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Abstract

Engineered nanomaterials (ENMs) are being produced at an increasing rate. Because
of their unique physicochemical properties, ENMs have been used in a wide variety
of commercial products. The specific properties of ENMs, such as their relatively
larger surface area, however, could also cause adverse biological effects different from
their bulk counterparts. Nanomaterials can be genotoxic while their bulk counterparts
are not, or vice versa, due to these specific characteristics. Also, the differences
between nanomaterials and bulk materials can generate uncertainty when measuring
the genotoxic potential of ENMs using current genotoxicity assays that were
developed for conventional chemicals or bulk materials. In this chapter, we summa‐
rize current progress in evaluating the genotoxicity of ENMs with a focus on results
from the standard genotoxicity assays, possible mechanisms underlying the genotox‐
icity of ENMs, the suitability of current genotoxicity assays for evaluation of ENMs,
and application of ENM genotoxicity data for risk assessment. Future perspectives for
the evaluation of ENM genotoxicity are also addressed.

Keywords: Engineered nanomaterial, genotoxicity, Ames test, Comet assay, Micro‐
nucleus assay, reactive oxygen species, risk assessment

1. Introduction

Nanomaterials (NMs) are generally defined as materials having at least one dimension ranging
from 1 to 100 nm in size. They may exist in nature, or be purposely engineered from various
materials, such as carbon or minerals. Materials engineered to nanoscale size are referred to
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as engineered nanomaterials (ENMs). Recently, the European Commission Delegated Regu‐
lation redefined ENMs as “any intentionally manufactured material, containing particles, in
an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the
particles in the number size distribution, one or more external dimensions is in the size range
1 nm to 100 nm” [1]. ENMs can be categorized into four classes: carbon-based NMs such as
carbon nanotubes and graphene, metal-based NMs such as quantum dots and metal or metal-
oxide NMs, dendrimers such as nanosized polymers, and composite NMs [2].

Novel ENMs are now designed and produced at an increasing rate, and having unique
physicochemical features such as small size, particular shapes, large surface areas, and surface
activity. These features provide ENMs specific characteristics of high thermal and energy
conductivity, durability, strength, and/or reactivity [3], which facilitate their applications in a
whole host of areas ranging from aerospace, engineering, and nanoelectronics to medical
healthcare. According to a Wilson Center study, more than 1,600 manufacturer-identified
nanotechnology-based consumer products have been introduced to the market, and more than
half were in the Health and Fitness subcategory [4]. A wide range of human-application-related
ENM products have emerged in textiles, the food industry, cosmetics, sunscreens, and the
biomedical field including gene/drug delivery platforms, biosensors, cell and tumor imaging,
and cancer photothermal therapy [5, 6]. With their widespread human exposure, the potential
health risks stemming from ENMs have drawn increasing attention since the first report
highlighting the immediate need for evaluating possible adverse health, safety, and environ‐
mental impacts of ENMs published by the Royal Society and Royal Academy of Engineering
in 2004 [7]. In the same year, a new scientific field named “Nanotoxicology” emerged to
investigate the toxic effects of ENMs. The genotoxicity evaluation of ENMs has attracted much
attention due to its importance for nanotechnology regulation and risk assessment [8].

Genotoxicity is the ability of substances to damage DNA, the genetic information, within
organisms. Thus, genotoxic agents can give rise to mutations. Because mutations can lead to
cancer, genotoxicity evaluation has been utilized widely to evaluate the carcinogenic potential
of chemical and physical exposures. International organizations and regulatory agencies, such
as the Organization for Economic Co-operation and Development (OECD) and the Interna‐
tional Conference on Harmonization (ICH), have published consensus guidance documents
that describe a battery of test assays for genotoxicity assessment to support regulatory
decision-making. These in vitro and in vivo assays measure different genotoxicity endpoints
such as DNA breaks, gene mutations, and chromosomal alterations [9, 10]. The most widely
used genotoxicity battery includes the bacterial Salmonella mutagenicity test (the Ames test);
in vitro mammalian cell assays, such as the Comet assay, the mouse lymphoma gene mutation
assay (MLA), and the micronucleus (MN) assay; and in vivo assays, including the in vivo MN
and Comet assays. Although designed for conventional chemicals and bulk materials, these
assays have commonly been adopted for measuring the genotoxicity of ENMs. In this chapter,
we summarize test results from the genotoxicity evaluation of ENMs, focusing on those using
standard genotoxicity assays, possible mechanisms underlying the genotoxicity of ENMs, the
suitability of current genotoxicity assays for the genotoxicity evaluation of ENMs, and the use
of genotoxicity data for the risk assessment of ENMs.
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2. Genotoxicity of ENMs

