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Abstract

The recent huge increase of the interest in the implementation of quantum
information processing (QIP) focused an attention on the semiconductor quantum
dots (QDs) as nano-systems with controllable quantum states both in charge and
spin degrees of freedom. This creates an opportunity for discussing and modeling
of QD-based qubits and quantum-logic gates for prospective quantum computer.
Despite of many efforts in this respect the progress is, however, disappointing
and the barrier of so-called diVincenzo criteria required to be fulfilled for the QIP
technology is not broken and even not approached in any realistic proposal of
using QDs for qubits and quantum gates. The reason of this situation is linked
with unavoidable restrictions imposed on the coherence and the coherent control
of quantum states in QDs, which precludes scalable implementation of qubits and
quantum gates based on QDs. The decoherence of charge and of spin degrees of
freedom in QDs and QD-systems locates inconveniently straight in the middle of the
required six-orders of magnitude diVincenzo window for time scale of the control
in comparison to the decoherence rate. This leads to the so-called ’three-orders
time-limit’ for QIP implementations in QDs. Some advantages of spin degrees
of freedom in QDs can be noticed, however. Even though the time scale of the
decoherence of spin in of particular practical importance magnetic QDs still is
located in the center of six-orders diVincenzo window, the amplitude of the phase
decoherence of spin might be frozen on a small level in proximity of the zero
temperature. Short critical overview of the dephasing restrictions imposed on the
QD technology is the aim of this chapter.

Keywords: quantum dots, quantum information processing (QIP), dephasing

1. Introduction

The notion of a quantum dot [1–3] comprises various nanometre-size semiconductor
structures, manufactured by means of different technologies and resulting in spacial
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limitations on the carrier dynamics (electrons and holes), as well as excitations of
electron-hole pairs (excitons). The Coulomb energy scales withe QD size d as 1/d (and is
of the order of meV for QDs), while kinetic energy scales as 1/d2, which leads to the shell
properties of dots, distinct in comparison to atoms (more complicated Hund-type rules for
QDs), since both energies remain within mutual proportions of d, which favours Coulomb
energy for dots in contrast to atoms [1] at the scale of meV orders. The nanometre-scale
limitations on quantum dynamics result in kinetic energy quantization,

∆E ≥
(∆p)2

2m∗
≃

h̄2

2m∗d2
≃

{

10 meV, d ∼ 10 nm,
1 eV, d ∼ 0.1 nm.

(1)

In the case of QDs, quantization energy locates thus within a range accessible for control by
means of external fields (electric and magnetic), in contrast to atoms (for the latter, quantum
state control by means of external fields requires such values that are beyond the reach of
present technologies). This advantage of QDs—which are relatively easy to create due to a
variety of existing technologies in addition to their parameters’ flexibility and the possibility
of immersing them in various media or even creating or modifying them by means of external
fields—makes them very promising objects of new nanotechnologies and spintronic practical
projects.

Various semiconductor materials may be used to create QDs. Note that insulator or
metallic nanoparticles are also manufactured (however, collective electron liquids in metallic
nanoparticles manifest distinct physical properties in comparison with semiconductor QDs,
which explains why metallic nanostructures are not called QDs). For opto-electronic use,
semiconductor dots seem best-suited due to their localization within other nanostructures
(e.g., in quantum wells), with well-established technologies for control over such systems.
Semiconductor QDs may be manufactured by means of etching technologies after a
high-resolution photolithographic process (with the use of an ion or electron beam) has
been applied (ordinary optic lithography with a resolution of up to 200-300 nm is not
sufficient). Other technologies used here include among others the Stransky-Krastanov
dot self-assembling method consisting in the application of epitaxy layers by MBE or
MOCVD [MBE, Molecular Beam Epitaxy; MOCVD, Metal Organic Chemical Vapour Deposition].
Various lattice constants in successive epitaxy layers result in the spontaneous creation of
nanocrystals on the ultra-thin so-called ’wetting layer’. Electrical focusing in a quantum well
[1, 4, 5] consists of yet another promising technique which, despite being at an early stage
(due to a lack of sufficiently precise electrodes), offers the highest dot parameter flexibility
and allows for dots to switch on/off within the working time periods of devices based on
them [1, 4–6].

