloped virus including HIV, Ebola
virus (Zaire strain), vesicular stomatitis virus, herpes simplex virus I, Rift Valley fever virus,
Nipah virus, Influenza A (H1N1) virus and varicella zoster virus [176, 177]. It also revealed
antiviral effect against poliovirus [178], a non-enveloped virus. The IFN-induced cholester‐
ol-25-hydroxylase (Ch25h) gene encodes an endoplasmic-reticulum-associated enzyme
(CH25H) that mediates the oxidation of cholesterol, by the addition of an extra hydroxyl group
at position 25, converting it to 25-hydroxycholesterol (25HC). 25HC belongs to a large class of
endogenous cholesterol derivatives named oxysterols. In addition to their involvement in basic
metabolic processes, e.g. bile acids production in the liver [179], oxysterols also play a key role
in several signaling pathways that influence the activation of macrophages, T-cells and B-cells,
and thus the regulation of inflammatory response [177, 180-188].

Although several antiviral mechanisms have been suggested for CH25H and 25HC, they seem
to inhibited HIV-1 replication by blocking the virus-cell fusion step [176]. One possible
mechanism underlying this effect is the induction of cellular membrane changes affecting the
topology and permissiveness for fusion of host cell membrane. There is extensive evidence
that the lipid composition of target cell membrane influences HIV-1 fusion and entry. In fact,
though the fusion event is triggered by HIV envelope glycoproteins, lipids also play a key role
in virus-cell membrane fusion by themselves, directly affecting the viral receptor accessibility
and distribution in lipid rafts domains of the plasma membrane, or the membrane fluidity and
curvature [189]. The modifications in cellular membrane architecture induced by 25HC
(considerably more hydrophilic than cholesterol [190]) would be of outstanding importance
in the complex protein-lipid interplay required for successful virus-cell fusion events [176].

5. Conclusion

The pathogenesis of HIV infection is a highly complex network of interconnected processes.
It likely borrows much of its complexity from the co-evolution with several mammalian species
that HIV and predecessors lentiviruses have enjoyed over an unknown, but rather long period
of time. During the complex interplay between HIV and host cell, different intrinsic cell factors
are involved that mitigate or restrict HIV replication and spread as shown in Figure 3. Some
of these host restrictions factors that have been identified inhibit early steps of replication cycle.
In fact, the post-entry step of HIV-1 replication cycle appears to be quite vulnerable to the
actions of IFN-inducible restriction factors: TRIM5α, APOBEC3 proteins, SAMHD1 and, more
recently, MxB and cholesterol 25-hydroxylase, all of them use distinct mechanisms to prevent
integration of viral DNA into host genome. The best characterized of these are the TRIM5α
and the APOBEC3 proteins. APOBEC3 interacts with the nascent DNA during reverse
transcription while TRIM5α interacts with incoming viral capsids resulting in premature
disassembly. SAMHD1 protein acts prior to integration, by depleting the intracellular pool of
deoxynucleoside triphosphates (dNTP), therefore impairing HIV-1 reverse transcription and
accumulation of HIV double stranded DNA. Another restriction factor, Tetherin (BST- 2/
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CD317), acts in late steps of viral replication cycle, by preventing viruses from leaving the cell
during budding and release of viral particles. The recently described factors MxB and choles‐
terol 25-hydroxylase seem to inhibit the nuclear import/integration of viral DNA and the viral
fusion events, respectively. Remarkably, despite this array of restriction factors, HIV had
created viral proteins to subdue these restrictions emphasizing how well adapted this virus is
to human host.

Figure 3. Schematic representation of a simplified replication cycle of HIV and the different steps that are blocked
by cellular restriction factors. The cholesterol-25-hydroxylase blocks viral fusion with target cell membrane; TRIM5α,
SAMHD1 and APOBEC3G impair viral DNA synthesis either by accelerating capsid disintegration, reducing dNTPs

Trends in Basic and Therapeutic Options in HIV Infection - Towards a Functional Cure88



intracellular pool or by introducing mutations in nascent chain of viral DNA; MxB impairs the nuclear import and/or
the integration step; and finally, Tetherin induces virion retention at the host-cell membrane.

Finally, the identification of cellular restriction factors, such as those referred in this chapter,
and the disclosure of the mechanisms by which they impede viral replication, also enabled the
identification of new promising targets for therapeutic intervention. In fact, it is increasingly
clear that the most successful treatment and/or prevention strategies will likely be derived
from the modulation of human cell functions rather than acting directly upon viral mecha‐
nisms.
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