In comparison to the fast-growing ENM market, studies evaluating ENM genotoxicity are still
limited [11]. A literature search performed by Magdolenova et al. [12] found that from 2000 to
2012 only 2.6% of articles on ENM toxicity describe genotoxicity studies. Although both
positive and negative results have been reported on the genotoxicity of ENMs in various cell
and animal test models, the existing data indicate that many ENMs are genotoxic [2, 11, 13,
14]. In order to provide a holistic picture of the current situation on genotoxicity testing of
ENMs, we performed a literature search in PubMed using “nanoparticles” or “nanomaterial”
and “Comet,” “micronuclei,” “Ames,” “Hprt,” or “mouse lymphoma assay” as key words. A
total of 274 publications were identified; the distribution of year of publication is shown in
Figure 1. There was a clear increase in the number of publications/year for both the in vitro and
in vivo ENM genotoxicity studies, up to 2012, where a plateau may have been reached. Among
the different assays used for evaluation of ENM genotoxicity in the publications, the Comet
assay was the most frequently employed assay, followed by the MN assay, both in vitro (Figure
2A) and in vivo (Figure 2B). This observation is consistent with a previous report that sum‐
marized 112 ENM genotoxicity studies (94 in vitro, 22 in vivo) from years 2000 to 2012 [12].

Figure 1. Literature review results of the publications per year on genotoxicity of engineered nanomaterials. Red bars
indicate in vitro studies and blue bars indicate in vivo studies.

2.1. In vitro studies

A total of 215 publications were found that investigated the in vitro genotoxicity of ENMs. The
Ames test is usually the initial step used for quickly screening potential mutagens and for
identifying potential human carcinogens. This assay detects base substitution and frameshift
mutations depending on the strain of the bacteria Salmonella typhimurium used [15]. Although
this assay has been widely used for testing bulk materials, the Ames test was used less
frequently for ENMs as compared to other genotoxicity assays [16]. Based on our literature
search, among the most tested ENMs are nanoparticles (NPs) of silver (Ag), titanium dioxide
(TiO2), aluminium oxide (Al2O3), Zinc oxide, iron oxide, iron-platinum (FePt), single-wall
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carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and fullerenes
[17-32]. Most of the Ames tests were negative both in the presence and the absence of metabolic
activation. As shown in Table 1, only 27% of ENMs were positive in one or more tester strains
in the Ames test. Most of the positive responses were weak or resulted from water-soluble NPs
[16, 20, 24, 28, 30, 31]. Among possible explanations for the negative responses are the inability
of the ENMs to penetrate the bacterial cell wall and the insensitivity of most of the tester strains
to oxidative DNA damage, the primary mechanism for ENM genotoxicity [17]. In addition,
the antimicrobial properties of some ENMs, such as Ag NPs, may limit the test concentrations
due to cytotoxicity, thus reducing the sensitivity of the test [17]. In a study using 5 tester strains
(TA98, TA100, TA1535, TA1537, and TA102) of Salmonella typhimurium, due to antimicrobial
properties, the highest testable concentrations of 5 nm Ag NPs were 2-40 µg/plate, which is
much lower than the limit of 5,000 µg/plate that is recommended for nontoxic test articles [17].