The possibility of control over the quantum states of carriers in QDs and their coherent
(deterministic, controllable) time evolution are vital for nanotechnological and spintronic
applications (especially where this concerns so-called ’single-electron’ or ’single-photon’
devices) as well as for the quantum processing of information. The absence of decoherence
or its significant reduction up to the lowest possible level, at least within the time periods
of control realization, is essential for all these applications. However, decoherence is
unavoidable due to irreducible dot-environment interactions (there is no means of a dot’s
total isolation). In the case of nanostructures, QDs offer a new class of physical phenomena
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within the decoherence and relaxation range, entirely distinct from analogous processes in
bulk materials or in atomic physics. This is due to the characteristic nanoscale-confinement
energy, reaching values close to the typical energy parameters of crystal collective excitations
(the energy characteristics of band acoustics and optical phonons). This convergence of
energy scales results in resonance effects, which is different from what is observed in atomic
physics where the scale of the atom-confinement energy is three orders of magnitude higher
than the energy of crystal collective excitation, resulting in the weak influence of phonons
on atomic states (included as a very small perturbation only). Specific decoherence effects in
QDs result from a strong (resonance) coupling effect between the carriers trapped in them
and the sea of various types of phonons (as well as with other collective excitations, or with
local degrees of freedom, e.g., related to admixtures). This is why the frequently-used notion
of an ’artificial atom’ in reference to QDs is, to some extent, misleading.

The same reasons are responsible for the fact that QD modeling which does not account
for environment-induced collective degrees of freedom may give rise to false conclusions
since significant hybridization-induced (decoherence) changes of energy levels can reach
up to 10%. This reduces the modeling fidelity if the environmental effects are neglected.
Therefore, the current physics of nanostructures should embrace the recognition of the
complex decoherence and relaxation effects observed in QDs for trapped carriers’ spin and
charge, which are essentially different from what is observed in bulk materials and atoms.

2. Limitations on the quantum processing of information

Unavoidable decoherence—uncontrolled quantum information leakage into the surrounding
environment due to the system’s interaction with the environment—perturbs the ideal
quantum procedures which ensure the running of quantum schemes [7–12]. If, however,
decoherence is kept below a certain threshold, quantum error corrections can be made by
applying so-called ’quantum error correction schemes’ [13], which enables the realization
of any quantum procedures of a quantum computer or any other deterministic quantum
project.

In classical information processing, quantum error correction consists in multiplying classical
information and verifying by comparison the multiplied (redundant) classical registers with
arbitrary frequency, errors which appear from time to time are identified and corrected
immediately. In the quantum case, the multiplication of quantum information is impossible
(No-Cloning theorem) and quantum error correction is based on a different scheme:

• Seeking more decoherence-resistant areas of the Hilbert space (multi-qubit states which,
in a pair of qubits, record symmetrically both "true" and "false" are decoherence-resistant,
e.g., singlet-type qubit states; information (or quantum states) symmetrization requires,
however, the multiplication of quantum registers, which makes decoherence rise
exponentially).

• Attempting the replacement of an information carrier for a more decoherence-resistant
one (e.g., temporarily, a state can be teleported onto a more resistant carrier).

In order to satisfy quantum error correction requirements, DiVincenzo formulated a set
of conditions [7, 14–16] which allow for the possibility of the implementation of quantum
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error correction (the typical decoherence time must be at least of six orders longer than
the typical times of quantum procedures). None of the currently suggested solutions
for quantum computers have satisfied these time restrictions. This situation may follow
from the fact that the same interactions which allow for qubit control (logical operations)
are also responsible for decoherence. The stronger (energetically) the interaction is, the
faster the logical operations can be carried out. However, the same interaction couples
the system with the surrounding environment and produces strong decoherence effects.
In nanotechnological and optical projects involving quantum computers (multi-qubit), the
difference in the time-rate of quantum operations in relation to decoherence still do not
exceed three orders of magnitude.

However, it is expected that further intensive research in this area should result in:

• Finding another method of quantum error correction (despite great efforts, there is still
no relevant solution).

• Finding a combined solution with qubit conversion (between a fast, controlled carrier
and a decoherence-resistant one—unfortunately, qubit conversion is also inconveniently
long-lasting).

• Finding global, topological and thus decoherence-resistant carriers of quantum
information in them.

• Braid groups (and non-Abelian anyons)—herein, the durations of logical operations
are expected to be of 30 orders of magnitude greater than those of decoherence
processes [17] (however, this is still unclear and it is doubtful if it is experimentally
viable).

• It is hoped that superconductive states may satisfy the DiVincenzo conditions as they
have non-local properties to a significant extent.

