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Abstract

There are many studies in literature concerning contact angle measurements on
different materials/substrates. It is documented that textiles can be coated with
multifunctional materials in form of thin films or nanoparticles to acquire character‐
istics that can improve the protection and comfort of the wearer. The capacity of oxide
nanostructures to inhibit fungal development and neutralize bacteria is a direct
consequence of their wetting behavior [1–6]. Moreover, the radical modification of
wetting behavior of nanostructures from hydrophilic to hydrophobic when changing
the pulsed laser deposition (PLD) ambient will be thoroughly discussed.

When an implant is introduced inside the human body, its surface is first wetted by
the physiological fluids. This further controls the proteins adsorption followed by the
attachment of cells to the implant surface. Hence, surface wettability is considered an
important criterion that dictates biocompatibility of the implant and could stand for
a decisive factor for its long-term stability inside the human body.

In Section 1 of this chapter, the reader is briefly introduced to wetting phenomenon,
and correlations between well-known Young, Cassie, and Wenzel approaches are
made. Next, one of the most spread techniques to measure the wettability of surface,
the contact angle measurement, is thoroughly explained and relevant examples are
given.

Section 2 begins with a summarized table about previous works on synthesis of
hydrophobic or hydrophilic nanostructures with a special focus on ZnO, SiOx, TiO2,
and DLC materials. A short presentation of the advantages of their synthesis by PLD,
sol-gel, thermal evaporation, solution based on chemical approaches, sputtering, and
plasma enhanced chemical vapor deposition will be introduced.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Sections 3 includes a brief literature overview on results regarding synthesis by
aforementioned techniques of different oxides (ZnO, TiO2, and SiOx) and DLC
nanostructures onto textile (polyester, polyamide, cotton/polyester, and poly(lactic
acid)) or metallic substrates for medical purposes.

The chapter ends with conclusions and references, which include books and review
articles relevant to the topics.

Keywords: Wettability, contact angle measurements, oxide and diamond like car‐
bon nanostructures, textile functionalization, medical applications, pulsed laser
deposition, sol-gel, combined radio frequency plasma enhanced chemical vapor
deposition, magnetron sputtering

1. Introduction

Wetting is the ability of liquids to keep in contact with solid surfaces. It is a direct result of
intermolecular interactions, which occur when two media (liquid and solid) are brought
together. Wettability studies usually involve the measurements of contact angle (CA), which
indicates the degree of wetting when a solid and liquid interact. A low CA (<90°) corresponds
to high wettability, and the fluid will spread over a large area of the surface. A high CA (>90°)
corresponds to low wettability, and the fluid will minimize contact with the surface and form
a compact liquid droplet. CA>150° indicates minimal contact between the liquid droplet and
the surface and corresponds to a superhydrophobic behavior.

In the case of a liquid droplet on an ideal solid surface (which is flat, rigid, perfectly smooth,
chemically homogeneous, and has zero CA hysteresis), which forms a CA (θ), the general
formula of the well-known Young’s equation (which assumes a perfectly flat and rigid surface)
[7] that describes the balance (Figure 1a) between the surface tension of the liquid/vapor γSV

and that of the liquid/vapor γLV and the interfacial tension of the solid/liquid γLS is as follows:

( )SV LS LVcos /q g g g= - (1)

Figure 1. Wetting behavior of solid substrates: (a) Young, (b) Wenzel, (c) Cassie, and (d) intermediate state between
Wenzel and Cassie regimes.
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In reality, only a few solid surfaces are actually flat. The surface roughness is therefore one
important parameter that should be taken into consideration when assessing the wetting
behavior of a surface [8, 9]. This influence can prove significant for static and dynamic wetting.

Besides Young’s theory, the Wenzel (Figure 1b) and Cassie (Figure 1c) regimes [9, 10], or an
intermediate state between these two models (Figure 1d) [11], are generally used to correlate
the roughness of the surface with the apparent CA of a liquid.

Several authors modeled the effect of surface roughness over CA [12–14]. The basic idea was
to account for roughness through r, which is the ratio of the actual to projected area. Thus,
ALS = r ⋅ALSapp and ASV = r ⋅ASVapp where ALS and ASV are the liquid-solid and solid-vapor areas,
ALSapp and ASVapp are the liquid-solid and solid-vapor areas. In this case, Eq. (1) becomes

rough truecos cosrq q= (2)

Due to surface roughness, for CA <90°, the apparent CA will decrease, while for CA>90°, its
value will increase. This corresponds to the Wenzel case, as illustrated in Figure 1b, where the
liquid completely fills the air pockets of the rough surface at the contact site. If the CA is large
and the surface rough, the liquid may trap air. As a consequence, a composite surface effect
will appear, as illustrated in Figure 1c.

In the Cassie model [15], it is presumed that in the grooves the air is trapped under the liquid
droplet. This determines the appearance of a composite surface (Figure 1c). The chemical
heterogeneity of a rough surface can be related, in this model, to the apparent CA, θapp, through
the following formula:

app S S V Vcos cos cosf fq q q= + (3)

with fS and fV as the area fractions of the solid and vapor on the surface, respectively. Since
f S + f V =1, θS = θ, and θV = 180°, Eq. (3) can be written as follows:

( )app S truecos 1 cos 1fq q= - + + (4)

where θtrue is the CA on a smooth surface [15].

From Eq. (4), it follows that in case of a true value of CA >90°, the surface roughness will
determine an increase of CA’s apparent value. In contradiction to Wenzel regime, in the Cassie
mode, the CA value will increase even for CA values <90º due to the air pockets trapped under
the liquid droplet [9]. It was shown that, when applying a physical deformation to a spherical
droplet, a variation from the Cassie to Wenzel state can be achieved [16, 17] (Figure 1d). In
some cases, a transition between these two modes can also occur [18–20]. Therefore, the droplet
will fill the air pockets of the rough substrate resulting in a decrease of the apparent value of
CA. In these cases, for the estimation of CA values, Eqs. (2) and (4) can be used before and after
the transition, respectively. Taking into account these results, the following equation can be
written [11]:

Wettability of Nanostructured Surfaces
http://dx.doi.org/10.5772/60808

209



( ) ( )th S Scos 1 /f r fq = - - (5)

where θth represents a threshold value between Wenzel and Cassie states.

1.1. CA measurements of nanostructured surfaces

Immediately after an implant is introduced inside the human body, the first events that occur
are the wetting of the material by the physiological fluids, followed by attachment of cells to
the implant surface [21]. In order to evaluate the wetting behavior of a system, plenty of
quantitative (CA, imbibition, and forced displacement, and electrical resistivity wettability)
and qualitative (imbibition rates, microscope examination, flotation, glass slide, relative
permeability curves, permeability/saturation relationships, capillary pressure curves, capil‐
larimetric method, displacement capillary pressure, reservoir logs, nuclear magnetic reso‐
nance, and dye adsorption) methods have been developed [22]. Among these, CA
measurement is probably the most adopted technique to investigate the average wettability
of a surface [23]. Moreover, this type of investigation has been extensively applied to assess
the wetting behavior of different nanostructured surfaces, used for various medical applica‐
tions. Some relevant literature examples limited to oxides (ZnO, TiO2, SiOx) and diamond-like
carbon (DLC) structures are briefly summarized in Table 1.