The Comet assay, also known as the single-cell gel electrophoresis assay, is a relatively simple
and sensitive method for measuring DNA damage in individual eukaryotic cells [33]. Our
literature review shows that 276 ENMs have been evaluated in 168 reports using the in vitro
Comet assay. Thus, it is the most frequently used assay for ENM genotoxicity assessment
(Table 1). The materials most tested with the Comet assay were TiO2-, iron-, Ag-, and carbon-
based ENMs. The majority of these tested ENMs (214 out of 276, 78%) induced DNA damage
in various cell types in the standard or modified Comet assays. The high sensitivity of the assay
may be ascribed to its ability to detect single- and double-strand breaks, cross-links, base
damage, oxidative stress, DNA methylation, and apoptotic nuclei [33-35]. Some ENMs
producing oxidative DNA damage were negative in the standard alkaline Comet assay, but
were positive in the enzyme-modified Comet assay in which lesion-specific endonucleases
were added to recognize particular oxidized nucleotides and create oxidized DNA-damage-
specific breaks. The most commonly used modifying enzymes in these assays were formami‐
dopyrimidine DNA glycosylase (FPG), followed by endonuclease III (EndoIII) from Escherichia

Figure 2. The trend in genotoxicity endpoint studies on engineered nanomaterials. (A) in vitro genotoxicity assays; (B)
in vivo genotoxicity assays.
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coli and human-derived oxoguanine DNA glycosylase (hOGG1) [36]. Oxidative DNA lesions
in FPG-sensitive sites were found in Fe3O4 NP-treated A549 type II lung epithelial cells [37],
and in SWCNT- and C60-treated FE1-MutaTM Mouse lung epithelial cells [38].

Assays Publicationsb ENMsc Positive outcomesd Negative outcomesd

Comet 168 276 214 (78%) 62 (22%)

MN 83 126 75 (60%) 51 (40%)

Ames 30 55 15 (27%) 40 (73%)

CA 25 36 16 (44%) 20 (56%)

Hprt 6 8 5 (63%) 3 (37%)

SCE 6 9 6 (67%) 3 (33%)

MLA 2 2 2 (100%) 0 (0%)

aData represent a literature review on the in vitro genotoxicity of engineered nanomaterials. Literature was obtained from
the PubMed online database using “nanomaterial”, “comet”, “micronuclei”, “ames”, “hprt”, or “mouse lymphoma assay”
as key words. bThe number of papers published using each assay. cThe number of various ENMs tested in current literature
citations. dThe number of positive or negative outcomes for genotoxicity testing on ENMs. The number in parentheses
indicates the percentage of positive or negative outcomes for each assay. CA, chromosome aberration; Hprt, hypoxanthine
phosphorybosyl transferase assay; MLA, the mouse lymphoma assay; MN, the micronucleus assay; SCE, sister chromatid
exchange.

Table 1. Summary of in vitro genotoxicity outcomes of engineered nanomaterials (ENMs)a

The MN assay detects chromosome fragments and whole chromosomes in the cytoplasm
of  interphase  cells  resulting  from the  clastogenic  and  aneugenic  activities  of  mutagens,
indicating chemical-induced chromosome damage (OECD TG487) [39]. The MN assay was
the second most used assay for the evaluation of ENM genotoxicity (Table 1) [12, 16, 40].
Two versions of the MN assay, with or without pretreatment with cytochalasin B (cytoB)
which blocks cytokinesis and results in binucleated cells, were used for NM studies [2, 39].
Approximately 60% of the tested ENMs produced concentration-dependent micronucleus
formation  or  a  positive  response  at  high  concentrations,  including  TiO2  [8,  41],  silicon
dioxide (SiO2) [42], cerium oxide (CeO2) [43], cobalt-chromium (Co-Cr) [44, 45], MWCNTs
[46, 47], and Ag NPs [17]. Kim et al. [29] demonstrated that in the absence of S9 metabol‐
ic activation, 10 µg/ml Ag NPs with an average size of 59 nm induced significantly greater
MN formation using the protocol without cytoB than that with cytoB. It was demonstrat‐
ed that cytoB could inhibit  the cellular uptake of particulate materials and may contrib‐
ute to negative results in MN assays [40].