DiVincenzo criteria, which render a scalable quantum computer project feasible

1 a properly defined qubit—two quantum states separated from the remaining states of the
system (by relatively wide energy gaps or by forbidden transitions), so that quantum
information entered therein does not leak out

2 the possibility of information recording on the defined qubit—i.e., the possibility of
generating any superposition of two qubit states by means of external macroscopically
controlled fields (e.g., by Rabi’s oscillations within a realistic range of fields)

3 designing and implementing a universal two-qubit operation, which may enable the
performance of any logical quantum operation (a CNOT gate, or any other one, may work as
such a universal gate provided there exists an effective means of switching qubit interactions
on and off, i.e., the entanglement of two qubits can be controlled

4 ensuring that the time-rate of the performance of logical operations must be at least six order
faster than the decoherence time-rate

5 ensuring that output information can be read

6 ensuring that the whole system can be reset

DiVincenzo conditions that enable quantum cryptography

1 defining a free information carrier—a mobile qubit (e.g., a photon)

2 enabling the maintaining of the quantum properties of mobile qubits at a constant level over
long distances

3 enabling the identification of a qubit state (measurement)
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In the case of quantum cryptography, equipment requirements [18] are more easily met in
respect to decoherence and this is why this quantum technology (public key distribution
via a quantum channel) has been used in practice in optical systems [fibre-optical ones over
distances of 100 km (up to 1000 km), and outdoors over distances of 2 km].

3. Quantum dots—the prospective technology for quantum gates

The idea of employing quantum evolution for information processing corresponds with
the feasibility of the deterministic control over a quantum system in order to execute a
previously designed quantum algorithm. However, such a deterministic evolution (also
called ’unitary’ or ’coherent’) requires a totally isolated quantum system. Unfortunately,
no quantum system can be totally isolated from the environment. Any quantum system is
susceptible to the environment’s influence. In consequence, unitary or coherent evolution
is perturbed, and quantum information undergoes uncontrollable and irreducible leakage
into the environment. Therefore, the feasibility of the construction of a scalable quantum
computer is seriously hindered due to decoherence phenomena. The better recognition
of decoherence processes in quantum systems may, however, enable the development of
new technologies transcending these limitations and facilitating the attainability of quantum
gates.

Quantum state decoherence progresses along two channels: relaxation, i.e., quantum state
annihilation; and dephasing, i.e., phase relations change within a quantum state description.
Relaxation (or ’amplitude decoherence’) is related to the decrease in time of the diagonal
elements of the quantum state density matrix, whereas dephasing (or ’phase decoherence’)
corresponds to the reduction of the off-diagonal elements of the density matrix. Both types
of decoherence are caused by interaction with the environment and they become more
significant the stronger the interaction is.

Solid-state technology (which is promising for new practical realizations of the quantum
processing of information using nanometre-scale semiconductor QDs) is burdened mostly
with phase decoherence processes. Both the charge (i.e., orbital) and the spin degrees
of freedom of quantum states in QDs undergo dephasing due to their environment
(however, it should be emphasized that the spin degrees of freedom seem to be more
decoherence-resistant than orbital degrees of freedom, since they are less susceptible to
direct crystal phonon-induced interaction; however, spin requires much longer periods of
time-control than orbital degrees of freedom due to weaker interaction with spin).

Below we present a decoherence analysis, in particular the phase decoherence of the charge
(orbital) degrees of freedom and degrees of freedom of spin of excitations localized in QDs,
dealing with the issues associated with limitations on the feasibility of QIP.

In the case of semiconductor QDs, decoherence is unavoidable due to strong dot-environment
interaction (there are no means for the perfect isolation of a dot). In the case of
nanostructures—QDs included—there appears to be a new class of physical phenomena
related to decoherence and relaxation, distinct from analogous processes in bulk materials
and atomic physics. This is due to characteristic meV-scale energy resulting due to nanoscale
confinement, reaching values close to the typical energy parameters of band phonons in the
surrounding medium. This coincidence of energy scales results in resonance effects, which
is different from what is observed in atomic physics. For atoms, the incommensurability of
the atom-confinement energy and phonon energy is of three orders of magnitude, resulting

On the ’Three-Orders Time-Limit’ for Phase Decoherence in Quantum Dots
http://dx.doi.org/10.5772/60685

51



in a weak phonon impact on atomic states. Specific decoherence effects in QDs result from
strong and resonant coupling between the carriers trapped in dots and the sea of various
types of collective excitations in the surrounding medium, which highly modifies the QD
states. Hybridization-induced changes of energy levels reach up to 10%. Therefore, the
decoherence and relaxation effects observed in QDs and for trapped carrier spin or charge
(which are essentially different from what is observed in bulk materials and atoms), seem to
be of central importance for any possible QD applications, including QIP.