Material Envisaged application Cited reference

ZnO

Self-cleaning coatings and antifogging materials [24]

Antibacterial properties [25, 26]

Environmental sensing [27]

Micro/nanodevices [28]

SiOx

Antibacterial properties [29]

Cells migration on artificial surfaces [30]

Bioactive properties [31]

Superoleophobic surfaces [32]

TiO2

Antibacterial properties [25]

Microbial fuel cells and bioremediations [33]

Blood-contacting biomaterials [34]

DLC

Temporary blood-contacting medical devices (cardiovascular and interventional
devices, artificial organs, pacemakers)

[35, 36]

Femoral head and the acetabulum hip joint components [37]

Resistance to corrosion [38]

Antifogging [39]

Resistance to microbial adhesion [40]

Table 1. CA measurements of hydrophobic/hydrophilic ZnO, SiOx, TiO2, and DLC nanostructures used for medical
applications.
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CA can be classified into static or dynamic. Static CA is measured when liquid droplet is
standing alone on the surface, without needle insertion, and the solid/liquid/air boundary is
not moving. These measurements are used in quality control and research and product
development. One can measure the dynamic CA when the solid/liquid/air boundary is
moving. In this way, advancing and receding CA are measured. CA hysteresis, which
represents the difference between these two angles, comes from surface chemical and topo‐
graphical heterogeneities, solution impurities absorbing on the surface, or swelling, rear‐
rangement or alteration of the surface by the solvent [41, 42].

The hydrophobic behavior of a surface is generally assessed by the apparent water CA, in static
measurements. Moreover, when evaluating a surface repellency, one should take into consid‐
eration the sliding-down (which is evaluated by measuring the sliding angle, α, at which a
liquid droplet begins to slide down an inclined plate) and rolling-off behaviors of liquid
droplets [9]. Due to the CA hysteresis [43, 44], the liquid droplets do not slide off easily on a
surface presenting a high value of static CA. Eq. (6) [43, 45] quantitatively describes the
relationship between the hysteresis and the sliding angle:

( ) ( )LV R Asin / cos cosmg wa g q q= - (6)

where θA and θR are the advancing and receding CAs, respectively (Figure 2), g is the gravi‐
tational force, m is the mass, and w is the width of the droplet.

Figure 2. Illustration of the advancing and receding CAs.

Advancing and receding CA represent the maximum and minimum values that can be
measured on the surface for the static CA. Due to the increasing interest on smart materials
(self-cleaning and superhydrophobic), the dynamic CAs and CA hysteresis are highly applied
[46, 47]. For self-cleaning applications, it is important that sliding angles (angle of the substrate
which has to be tilted in order to move the droplet) to present small values.

From Eq. (6), it can be inferred that a lower droplet mass and smaller difference between the
advancing and receding CAs will result in a smaller angle α. It is worthy to note that the surface
roughness has a strong effect on the CA hysteresis [43].

Zisman observed for the first time that cosθ increases linearly as the surface tension of the
liquid (γLV) decreases [48, 49]. He investigated the wettability of solids by determining the
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critical surface tension using CA. This method is used to determine the so-called critical surface
free energy (γc), that differs from the solid surface free energy, γS . According to his method,
the value of γC  of a solid is equal to the value of γL of a liquid, which is in contact with the solid
and for which the CA is zero. The value for γc is determined from empirical investigations,
consisting of the CA measurements for the studied solid and the liquids of a homologous series
of organic compounds like n-alkanes. The values are plotted with the y-axis corresponding to
the cosine values of the CA (θ) and the x-axis relating to the γL values for the studied liquids.
The values of cosθ for the liquids of a series of n-alkanes form approximately a straight line.
Extrapolation of this line to the point of cosθ =1 yields the value of γC  equal to γL.

Despite the fact that γC  is not the solid surface free energy, the critical surface tension has been
shown to correlate with the known surface chemistry of several solids.

The Zisman method has been widely used to assess the critical surface tension γC  of different
organic films or low-energy solids deposited on high-energy solids (e.g., metals, glass [50,
51]). In this approach, by using series of homologous nonpolar liquids (e.g., n-alkanes), one
can obtain the total solid surface energy of a nonpolar solid and the dispersion component
(γS

d) of the total surface energy of a polar solid. We note that, when using polar liquids on polar
and nonpolar solids, one can obtain the deviation from rectilinear relation. Also by using polar
liquids, the determination of any component of the solid free energy it is not possible.

2. Alternative deposition techniques employed for the synthesis of
hydrophobic/hydrophilic nanostructured surfaces (thin films or
nanoparticles)

Many methods were employed to synthesize hydrophobic or hydrophilic nanostructures (thin
films, TFs, and nanoparticles, NPs), and some literature examples limited to ZnO, SiOx, TiO2,
and DLC are summarized in Table 2.

Among these methods, pulsed laser deposition (PLD), sol-gel (SG), thermal evaporation (TE),
solution based on chemical approaches, sputtering, and plasma enhanced chemical vapor
deposition (PECVD) will be briefly described hereinafter. They are easy to use, low cost, and
yield high throughput of micro- and nanostructures.

Material Structure type Deposition technique Cited reference

ZnO

TFs SG [52]

TFs Metal-organic vapor deposition [53]

NPs Microwave plasma [54]

TFs Magnetron sputtering, MS [55]

TFs Electrodeposition [56]
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Material Structure type Deposition technique Cited reference

TFs Atomic layer deposition [57]

TFs Electrochemical anodization [58]

TFs PLD [59]

SiOx

TFs Sputtering [60]

TFs Ion beam evaporation, IBE [61]

TFs PECVD [62–64]

NPs SG [65, 66]

TiO2

NPs IBE [67]

TFs PECVD [68, 69]

TFs Sputtering [70, 71]

NPs (Dip-)pad-dry-cure [72, 73]

NPs
Impregnating TiO2 particles in a resin and this

composite deposited into the yarn-array
[74]

NPs SG [75, 76]

TFs PLD [77, 78]

DLC

TFs PECVD [79–81]

TFs MS [82, 83]

TFs Combined PECVD and MS [84]

TFs Filtered pulsed arc discharge [85, 86]

TFs Ion beam deposition [87]

TFs PLD [88, 89]

Table 2. Different deposition techniques used for the synthesis of hydrophobic/hydrophilic ZnO, SiOx, TiO2, and DLC
nanostructures.

In the field of TFs growth, PLD has proven to be among the most versatile methods [59], with
features superior to conventional deposition techniques (fast processing, reliability and low
production cost). In this technique, high power laser energies are used. They are focused onto
a target in order to evaporate its surface under vacuum or different gas ambient atmospheres.
The vaporized material consisting of ions, atoms, or molecules is subsequently deposited onto
a generally parallel substrate. Repeated laser pulses will result in the deposition of the TFs in
form of a coating on the substrate.