The chromosome aberration (CA) test identifies agents that cause structural chromosome
alterations in cultured mammalian cells (OECD TG473) [48]. This labor-intensive assay is
routinely used for screening possible mammalian mutagens and carcinogens [14]. The CA
assay was the third most commonly used mammalian cell assay for ENM genotoxicity
investigation in our literature search (Table 1). Thirty-six ENMs including MWCNTs, C60

Progress in Genotoxicity Evaluation of Engineered Nanomaterials
http://dx.doi.org/10.5772/61013

145



fullerenes, Ag, and TiO2 NPs have been evaluated using the CA test in 25 publications. Less
than half (44%) of the tested ENMs were positive. Impressively, Ag NPs induced significant
chromosomal aberrations at concentrations as low as 0.1 µg/ml in human mesenchymal stem
cells [49] and at a concentration of 0.1 µg/cm2 in a nonmammalian fish cell line [50].

Another assay used for detecting chromosome damage is the sister chromatid exchange (SCE)
assay. This assay detects reciprocal exchanges of DNA between two sister chromatids of a
duplicating chromosome [8]. Only 9 ENMs have been investigated using the SCE assay. The
results revealed a surprisingly high positive response rate (67%) for the tested ENMs. SiO2 NPs
(at different sizes of 6, 20, 50 nm), which is considered relatively less genotoxic than other metal
ENMs, significantly increased the SCE frequency in peripheral blood lymphocytes while they
were negative in the MN assay [51].

The MLA and the hypoxanthine phosphorybosyl transferase (Hprt) assay, using thymidine
kinase (Tk) and Hprt genes as target genes, respectively, are the most commonly used assays
for the determination of chemical-induced gene mutations [52]. Both assays are included in
the guidelines for mammalian gene mutation tests (OECD 476) [53]. There were only two MLA
and six Hprt studies found in the literature. In the MLA studies, 5 nm uncoated Ag NPs
produced dose-dependent cytotoxicity and mutagenicity at doses of 3-6 µg/ml [34], and
tungsten carbide-cobalt (WC-Co) NPs with a diameter of 20-160 nm induced significant
increases in cytotoxicity and mutagenicity following both 4 h and 24 h treatments [54]. Six Hprt
studies investigated the mutagenic effect of four ENMs, TiO2, SiO2, ultrafine quartz, and
SWCNTs, with positive results for Hprt gene mutation found for TiO2, SiO2, and ultrafine
quartz [41, 42, 55-58]. Manshian et al. [58] investigated the genotoxicity of three sizes of
SWCNTs, with a diameter of 1-2 nm and a length of 400-800 nm, 1-3 µm, or 5-30 µm, using
MCL-5 human B-lymphoblastoid cells. Only the 1-3 µm SWCNTs significantly increased Hprt
point mutations at concentrations ≥25 µg/ml. A chronic exposure of Chinese hamster ovary
(CHO-K1) cells with TiO2 NPs at up to 40 µg/ml for 60 days produced negative results [57].