One important advantage of PLD method is the stoichiometric transfer of different materials
from the targets in the deposited films [59, 90, 91]. This represents a direct consequence of the
high ablation rate that allows all elements to evaporate simultaneously [92]. This technique
ensures an excellent adherence of the deposited structure to substrates, the high accuracy
control of the growth rate (10–2–10–1 Å/pulse), the absence of contamination, the simplified
growth of materials and combinations of materials of technological interest [93], and the good
control of the final crystalline state of the coatings [59, 94].
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The SG process is a synthesis route consisting in the preparation of a sol and successive gelation
and solvent removal. This technique represents one of the simplest approaches to produce TFs.
It presents many advantages in comparison with traditional deposition techniques, such as
low working temperature, possibility to cover large surfaces, and high purity of the working
conditions.

Compared to the physical route where harsh conditions such as high temperature or special
equipment are usually required and consequently generating high costs, the solution based
on chemical approaches [95–97] presents several advantages, including the simplicity in
operation, low fabrication costs, low process temperatures (below 90 °C), and ambient pressure
processing.

Thermal vacuum deposition or TE method is used to fabricate TFs under a high vacuum
environment. In this method, an electron beam (e-beam) or resistive heating is usually used
to evaporate the desired material inside the vacuum chamber, which then adheres to a
substrate positioned above it.

The uniformity, high quality, and adherence of the deposited materials on large areas; the high
deposition rate; and the versatility of sputtering techniques have made them attractive for the
production of TFs [98–101]. In plasma sputtering deposition, plasma is used as the source of
ions. These ions bombard a solid material, commonly known as the cathode or the target, with
a typical kinetic energy of several hundreds electron volts. The ion bombardment produces
the emission and acceleration of the secondary electrons, which play an important role in
maintaining the plasma around the cathode [102]. The ionizing energetic electrons are confined
close to the cathode allowing operation at high plasma densities and low pressures.

3. Synthesis of hydrophobic/hydrophilic oxides and DLC nanostructures
onto textiles and metallic medical substrates

A brief literature review on results regarding oxide (ZnO, TiO2, SiOx) and DLC nanostructures
synthesized by PLD, SG, TE, solution based on chemical approaches, sputtering, and PECVD
onto textile or metallic substrates will be presented hereinafter. Polyester, cotton/polyester,
and poly(lactic acid) woven fabrics can be coated with multifunctional oxide materials in form
of TFs or NPs to get properties that increase the protection and comfort of the wearer. When
covering the surface with NPs, a new roughness is added leading thus to a dual-size surface
roughness. Therefore, the study of wettability properties is a tool to test the surface function‐
alization [103]. It is well known that wetting of a surface by a liquid is affected by surface
roughness [104]. In the case of textile materials, the roughness is related to the geometry which
is very complex [105]. Due to the fiber topography, the construction of the yarn, and the
construction of the fabric, polymer, natural, and synthetic fibers might be made from porous
materials that can absorb water from the environment. Fabrics have thus pronounced texture,
porosity, and also (oriented) in-plane capillarity along the threads [103]. CAs on textile
substrates can be useful quantities for comparative measurements in order to characterize the
effects of surface modification, especially if the textile is distinctly hydrophobic [105]. Titanium
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(Ti) stands for the most used metallic material for medical applications due to its unique
properties such as biocompatibility, excellent mechanical properties in bulk, relative to the low
mass density, and high corrosion and ductility resistance [106].

3.1. ZnO

ZnO is an n-type metal oxide semiconductor having a wide band gap, high electron mobility,
and thermal conductivity. It mainly crystallizes in the wurtzite phase, being intrinsically polar,
and thus exhibiting interesting piezoelectric properties. In addition, in the form of TFs or NPs,
ZnO possesses promising antibacterial and antifungal, photocatalytic, electrical, electronic,
and optical properties [107–115]. Recently, combinations ZnO-organic were tested for various
applications requiring antimicrobial properties [116, 117]. Also, ZnO has probably the richest
family of structures’ morphology including rods, prisms, wires, whiskers, or tubes [95–97, 118–
123]. Moreover, morphology influences other properties such as wettability, another signifi‐
cant characteristic of ZnO covered surfaces bringing great advantages in a wide variety of
applications in industry and daily life [124–127]. For example, wettability is critical in cosmetics
and textile fields where ZnO can be used due to its biocompatibility property.

Hydrophobins are a class of small-size cysteine-rich proteins synthesized by filamentous fungi
[128]. They form ~5–10 nm thick self-assembled monolayers [129] on different substrates,
changing their surface wetting properties. Namely, hydrophobic surfaces can be turned to
hydrophilic, while hydrophilic materials become hydrophobic [130] after immersion in an
aqueous solution of hydrophobin. Textile materials can be finished with various functionali‐
zation agents, such as chitosan microcomposites [131] or nanocomposites [132, 133], medicinal
herbs [134], nisin [135], polyhexamethylene biguanide [136], or PMMA nanocomposites [137],
in order to obtain new surface properties like antimicrobial, hydrophobicity, resistance to
laundering, or protection against decoloration. Due to exceptional surface properties and to
the tuning opportunities, their use is envisaged in cosmetic industry, polymer emulsion
synthesis, and biosensing [138].

3.1.1. ZnO nanostructures synthesized by PLD onto cotton/polyester textiles

Yang et al. [139] and Papadopoulou et al. [140] demonstrated that the structures synthesized
by PLD can be controlled in terms of wetting behavior. Therefore, ZnO structures showed a
hydrophilic behavior after exposure to UV and were converted to hydrophobic after thermal
treatment or storage in complete darkness. In this respect, a one-step PLD procedure to obtain
either hydrophobic or hydrophilic ZnO structures (TFs or NPs), without any complementary
post-deposition treatments of the surface, was recently proposed [141]. Depending on the
number of applied laser pulses, well-separated NPs (for 10 pulses) or compact TFs (for 100
pulses) were synthesized. By varying the ambient gas nature and pressure inside reaction
chamber, hydrophilic or hydrophobic surfaces were obtained. The expected properties of the
textiles coated with ZnO were evaluated at room temperature (RT) by static CA measurements.

The TFs deposited on textiles (Figure 3) in a flux of 13 Pa oxygen were highly transparent and
had a hydrophilic behavior (Figure 3a), while those obtained in vacuum were opaque and
showed a hydrophobic behavior (Figure 3b).
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Figure 3. Textiles coated with ZnO nanostructures: (a) hydrophilic TF deposited in 13 Pa oxygen, (b) hydrophobic TF
deposited in vacuum, and (c) hydrophobic NPs deposited in vacuum.

A CA of 157° (Figure 4) was measured, which qualified these films as superhydrophobic.

Figure 4. SEM micrograph of the superhydrophobic textile coated with ZnO TF in vacuum. Inset: water droplet in stat‐
ic mode with the CA of 157°.

In the case of NP samples, eye examination confirmed a hydrophilic behavior for the structures
deposited in the oxygen flux and a hydrophobic one after deposition in vacuum (Figure 3c).

The macroscopic and microscopic observations have revealed a smoother surface in case of
TFs deposited in vacuum characterized by a six times smaller RMS and negative values for
surface skewness (Ssk) and kurtosis (Sku) (Table 3).

Amplitude
parameters

Sample type/scanning area

TFs oxygen/10×10 μm2 TFs oxygen/2×2 μm2 TFs vacuum/10×10 μm2 TFs vacuum/2×2 μm2

RMS (nm) 36.817 36.793 6.578 5.796

Ssk 0.404 0.421 –0.113 –0.0731

Sku 0.0274 0.24 –0.375 –0.357

Table 3. Amplitude parameters for ZnO TFs deposited in 13 Pa oxygen flux and vacuum. Reproduced from Popescu et
al. [141].
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Figure 5 shows two-dimensional AFM images of the TFs deposited in 13 Pa oxygen flux and
vacuum. The grains (of ~140 nm) visualized by AFM (Figure 5b, d) were in fact consisting of
very small crystallites (of ≤10 nm), as proved by the XRD patterns.

Figure 5. Two-dimensional AFM topography images of the TFs deposited in (a, c) a 13-Pa oxygen flux and (b, d) vac‐
uum at different scales: (a, b) (10 × 10) μm2 and (c, d) (2 × 2) μm2. Reproduced from Popescu et al. [141].

In order to account for the significant difference observed in the wetting behavior of the TFs
and NPs deposited in a flux of oxygen and in vacuum, a model was proposed for surface
wetting. The numerous gaps between crystallites are filled with air acting as a support “buffer”
for the water droplet, in contact to the surface in a few small nanometric sites only. Conversely,
the TFs deposited in an oxygen flux (Figure 5a, c) consist of larger crystallites and a few
intergranular pores only. Thus, the air “buffer” is rarefied, so the contact between the water
droplet and the ZnO surface is extending over a larger area (Figure 6). The droplet weight
prevails over the counter pressure exerted by the ZnO surface and eventually collapses under
its own weight. Figure 6 shows schematically the water droplet in contact with ZnO structures
synthesized in vacuum (Figure 6a) and oxygen flux (Figure 6b).

Figure 6. Schematic of the water droplet in contact with ZnO surface deposited in (a) vacuum and (b) 13 Pa oxygen
flux. Reproduced from Popescu et al. [141].
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The NP depositions in vacuum consist of a large number of small crystallites, which include
a huge amount of vapor pockets. Their action cumulates with the effect of the air, which is
present in the space between NPs to more efficiently support the droplet weight. This model
is in accordance with other studies on hydrophobic plant leaf surfaces [142]. Accordingly, the
largest contact area between the water droplet and the leaf surface corresponds to flat and
microstructured surfaces but is generated in case of nanostructures as an effect of vapor
pockets entrapment.

The electric charging of the surface should be considered when explaining the affinity or
repellency to water of ZnO structures. XRD investigations demonstrated that the ambience in
the interaction chamber also showed the combinations between Zn and O atoms in the
crystalline lattice [141]. In case of structures deposited in vacuum, there is a mix in each
crystalline plane of positive and negative charges. One should note that the water droplet is
neutral from the electrical point of view. Accordingly, the deposited structures do not interact
electrically with the water droplet. Oppositely, the structures deposited in an oxygen flux have
only one type of atoms per plane that induce a positive (Zn) or negative (O) charging of surface
[141]. The synthesized structures interact electrically with the droplet to reach the neutral
status, thus attracting the water bubble toward the ZnO surface causing supplementary stress
that contributes to the collapse of the bubble.

In a parallel study, the capacity of these oxide nanostructures to completely inhibit fungal
development and neutralize bacteria was found to be a direct consequence of their wetting
behavior [1-6].

The intercalation of a hydrophobin nanolayer between substrate and ZnO film, which can
boost the oxide efficiency against microorganisms with a higher natural resistance, was
recently studied and an explanation of the observed phenomena was proposed [143]. In case
of ZnO TFs deposited on bare textiles, the adhesion is governed by physical mechanisms only
(as e.g., mechanical or dispersion adhesion [144]), while in case of a buffer layer of hydrophobin
interposed between textile and ZnO, chemical bonding occurs, the fastening between the ZnO
and the textile substrate becoming much stronger. When used alone, the hydrophobin had no
effect on both Candida albicans colonies and six strains of filamentous fungi. In case of simple
finishing with ZnO, the reduction rate was of 50% and 70% of the colonies in 24 h (Figure 7a, b).

Figure 7. Percentage and logarithmic reduction of (a) C. albicans population and (b) mold mix inoculum after 24 h culti‐
vation on untreated and ZnO treated textiles. Reproduced from Popescu et al. [143].
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In order to improve ZnO efficiency against resistant fungi, the oxygen concentration on films’
surface was increased by covering the textile fibers with hydrophobin and then adding an
upper layer of ZnO. As an effect, the orientation and shape of ZnO crystallites were changed,
the (001) film texturing becoming more pronounced and nanocrystallites elongated, with more
polar planes (001) parallel to the surface (Figure 8a). Depending on the orientation of the c-
axis, these planes may contain oxygen atoms only (Figure 8b). The ZnO film deposited on
hydrophobin proved in this case 100% efficient in reducing colonies of both C. albicans and a
mold mix of filamentous fungi (Figure 7a, b). This significant enhancement was attributed to
the higher texturing of the oxide film when growing on hydrophobin interlayer, resulting in
an increased presence of oxygen species on surface.

Figure 8. XRD patterns of ZnO TFs (a); the orientation of the (001) ZnO crystallites grown on hydrophobin, resulting in
outer termination either in O or in Zn atoms only (b). Reproduced from Popescu et al. [143].

ZnO is recognized to possess antibacterial and antifungal properties. Nair et al. [109] assessed
the microbiological activity of ZnO against a mold mix of microbes and associated the high
reduction ratio to the generation of surface oxygen species. Sawai et al. [110] and Premanathan
et al. [111] suggested that these oxide species form in wet media hydroxyl radicals and
hydrogen peroxide. As known, the hydroxyl radical is the most reactive one, able to interact
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with almost every type of molecule of the living cells of bacteria and fungi, causing irreversible
damage to cellular components and eventual apoptosis. Applerot et al. [112] advanced a
mechanism for the reactive oxygen species formation on ZnO surface. The oxygen atoms
present on surface interact with water molecules, forming OH‒ radicals. A chain reaction
occurs, resulting in exponential multiplication of these radicals on surface.

We note that no negative side effects of hydrophobins when in contact with human tissue were
reported [145], and to the benefit of biomedical applications, they were able to form, in specific
cases, resistant monolayers with antimicrobial activity [146]. Moreover, the proposed antimi‐
crobial finishing procedure of fabrics with a conjunction of a thin layer of hydrophobin and a
ZnO layer can find applications in the medical field, where solutions are constantly required
for elimination of microbial contamination, thus reducing the risks of infections during
surgery.

3.1.2. ZnO nanostructures synthesized by solution based on chemical approaches onto solid
(glass) substrates

In the synthesis process of ZnO nanostructures using solution based on chemical approaches,
a zinc salt and a basic compound are brought together. The involved chemical reactions can
be described as follows:

i. Using a weak base ((CH2)6N4)
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ii. Using a strong base (NaOH)
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iii. Using a reducing agent ((CH3)2NHBH3) [147]
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The ZnO structures were examined by XRD (Figure 9). The diffraction peaks observed at 2θ =
(31.8°, 34.5°, 36.3°, 47.5°, 56.6°, 63.0°, 66.4°, 68.0°, and 69.1°) are characteristic to ZnO hexagonal
wurtzite phase (JCPDS file no. 36-1451), with corresponding Miller indexes at (100), (002), (101),
(102), (110), (103), (200), (112), and (201). The strong and sharp diffraction patterns suggest that
the as-obtained structures are well crystallized.