2.2. In vivo studies

In vivo responses reflect the systematic biodistribution of ENMs and evaluate the cytotoxicity/
genotoxicity to different tissues and organs. Our literature search identified 73 publications
on the in vivo genotoxicity of ENMs, with the number of publications increasing with time
(Figure 1). As shown in Table 2, the Comet assay remains the most frequently used in vivo
assay for investigating ENM genotoxicity, followed by the in vivo MN assay and then the CA
assay. Both the in vivo MN and Comet assays are recommended by OECD (OECD TG 474 and
489) and ICH for regulatory decision-making [10, 59, 60]. Some ENMs, such as MWCNTs [47],
carbon black [61], TiO2 [8, 56, 62], CdSe quantum dots [63], and Ag NPs [64, 65], caused both
DNA strand breaks and chromosomal damage in experimental animals (mainly mice and rats).
However, in contrast to the high proportion of positive outcomes in in vitro studies, about half
of the in vivo MN and Comet assay studies were negative for the tested ENMs (Table 2),
probably due to the higher DNA repair capacity inherent to in vivo models as compared to in
vitro models. It is worth noting that some of the positive ENMs were genotoxic only at the
highest doses tested or in enzymatically modified Comet assays. In the liver of male B6C3F1
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mice intravenously administered 15-100 nm PVP or 10-80 nm silicon-coated Ag NPs at a dose
of 25 mg/kg/day for 3 consecutive days, no increase in DNA breaks was observed with the
standard Comet assay. However, significant induction of oxidative DNA damage by the Ag
NP treatment was detected with the EndoIII and hOOG1-modified Comet assay in the B6C3F1
mouse livers [65]. Interestingly, in the 8 publications using the in vivo CA assay, 75% of test
articles were positive, which was much higher than the positive responses (44%) detected with
in vitro CA assay testing of ENMs. This finding may be ascribed to the limited numbers of
ENMs tested in the in vivo studies. The ENMs that did increase CA frequencies were CeO2 [66,
67], TiO2 [68], Ag [69], and MnO2 NPs [70, 71]. Similar to the in vitro genotoxicity studies,
inconsistent genotoxic outcomes were reported with in vivo models as well; however, there
remains convincing evidence that ENMs can be genotoxic in vivo, depending on particle size,
surface coating, exposure route, and exposure duration [72].

Assays Publicationsb ENMsc Positive outcomesd Negative outcomesd

Comet 60 87 49 (56%) 38 (44%)

MN 38 60 28 (47%) 32 (53%)

CA 8 8 6 (75%) 2 (25%)

a-d See Table 1 for notes.

Table 2. Summary of in vivo genotoxicity outcomes of engineered nanomaterials (ENMs)a

3. Possible mechanisms underlying genotoxicity of ENMs

ENMs are engineered to possess unique physicochemical properties that may have the
potential to induce genotoxicity through different mechanisms [14]. Although these genotoxic
mechanisms are still uncertain at present, studies indicate that ENMs can induce genotoxicity
both directly and indirectly. Among these mechanisms, ENM-induced genotoxicity is most
often attributed to oxidative stress.

3.1. Oxidative stress

A large number of studies suggest that oxidative stress plays a key role in ENM-induced
genotoxicity [73, 74]. Induction of oxidative stress from ENM exposures could be the result of
increased reactive oxygen species (ROS) or depletion of antioxidant defense molecules because
of the high surface area of ENMs and their interaction with cells and cellular components [14,
73]. Increased ROS can modify DNA bases to induce oxidative DNA adducts, DNA single-
and double-strand breaks, DNA cross-links, and DNA-protein cross-links [14, 75]. If ENM-
induced DNA damage is not repaired, these DNA modifications and lesions can potentially
cause mutations [76]. The correlation between oxidative stress and ENM-induced genotoxicity
has been well documented in a number of studies using the Comet assay, γ-H2AX assay, and
8-hydroxy-2’-deoxyguanosine (8-OH-dG) assay [77].
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To determine whether the mutagenicity of Ag NPs resulted from an oxidative stress mecha‐
nism [34], we conducted the standard Comet assay concurrent with the oxidative stress Comet
assay. In the oxidative stress Comet assay, addition of FPG, EndoIII and hOGG1 lesion-specific
endonucleases produces secondary DNA breaks by cutting at oxidative DNA adducts. While
the Ag NP treatment of the cells did not increase DNA breaks in the standard assay, the FPG,
EndoIII and hOGG1 modified Comet assays did detect oxidative DNA damages (Figure 3).
These results suggest that Ag NP exposures induced oxidized nucleotides that could result in
mutations.

Figure 3. Silver nanoparticles induce DNA damage via oxidative stress. Mouse lymphoma cells were treated with 5nm
Ag NPs for 4 hours. DNA damage was measured by the Comet assay. In the standard Comet assay, DNA breaks in‐
creased insignificantly with the increasing concentrations. In the oxidative stress Comet assay, however, addition of
the different lesion-specific endonucleases (hOGG1, EndoIII, and Fpg) that cut different oxidative DNA adducts result‐
ed in clear concentrations-dependent increases in DNA breaks. * indicates p < 0.01 when compared with the control
group.

3.2. Direct interaction with DNA and nuclear protein

Due to their small size and charged surfaces, ENMs may be internalized through cellular
membranes, reach the nucleus by diffusion across the nuclear membrane or by penetrating
during mitosis. Thus, they can directly interact with DNA. During interphase, ENMs can
chemically bind to DNA molecules and influence DNA replication that could result in DNA
damage. It has been shown that NPs can dissociate double-stranded DNA [78] and cause
clastogenic effects (breaks in chromosomes) or aneugenic effects (producing abnormal number
of chromosomes) [12].
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ENMs also can directly bind to DNA-related proteins leading to intranuclear protein aggre‐
gates that inhibit DNA replication, transcription, cell proliferation, and DNA repair [12, 14,
79]. It has been reported that SiO2 NPs can enter the cell nucleus and cause aberrant clusters
of topoisomerase I in the nucleoplasm [79]. In silico studies have identified a binding site for
fullerene ENMs, on human DNA topoisomerase II alpha [80], and potential interactions
between ENMs and proteins involved in the DNA mismatch repair pathway [81].

3.3. Ions released from ENM surfaces

Toxic metal ions can easily release from ENMs into their surrounding environment due to their
relatively large surface area. These ions may exert genotoxic effects by the production of
intracellular ROS [12], by binding to cellular macromolecules, or by activating mitogenic
signaling pathways and inducing the expression of cellular proto-oncogenes [82]. For example,
Co NPs can release Co2+ ions into the culture media [83], and Co2+ is a topoisomerase II poison
that stimulates DNA cleavage in human MCF-7 cells [84] and induces micronuclei in the MN
assay [85].

3.4. Inflammation

Inflammation is an important protective defense against tissue injury and infection. However,
it can also induce genotoxicity in the form of DNA single- and double-strand breaks, chromo‐
some fragmentation, point mutations, and DNA repair deficiency [14, 86]. Silica NP exposures
induce genotoxic effects in male Wistar rats through an inflammatory reaction [87]. Many other
ENMs, such as TiO2, carbon black, magnetite iron, CeO2, SWCNTs, and MWCNTs, can
generate various degrees of inflammatory reactions, including increased expression of pro-
inflammatory cytokines and inflammation-related genes, and formation of microgranulomas
in treated animals [88, 89]. In addition, the association between ROS and inflammation has
been demonstrated, where generation of inflammation and activated inflammatory cells can
increase ROS production [90].

Chronic rat inhalation studies showed that TiO2 NPs caused bronchoalveolar adenomas and
cystic keratinizing squamous cell carcinomas, as well as alveolar/bronchiolar adenoma.
Generation of ROS and induction of inflammation by TiO2 NPs resulting in oxidative stress
and genotoxicity were considered important factors in the initiation and progression stages of
TiO2 NP carcinogenesis [8, 91].

4. Approaches to the risk assessment of ENM genotoxicity

4.1. Suitability of current genotoxicity assays for evaluation of ENMs

A complete genotoxicity evaluation of a test agent required by regulatory agencies generally
involves using a test battery that includes a bacterial gene mutation assay (e.g., the Ames test),
an in vitro cytogenetic assay in mammalian cells and/or the mouse lymphoma mutation assay,
and an in vivo cytogenetic assay (e.g., the in vivo rodent MN assay). However, these assays
were developed for the evaluation of conventional chemicals and bulk materials. Whether or
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not they are suitable for measuring ENM genotoxicity is still under investigation. ENM
genotoxicity modes of action are not very clear and not always predictable. Thus, it remains a
question as to whether the standard tests are appropriate and if they are sufficient.