Figure 9. XRD patterns of ZnO samples synthesized in the presence of (a) (CH2)6N4, (b) NaOH, and (c) (CH3)2NHBH3.

SEM images of the samples (Figure 10) revealed the following morphologies for the ZnO micro/
nanostructured TFs: rods (4.5 μm in length and 330 nm in diameter; Figure 10a, b), flowers (1–
2 μm in dimension; Figure 10c, d), and hexagonal prisms (400 nm in length and 200 nm in
diameter; Figure 10e, f). Insets to Figure 10 show the influence of the ZnO surface morphology
on wetting behavior. The corresponding CA values of the ZnO samples are 164.8° (rods), 94.3°
(flowers), and 79.4° (prisms). An explanation for the different values of CA can be related to
the numerous gaps between the ZnO structures filled with air. For this reason, the film
containing a higher volume of air trapped between the ZnO structures at the solid/water
interface has a superhydrophobic behavior. The CA results were confirmed by AFM meas‐
urements (Figure 11). The RMS values were as follows: 390 nm (rods), 120 nm (flowers), and
50 nm (prisms).

Due to their morphology, the ZnO structures present different degrees of compactness,
trapping more or less air in-between. In this way, the CA value is linked to the RMS value of
the sample.
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Figure 10. SEM images, at different magnification, of the ZnO samples synthesized in the presence of (a, b) (CH2)6N4,
(c, d) NaOH, and (e, f) (CH3)2NHBH3. Insets: optical photographs of the water droplets shape on the ZnO surfaces with
the corresponding CA values.

Figure 11. AFM images of the ZnO samples synthesized in the presence of (a) NaOH and (b) (CH3)2NHBH3.

3.2. TiO2

Titanium dioxide (TiO2) is a transition metal oxide with UV absorbing properties with many
technological applications [148, 149]. High photocatalytic efficiency, great stability, and low
cost of production are in favor of TiO2’s photocatalytic properties [149]. In addition to bulk
applications, TiO2 TFs were obtained for UV blocking, antibacterial or/and photocatalytic
properties [149].
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3.2.1. TiO2 structures synthesized by SG and sputtering onto textile substrates

Some properties of the substrates used in the experiments are summarized in Table 4.

Sample code Textile 2D element/thread Nature of fibers Color Thickness (mm)
Density (g/

cm3)

P2 Knitted/interlock/Nm 70/1

Polyester
White

0.82 0.25

P3 Knitted/interlock/Nm 50/1 0.89 0.26

P28 Fabric 0.46 0.47

P30 Fabric 0.52 0.41

PLA Nonwoven Poly(lactic acid) 0.64 0.31

Table 4. Characteristics of different textiles functionalized with TiO2.

XRD and SEM investigations [103] indicated, for both deposition techniques, that TiO2 NPs
were amorphous. Sputtered layers consisted of aggregates randomly distributed on substrate,
while the SG layers showed a uniform distribution of NPs, with a mosaic-like structure. SEM
images (Figure 12) suggest the formation of NPs, which are not singularly distinguishable. The
sputtered layers consist of NP aggregates (in coalescence) with less than 20 nm diameter,
randomly scattered on substrate. In the case of the SG layer, there are bridge-aggregated NPs
leading both to a mosaic-like structure and to cracks and interfiber bonds [150].

Figure 12. SEM images of TiO2 samples deposited on P2 substrates by (a) SG and (b) sputtering.

A highly  polar  liquid–water  was  recommended [151]  as  testing  liquid  in  CA measure‐
ments,  for  estimating  the  wettability  of  polar  solids  as  polyester  materials.  The  water
repellency was thus regarded as indicating the performances of the coated layers and was
evaluated by measuring static (equilibrium) CAs at RT [152].  In order to have a general

Wettability of Nanostructured Surfaces
http://dx.doi.org/10.5772/60808

223



idea of the samples’ wetting behavior, different measurement points on each sample were
thus considered (Figure 13).

Figure 13. Water droplets on TiO2 deposited on P2 samples by (a) SG and (b) sputtering.

The mean CA values of the raw or coated samples are summarized in Table 5.

Sample code CA (°) f =
1 + cosθc

1 + cosθ0
 *

P2 136.9 0.244

P3 138.1 0.231

P28 152.1 0.105

P30 124.8 0.389

PLA 129.6 0.328

TiO2 SG/P2 169.3 0.017

TiO2 SG/P3 169.7 0.016

TiO2 SG/P28 152.7 0.110

TiO2 SG/P30 158.9 0.067

TiO2 SG/PLA 140.6 0.225

TiO2 SP4/P2 133.8 0.209

TiO2 SP4/P3 166.0 0.020

TiO2 SP4/P28 Hydrophilic 0.681

TiO2 SP4/P30 155.8 0.059

TiO2 SP4/PLA 150.3 0.089

* θ0 = 84° (for raw), 89.4° (for SG), and 62.1° (for sputtered) samples.

Table 5. Water CA values measured onto different investigated surfaces.
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From Table 5, one can see that the CAs increase more by fabric modification (after Titania
deposition). CAs were influenced by air, water droplet, and surface of fabric, which formed a
nanorough substrate. One sample (P28) is hydrophilic meaning that water passes through it;
this sample has voids large enough, and the margins become hydrophilic by deposition of
hydrophilic particles. The behavior might be approximated by the Cassie–Baxter equation:

0cos cos (1 )c f fq q= - - (7)

Here, θC is the composite CA formed on the treated fabric and θ0 is the CA formed on untreated
fabric [153]. The parameter f represents the fraction of the surface in contact with the water
droplet. Knowing the corresponding CAs, its values can be calculated for each raw-treated
pair of samples, using the following equation:

0(1 cos ) / (1 cos )cf q q= + + (8)

These values are summarized in Table 5. However, it seems that Cassie–Baxter equation (or
Wenzel equation) should be applied to superhydrophobic surfaces with caution [154]. TiO2

can be used to obtain hydrophobic surfaces by producing artificial roughness via micro
structuring [155].

3.3. SiOx

Silicon oxide was deposited onto polymeric substrates as a viable alternative to metallic
depositions used for packing materials due to their transparency, recyclability, microwave use,
and impressive barrier properties [156], to produce textiles with hydrophobic properties [157].
In addition, silica NPs immobilized on textiles can lead to flame retardant properties [158]. SG-
deposited layer can be compared to the one deposited in vacuum at low angle because in both
cases the deposit is awaited (super) hydrophilization evidence since SiO2 brings its OH groups
which print to the media hydrophilic properties. However, due to the columnary nanostruc‐
tured relief of deposited layer, it was expected that the roughness of the textile surface would
be increased. In addition, information was acquired on vacuum deposition at small angle [159–
162]. Thus, we preferred this technique for a SiOx deposition onto textile materials [163].