Because bacterial mutation analysis is sometimes the only assay used for genotoxicity testing,
it is very important to assess the utility of the Ames test for evaluating ENM mutagenicity.
Most of the Ames test data for ENMs thus far reported are negative or only very weakly
positive due to the inability of many ENMs to penetrate through the bacterial cell wall and the
antimicrobial activity of some ENMs [16]. Our previous study indicated that TiO2 NPs are not
able to penetrate the cell wall of Salmonella tester strains [18]. Thus, there is a growing concern
as to whether the Ames test is appropriate for evaluating ENM genotoxicity [92]. Since the
Ames test is an important assay for measuring mutagenicity, if it is excluded from the
genotoxicity test battery for ENMs, it may be necessary to include a mammalian cell gene
mutation assay in the test battery [92].

Other standard genotoxicity assays used for evaluating NMs have shown inconsistent results.
The most sensitive method for measuring ENM genotoxicity is the Comet assay. This assay
produces the greatest number of positive results for ENMs both in vitro and in vivo (Table 1
and 2). The MN assay is another commonly used assay for detecting chromosome damage
caused by ENMs. The MN data reveal that the in vitro assay is more sensitive than the in vivo
assay. Mammalian gene mutation assays (Hprt, MLA, and transgenic mutation assays) and the
CA assay are less frequently used than the Comet and MN assays. These genotoxicity assays
are generally accepted for evaluation of ENMs with certain modifications. CytoB interferes
with the uptake of ENMs and thus the binucleated MN assay should be used with caution.
Also, the potential lack of uptake of agglomerated NMs by cells, and possible interference of
NMs with endpoint measurement when measuring fluorescence should be considered, since
these factors create a false positive or false negative result [92].

4.2. Regulatory approaches

For more than 40 years, the OECD has played an important regulatory role in ensuring the
safe use of chemicals. In response to the fast-growing commercial applications for ENMs, the
OECD established a project entitled “Manufactured Nanomaterials and Test Guidelines” in
2006 to ensure that the risk assessment of ENMs would be conducted in a suitable, science-
based and internationally harmonized manner. After six years of work, the OECD concluded
that it was unnecessary to develop completely new testing approaches for NMs and that most
current test guidelines for assessment of traditional chemicals were in general applicable for
ENMs. However, it was indicated that in some cases, modifications were needed to adapt
current test guidelines for ENM specifications [93]. The OECD recently published a report on
the genotoxicity testing of ENMs, in which some consensus statements were addressed [94].
Major recommendations were that the Ames test is not recommended for investigating the
genotoxicity of ENMs; ENM characterization should be undertaken in the cell culture medium
both at the beginning and after the treatment; the extent of cellular uptake is a critical factor
to consider and cell lines that can take up ENMs are preferred for genotoxicity testing; cytoB
should be added only postexposure or using a delayed cotreatment protocol for the in vitro
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binucleated MN assay; pharmacokinetic investigations need to be conducted to determine if
the ENMs reach the target tissue for in vivo studies; and the route most applicable to human
exposure should be selected for ENM genotoxicity testing.

The U.S. Food and Drug Administration (FDA) has also made significant efforts to address the
regulatory issues surrounding ENM products. The FDA Nanotechnology Task Force report
addressed scientific and regulatory issues regarding to the safety and effectiveness of FDA-
regulated products containing NMs. Also, the FDA issued a draft document on the use of
nanotechnology in food for animals and three final guidance documents in 2014 related to
nanotechnology application in regulated products, including cosmetics and food substances
[95]. These documents assert that in vitro and in vivo mutagenicity/genotoxicity data are
considered as one of the important factors for the safety assessment of ENMs. These guidance
documents mainly focus on ENMs because materials manipulated on the nanoscale level may
have altered biocompatibility and/or toxicity [96]. For example, some tea polyphenols in their
bulk form have opposite effects on DNA damage in treated cells to those in their nano form [97].

4.3. Proposed tiered approaches for genotoxicity testing

Despite some discrepancies in the current literature, there is compelling evidence that some
ENMs are genotoxic and potentially carcinogenic in living systems. Thus, multidisciplinary
tiered toxicity testing approaches using different models and test methods are proposed for
risk assessment of various ENMs [11, 98]. These proposals emphasize that a thorough
characterization of the physicochemical properties of ENMs should be the first step in the
evaluation of their genotoxicity. Then an in silico study should follow to simulate quantitative
structure activity relationships between ENMs and their potential interaction with cellular
macromolecules such as DNA and protein [98]. If positive, in vitro studies should be performed
to assess the dose-response effects on cytotoxicity and genotoxicity of target cells, followed by
mechanistic studies and in vivo studies to validate in vitro results. Positive outcomes for
genotoxicity and mutagenicity may suggest a need for conducting further carcinogenicity and
reproductive toxicity tests [11]. The proposed tiered approaches remain to be validated in the
future.

5. Future perspectives

According to the current literature addressing ENM genotoxicity, a lack of physicochemical
characterization, especially characterizing the ENMs in the testing medium, remains the
biggest problem in most studies, and this may account for some of the conflicting test results.
Inconsistency in dose metrics and the test systems also are important factors affecting the
comparisons between studies [14]. Thus, the following should be taken into account for
improving the genotoxicity evaluation of ENMs.

1. Comprehensively detailed physicochemical characterization of ENMs should be per‐
formed before and during any genotoxicity study. Important properties that can influence
ENM-induced genotoxicity include size, coating, shape, chemical composition, crystal
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structure, purity, surface area, surface chemistry, surface charge, solubility, and agglom‐
eration. Measurements should include the stability of ENMs in the relevant test medium,
such as aggregation status and ion release from metallic ENMs.

2. A battery of standard genotoxicity assays covering a wide range of mechanisms specifi‐
cally tailored for ENMs is needed, since current studies generally use genotoxicity test
batteries adapted for traditional chemicals. A mammalian mutation assay such as the
MLA or an Hprt assay should be used in the battery given that the Ames test is not
appropriate for testing the mutagenicity of ENMs. Integration of cytotoxicity assessment
into genotoxicity evaluations will aid in avoiding false-positive results, especially in
situations where genotoxicity can only be observed at excessively high concentrations
with high cytotoxicity.

3. Appropriate controls, specifically ENM-related positive controls, need to be included in
ENM genotoxicity tests. NMs may be different from their bulk materials in terms of
uptake, absorption, transport into cells, and transport across barriers (e.g., blood-brain
barrier) or have altered bioavailability or biological half-life [99]. Positive controls from
bulk materials may or may not have the same tissue distributions as the corresponding
nanoscale materials. If a soluble bulk material used as a positive control for a genotoxicity
assay can reach a specific tissue for testing while insoluble ENMs cannot get into the target
tissue, a false negative result could occur. Thus, ENM-related positive controls will benefit
the genotoxicity evaluation of ENMs, and eventually ENM hazard identification and risk
assessment.

4. Long-term impacts of ENM exposures need to be considered. To date, only a few studies
are available describing the chronic and subchronic toxicity of ENMs in vivo or in vitro.
Although no cytotoxicity or genotoxicity were observed for a chronic exposure of TiO2 in
Chinese hamster ovary cells [57], carbon-based ENMs could be visualized in the lung of
mice following a 1-year pulmonary exposure, and SWCNT exposures increased the rate
of K-ras mutations, MN formation, and nuclear protrusions in pulmonary epithelial cells
[100].

5. Adopting high-throughput approaches, i.e., CometChip technology, for detection of DNA
damage will facilitate screening a large number of ENMs. In addition, other endpoints
and biomarkers may need to be considered for ENM genotoxicity assessment since a
variety of molecular pathways, autophagy, and epigenetic alterations have been reported
to be involved in ENM-induced genotoxic effects [101-105].
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