3.3.1. SiOx structures synthesized by thermal evaporation at small angles onto polyester (P), polyamide
(PA), poly(lactic acid) (PLA), and natural cellulosic hemp (H) substrates

The differences between the investigated textiles [163] are summarized in Table 6.
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Sample code Textile 2D element/thread Nature of the fibers Color
CA (°)

Raw textile SiOx/textile
P1 Knitted/interlock/Nm 70/1

Polyester
White

136.9 139.2
P2 Knitted/interlock/Nm 50/1 138.1 128.9
P3 Knitted/glat/Nm 50/1 158.2 154.9
P4 Fabric/Nm 70/2 + Nm 40/2 136.9 139.2
P27 Fabric Hydrophilic Hydrophilic
P28 Fabric 152.1 105.3
P30 Fabric 124.8 75.5
PA Knitted Polyamide 165.1 97.6

PLA Nonwoven Poly(lactic acid) 129.6 Hydrophilic
H Fabric Hemp Beige 126.9 135.0

Table 6. Different functionalized textiles and their corresponding static CA values.

The XRD diffractograms pointed to an amorphous phase of the SiOx deposited layers [163].

SEM morphologies of SiOx particles synthesized on fabrics are presented in Figure 14. The raw
material images showed defects like kink bands, dislocations, nodes, and slip planes, which
are common characteristics of hemp materials [164]. SEM images of synthesized samples
showed that SiOx particles were grown on the fiber surfaces in a continuous and noncolumnar
layer (Figure 14). Apparently, each individual fiber of samples looks uniformly covered by an
amorphous layer [163].

Figure 14. SEM images of SiOx layers deposited on (a, a′) P2 and (b, b′) H substrates, at two different magnifications.
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The wettability properties were evaluated by measuring static (equilibrium) CAs. The
measurements were carried out at RT [152]. The images were processed using specific
programs to fit the profile with the Young–Laplace equation in order to obtain the value of
static CA.

In Figure 15, the image of the water droplet onto the deposited P2 sample and the correspond‐
ing CA is represented. The measurements were performed for a direction parallel to the
privileged one of the knitted matter (vertically advance geometry). When following a direction
perpendicular to the privileged one, the measurements evidence differences of few degrees
only.

Figure 15. Water droplets on SiOx TFs deposited on (a) P2 and (b) H samples. Reproduced from Frunza et al. [163].

From Figure 15, one can observe that the investigated surfaces are not flat, smooth, or homo‐
geneous. These characteristics of the samples make it difficult to apply a specific model
algorithm. Moreover, wetting of fabric surfaces is complicated by the heterogeneity, the
diffusion of liquid into the fiber, and the capillary action of the fiber assembly. Under these
conditions, the experimentally measured CA is an apparent one and can differ considerably
from the actual value [163].

The mean CA values of the raw and deposited samples are summarized in Table 6. One can
observe that the CA generally decreases after surface functionalization with SiOx, in a range
of few up to several tens of degrees. As expected, the presence of SiOx NPs onto the fiber surface
confers to the textiles a hydrophilic behavior (see Table 6).

3.3.2. Surface free energy of SiO2 (quartz) inferred from CA measurements

Starting from known values of the dispersive and polar parts of the probe liquids’ surface
tension and obtained values of the CAs, the dispersive and polar parts of the surface tension
of the solid (fused quartz) were estimated either by minimization of the equation system using
the least square method or by solving the equations taken for combinations of two probe
liquids [165].

Eq. (9) is a relation between the dispersive and polar parts of the solid substrate’s surface
tension and the same quantities of the surface tension of the wetting liquid and the corre‐
sponding CA:
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p pd d
L S L S L(1 cos ) 2 2g q g g g g+ = + (9)

The values γS
d and γS

p were obtained by averaging the dispersive and polar components of γS

resulted from solving Eq. (9) for all pairs of liquids that have the condition number of system
matrix low enough (as defined in [166]).

CAs of water on fused silica can vary in a large interval. This behavior is in agreement with
the one described in the literature, for example, with a 20º to 80º range obtained on quartz
dehydroxylated by heating, slightly contaminated, or deliberately methylated [167]. The
values we found can be interpreted in terms of the dependence of water CAs on sample purity;
the presence of amorphous materials, chemicals, heating, and other pretreatments; and
contamination by adsorption of substances from laboratory ambient. All these factors could
have an influence over the increasing values of the CA. The obtained values were supposed
to depend on the amounts of silanol groups and physically adsorbed water molecules on the
quartz/silica surface. The investigation of “cleaner” surfaces obtained by a thermal treatment
removing the hydroxyl groups at temperatures of the beginning and ending of the dehydrox‐
ylation process [168] was carried out.

The components of surface free energy of fused silica were determined by CA measurements
of several liquids (see Table 7).

Treatment temperature (°C) CA for different liquids (°)

Water Glycerol NP5
Ethylene
glycol

Dimethyl sulfoxide

240 5.3 14.2 24.9 8.3 0

1000 33.6 14.8 24 0 6.5

Table 7. Values of CA (°) of different liquids on fused quartz treated at two different temperatures.

The fused silica plate samples were heated in atmosphere in order to remove water adsorbed
on surface and most of the silanol groups. Measurements of CA on solid substrate were
performed by analysis of the profile images of symmetric static liquid drops using the Drop
Shape Analysis System (model DSA 100, from Krüss) [141, 152]. The samples were placed on
a stage, under the tip of liquid-dispensing disposable blunt-end stainless steel needle with an
outer diameter of 0.5 mm. The fixed needle was attached to a syringe pump, which was
controlled by the computer for drop delivery. The volume of the drops was of ~ 2–3 μl. The
CAs were determined by fitting the shape of the sessile drop with a smooth curve and then
calculating the slope of the tangent to the drop at the liquid–solid–vapor interface. Low CAs
(θ < 30º) were determined by fitting the shape of the sessile drop with a circle, whereas larger
CAs were estimated by fitting the drop shape with a polynomial equation of second degree or
a circle equation. The camera was positioned to observe the droplet under an angle of about
2°–3° in respect to the sample surface supporting the droplet. The tests were carried out at RT.
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CAs were obtained with an uncertainty of ±2° due to combined effects of drop asymmetry,
surface heterogeneity, and variation in drop position on the plate.

Representative images of the observed water droplets on plates are given in Figure 16.

Figure 16. Water droplets on the SiOx plates treated at (a) 240°C and (b) 1000°C, and the corresponding CAs.

Based on literature values [169–171] of the polar and dispersion parts of the liquid surface
tension (see Table 8) and using the methods of geometric or harmonic mean for the interaction
term, the calculation of the two components for fused silica (see Table 9) gave some differences,
but their sum did not differ much. Moreover, our tests seem to indicate the method of harmonic
mean as better than that one of Owens–Wendt [165].

Sample liquid Dipole moment (D) γL (mN/m) γL
d (mN/m) γL

p (mN/m)

Water 1.85 72.8 21.8 51.0

Glycerol 2.56 63.3 33.6 29.7

Ethylene glycol 2.69 48.0 33.8 14.2

Dimethyl sulfoxide 4.11 44.0 36.0 8.0

NP5 1.70 38.1 34.1 4.0

Table 8. Physical properties of different liquids used as samples.

Treatment
temperature (°C)

Owens-Wendt/least squares
(mN/m)

Owens-Wendt/
Average (mN/m)

Wu/
least squares (mN/m)

γs
d γs

p γs
d γs

p γs
d γs

p

240 11.96 61.16 12.36 60.32 23.70 46.67

1000 15.96 46.90 15.96 49.56 25.29 37.48

Table 9. The surface tension components (dispersive γs
d and polar γs

p parts) of fused silica obtained by different
calculation methods.
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The polar part of the surface free energy of fused silica thermally treated is higher than the
dispersive part as resulting from both methods (geometrical and harmonic mean). This might
be an indication that, at the measurement moment, the plate surface was not (totally) covered
by water vapors from environment.

In agreement with the decreasing number of silanol groups by the thermal treatment, the polar
part of the surface tension shows a decreasing trend when increasing the pretreatment
temperature.

The indirect method of CA measurements applied for the set of liquids chosen to have
complementary interactions with quartz surface, allowed for obtaining values for the compo‐
nents of the surface free energy.

3.4. Effects of proteins from blood plasma on the hydrophobicity of DLC films

The amorphous phase of sp3 bonded C atoms is known as DLC [82, 172, 173]. Beside high wear
resistance coatings for metallic parts, DLC also proved useful in coating implants due to
specific surface properties (low surface energy values and chemical inertness) that prevent
blood coagulation and favor osteoblasts adhesion [90, 172]. In the biomedical field, the main
necessity for DLC coatings comes from vascular prostheses. In the case of interaction with
blood, it seems that DLC quality has a major influence upon clotting time. During the blood
flow through these tubes, the erythrocytes and thrombocytes (platelets) aggregate in certain
spots and may eventually block the blood passage. To compensate for this general weakness
of vascular prostheses, DLC films can bind albumin molecules from the sanguine plasma
forming a passive layer that makes the surfaces less adhesive for blood platelets [174].

The blood compatibility with carbon-based films is extremely complex and for the moment
there is no relation found between hemocompatibility and surface properties such as surface
energy, atomic bond structure of carbon, or composition of material. Contradictory data have
been reported regarding the behavior of the material in terms of blood clotting, the adherence
of platelets, or protein adsorption to surfaces. The relationship between the sp3 bonds content
of DLC and its antithrombogenicity properties is still not well understood. In vitro [82] and in
vivo [88, 175] studies indicate that better results can be obtained for a higher sp3 content.

Kwok et al. [176] pointed out that a higher surface energy of phosphorous doped a-C:H films
is associated with a low adsorption of proteins, among them the albumin being the preferential
one. Similar findings in terms of protein adsorption were presented by Ma et al. [177], who
reported a higher albumin to fibrinogen adsorption ratios on surfaces with higher surface
energy.

Jones et al. [178] explored platelet attachment on Ti, TiN, TiC, and DLC surfaces and reported
that the more hydrophilic surfaces present a greater platelet spreading and fibrinogen
adsorption. They suggested that the better hemocompatibility of DLC surface is linked to its
low surface energy and thus high hydrophobicity. Okpalugo et al. [179] also noted that
improved blood compatibility can be obtained when surface energy is lowered in silicon doped
a-C:H films.
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Recently, the correlation between activated partial thromboplastin time (aPTT) and surface
energy of DLC structures with different sp3/sp2 bonds ratio was studied. Attention was paid
to the investigation of protein adsorption and platelets adherence to the surface, both acting
as crucial factors for material hemocompatibility [84].

3.4.1. Types of bonds in the films

XPS analysis, indicating the C 1s core level variation, was used in order to assess the amount
of sp2 and sp3 bonded C in three types of samples (D20, D60, and D100; see Table 10).

Sample
Component (%) sp3/sp2

ratioC=O/–COO sp2-C sp3-C

D20 5.7±0.3 35.9±1.2 58.4±2.0 ~1.6

D60 4.3±0.2 17.3±0.6 78.4±2.4 ~4.5

D100 2.8±0.15 9.7±0.5 87.5±3.4 ~9.0

Table 10. XPS peak separation data for the C 1s line of DLC films. Reproduced from Popa et al. [84].

From the XPS analysis, the amount of sp3-bonded C and sp2-C, as the ratio between the integral
intensities of each component, could be extracted. The XPS spectra exhibited a very complex
shape pointing to the existence of different chemical states for C 1s (Figure 17).

Three components were needed in order to assure a good fit, associated with the sp3-C (286
eV) and sp2-C (284.3 eV) contributions, as well as to C–O, C=O, and/or O–C=O bonds (287.5–
289.9 eV) owing most probably to the contamination of the sample surface [180–182]. The
deconvolution studies of the C 1s spectra generally reveal two main distinct peaks assignable
to sp2- and sp3-C hybridization [182]. The peak placed at a higher binding energy (BE) is
assigned to sp3-bonded carbon (C–C and C–H), and that at lower BE corresponds to the sp2

hybridization state of carbon. From the analysis of the main components of C 1s core level
spectra, one could assume that the amount of sp2 bonded C decreases from 36% in D20 sample
to about 10% in D100. When the methane dilution is increased (D60 and D100), the sp3-C
concentration strongly increases (to ~78 and 87%, respectively).

The increase in the sp3 content with the augmentation of the methane concentration has been
confirmed both by Raman and XPS. A significant sp3 content augmentation from sample D20
to D100 was measured. This could be the effect of the initial sp3 hybridization of carbon in the
methane molecule. Bugaev et al. [183] also reported that high-quality DLC films can be
obtained from pure methane, their results pointing that most probably methyl mechanism is
favoring diamond-like bonds formation. It is known that CH3 are the most abundant species
in pure methane discharges, while carbon dimer C2 is the most abundant in methane highly
diluted in argon discharges [184, 185].
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Figure 17. High-resolution XPS spectra for C 1s core level photoelectron after sputter cleaning: samples (a) D20, (b)
D60 and (c) D100. Reproduced from Popa et al. [84].
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3.4.2. Surface energy

Using deionized water and formamide as standard solvents, solid surface energy calculations
based on CA measurements were performed. The measurements of the prepared DLC
structures were carried out using the goniometric method, the two solvents being dropped
onto the surface and the CA estimated. The drop size and the drip distance were kept constant
in all cases. The CA values were determined by the evaluation of the tangent angle of a sessile
liquid drop on the DLC solid surface. The surface energy was calculated using the Owens–
Wendt approximation [186, 187].

The surface energy values recorded for DLC/Ti structures were lower than those of the bare
medical grade Ti and PMMA control substrates (see Table 11).

Sample Deposition atmosphere composition Surface energy (mJ/m2)

Bare Ti N/A 37.85 ± 0.94

PMMA N/A 36.35 ± 0.78

D20 20% CH4 + 80% Ar 32.09 ± 0.73

D60 60% CH4 + 40% Ar 30.50 ± 0.70

D100 100% Ar 28.71 ± 0.34

Table 11. Surface energy values recorded for the DLC TFs, and for the Ti and PMMA controls. Reproduced from Popa
et al. [84].

One notices a decrease of the surface energy with the increase of methane dilution in the reactor
chamber (Table 11). The two tailed t-testing showed statistically significant differences (p <
0.05) between the surface energy values recorded for all samples. An important decrease (with
~25%) of the surface energy was obtained when applying the DLC coating: from 37.85 ± 0.94
mJ/m2 for the bare Ti substrate down to 28.7 ± 0.34 mJ/m2 for the D100 structure.

3.4.3. DLC films interaction with blood

Platelets were obtained by centrifugation of whole blood and their adherence to the DLC films
surface was investigated by Western blot method. The detailed procedures for platelets
isolation and for the Western blot technique are described in Ref. [84].

The obtained signal is proportional to the amount of beta-actin, a structural protein present in
all cells and, therefore, to the number of platelets adhered on the sample surface at the moment
of lysis. As visible from Figure 18, there was almost the same number of platelets present on
the surface of bare titanium and D20 samples.

The number of platelets adhered on D60 and D100 was significantly lower. The DLC coatings
ensure conditions for a weaker platelet–surface interaction, which in vivo can conduct to a
lower platelet activation and subsequently a prolonged time of coagulation. One can assert
that this effect derives from the fact that all cells have a negatively charged cellular membrane,
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which tends to interact/adhere to positively charged surfaces (hydrophilic surfaces) rather than
to hydrophobic ones.

The polyvinylidene fluoride membranes were also probed with aprotinin (a protease inhibitor
with proteic structure and a mass of ~6 kDa), which was present in the same concentration in
all samples, since it was added to the lysis buffer formulation. This is an internal quality control
which ensures that all steps of the technique are properly done.

The results of protein adsorption on the DLC surfaces are shown in Figure 19.

Figure 19a shows that serum albumin was adsorbed in greater quantities on all DLC surfaces
than on the bare titanium surface [albumin molecular weight (MW) ~66,483 Da]. Other proteins
(G immunoglobulins) presented a roughly similar pattern (G immunoglobulins MW ~134,350
Da). Another important peak is that of 28,900 Da, which can be assigned to the factor XIIa light
chain and is more prominent on the titanium sample (Figure 19b). The factor XII, the activator
of surface contact coagulation cascade, could not be identified because it had a mass similar
to that of albumin (factor XII MW ~67,792 Da).

Albumin is a protein that has hydrophobic moieties, being a blood carrier for many hydro‐
phobic molecules. Since our DLC surfaces tend to be more hydrophobic, it is expected to find
more adsorbed albumin than on titanium as confirmed by mass spectroscopy spectra. The vast
majority of proteins in blood are glycosylated, which makes them more hydrophilic and more
susceptible to polar interactions. The quantity of albumin adsorbed on the surface shields the
surface of the sample, making it difficult for the different proteins and coagulation factors to

Figure 18. (a) Western blot analysis of beta-actin and aprotinin present in platelets adhered on DLC and bare Ti sam‐
ples; (b) optical density histograms of normalized quantity of beta-actin present in platelets adhered on DLC and bare
Ti samples. Reproduced from Popa et al. [84].
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Figure 19. (a) SELDI-ToF complete spectra of proteins adsorbed on DLC and bare Ti samples from fresh blood plasma;
(b) SELDI-ToF detailed spectra in MW range 8000–30,000 Da. Reproduced from Popa et al. [84].
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reach the sample and activate the coagulation cascade (Figure 19b). These findings are in line
with Liu et al. [188], who showed that the albumin adsorption on DLC inactivates the surface
for blood clotting. One can state that the coagulation time for each material is in line with
surface energy data, with the platelet–surface adherence properties and protein adsorption
profiles, and so advocates for a cause–effect relationship between these factors.

4. Conclusions

Wettability of solid substrates represents an important phenomenon for many natural systems
and can play a key role in a wide range of applications such as coatings, tunable surfaces,
design of hydrophobic/superhydrophobic, or hydrophilic surfaces. It is well known that the
wettability of a solid surface is governed by both surface structure and chemistry. After a brief
introduction on wettability of nanostructures and the possibility to investigate it by contact
angle (CA) measurements, this chapter focused on hydrophobic and hydrophilic structures
(oxide and DLC TFs or NPs) synthesized by various deposition techniques (PLD, SG, TE,
solution based on chemical approaches, sputtering, and PECVD).

The possibility of tuning the wetting behavior of textile materials by their functionalization
with oxide TFs or NPs was reviewed. Depending on the deposition ambience, the TFs can
change their behavior from hydrophilic when obtained in an oxygen flux to superhydrophobic
when deposited in vacuum. The hydrophobicity was found consistent with the organization
of the deposits in vacuum consisting of nanometric crystallites. The subsequent treatment with
a TF of a fusion hydrophobin, deposited by soaking in solution, and a ZnO TF finishing in
vacuum boosted the antifungal efficiency of the structure by 100%. This significant enhance‐
ment was attributed to the higher texturing of the oxide film when growing on hydrophobin
interlayer, resulting in an increased presence of oxygen species on surface. In complementary
studies, fabrics functionalized with oxide layers showed improved UV protective performan‐
ces. These results might offer guidance for laser manufacturing in one technological step of
stable superhydrophobic and antifungal textile surfaces, used for everyday garments and
medical clothing.

ZnO structures can present different degrees of compactness, and as a consequence, they can
trap more or less air. This result can be explained by the Cassie–Baxter model. Due to the
morphology of the deposited ZnO structure, which is made of a large number of small prisms,
the roughness presents high values. The apparent CA is therefore enhanced as compared to
the one measured on a similar smooth surface. When the space between the ZnO structures is
large enough, the water droplet can penetrate, and an explanation of the phenomenon can be
based on the Wenzel model. There exists also the possibility to obtain a transition between
these two regimes, and the apparent CA could be different than the one inferred for a smooth
surface.

CA measurements confirmed that the presence of SiOx particles on fiber surfaces can change
the wetting behavior of the structure. Since it brings OH groups to the surface, the deposition
of SiOx is therefore expected to provide hydrophilic properties to the textiles.
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Although bulk polyester is hydrophobic, water droplets can be sucked into the fibers due to
high porosity (void areas) of the material. The void areas were drastically reduced by the
addition of TiO2 particles. They decrease the voids and concomitantly increase the sample
hydrophobicity. Under these complex conditions, one cannot use the traditional equations like
Cassie–Baxter or Wenzel to model the wettability behavior of the heterogeneous and rough
samples.

Protein adsorption using fresh blood plasma from healthy patients was also studied. In the
case of DLC films with the highest sp3 content, albumin was preferentially adsorbed (due to
the affinity between the surface and the hydrophobic moieties of the protein), thus shielding
the surface and preventing the immobilization of coagulation factors.

The results reviewed in this chapter are devoted to improve the understanding of the wetta‐
bility of nanostructured surfaces. Understanding the importance of surface wettability and
succeeding to control this phenomenon at nanometric scale will hopefully facilitate the
fabrication of devices with improved characteristics for top applications, especially in nano‐
technology.
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