4. Phase decoherence of orbital degrees of freedom in nanostructures

Orbital degrees of freedom pertain to charge-type excitations, such as electrons and holes
and charge-balanced electron-hole pairs—excitons. As charge carriers, these excitons interact
with the electric field of the electromagnetic wave and so they can be controlled by means
of quantum optics methods. Charge-type excitations can be localized in nanometre-scale
artificial structures manufactured within various semiconductor heterostructures, namely
in QDs. Excitons attract special interest as they can be precisely controlled by an
electromagnetic wave within the visible (or near infrared) light range corresponding to the
typical energy gap separating electron states from hole states in semiconductors (a typical
material is GaAs and QDs will be, e.g., self-assembled structures of GaAs/InAs type).
By accommodating the energy of (incident light) photons with the energy of the exciton,
an exciton state in the Rabi oscillation regime can be created in which the superposition
state of the charge qubit spanned on the states |1 > (no exciton in a QD) and |2 > (one
exciton in a QD) can be selected. The techniques of ultra-high-frequency laser impulses
(measured in femtoseconds) and the resulting application of a high intensity beam allowing
for high-frequency Rabi oscillations [19] has attracted a lot of interest in QIP research.
This interest has been centred on the fact that the lifetime of the excitons in the dots is
measured in nanoseconds (this may suggest a difference of six orders of magnitude between
the control time and the amplitude decoherence time, which is required by DiVincenzo’s
criteria [7, 13–16, 20]).

Nevertheless, in QDs the interaction between the excitons (electrons and holes) and phonons
of the surrounding crystal is unavoidable and must be accounted for in all considerations,
thus diametrically changing this ostensibly convenient situation. Phonons are quanta of
the crystal oscillations; acoustical phonons refer to the oscillations of the density type (all
the atoms in the unit cell oscillate in the same direction) and optical phonons are related
with polarization oscillations (the opposite-sign ions in the unit cell oscillate in the opposite
directions; polarization oscillations in such ionic crystals can be excited by means of light, and
thus they are called ’optical’ phonons). Both types of phonons can interact with charge-type
degrees of freedom in QDs. Phonons can be of transversal or longitudinal polarization, but
these are the longitudinal modes (LO and LA for optical and acoustic phonons, respectively)
that contribute most substantially to the interaction with the electrons/excitons [21].

In polar materials (e.g., GaAs, a weakly polar semiconductor), LO phonon interaction
prevails. The interaction of charges with LO phonons is characterized by means of the
dimensionless Fröhlich constant [21, 22]. The higher the constant value, the stronger that the
interaction is between the charges and the LO phonons, and for the semiconductor GaAs
three-dimensional (bulk) the constant averages out at around 0.06. For QD GaAs/InAs,
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experiments (infrared absorption in a magnetic field and the broadening of the satellite
luminescence peak connected to LO phonons, expressed quantitatively via the so-called
’Huang-Rhys factor’ [23]) show a double value of the constant, which suggests a substantial
increase of the interaction with LO phonons. This phenomenon has been explained [24] with
regard to a certain ambiguity [21] in the definition of LO phonon-electron interactions in
crystals. The interaction between an LO phonon and an electron leads to the polarization
of the crystal lattice by the moving electron. This polarization (i.e., an appropriate packet of
optical phonons) is dynamic and leads to a reverse interaction with the polarization-inducing
electron. It can be thought of as being composed of two components: an inertial one,
which lags behind the moving electron; and a non-inertial one, which accompanies the
moving electron. The latter component should be contained in the total crystal field which
defines the electron itself (the electron in the crystal is not a free particle and includes, by its
definition, the periodic crystal field—thus it can be characterized by the effective mass and
quasi-momentum instead of momentum). The necessity of extracting only the inertial part
of the polarization from the total interaction of the electron and the LO phonons leads to the
above-mentioned ambiguity in the definition of the electron-LO phonon interaction. When
the electron is trapped in a QD, it moves with a quasi-classical velocity [25] which exceeds
the velocity of a free band electron. Thus, it better escapes from the dynamic polarization,
which results in an increase in the inertial part of polarization and the interaction between
the electron and LO phonons in QDs. The more localized the electron in a smaller QD, the
bigger the quasi-classical velocity of the electron and the bigger the increase in the interaction
with LO phonons. The quantitative analysis of the problem agrees well with the experimental
data. It should be emphasized, however, that the marked increase in the value of the Fröhlich
constant in QDs parallels the increase in the decoherence of electron/exciton states in dots
due to the increase in the interaction between the small system of the QD and the sea of LO
phonons in the crystal.

The energy scale corresponding to the nanometre localization of electrons (excitons) in QDs
ranges from a few to several tens of meV. The same energy scale also characterizes the
phonons in crystals, in which the energy of LA phonons ranges from 10 to 20 meV at the
edge of the Brillouin zone and the energy of LO phonons at the centre of the Brillouin zone (a
gap in the LO phonon spectrum at point Γ [21, 22]) reaches 30 meV. Thus, in the case of QDs
we deal with a strong coupling regime for an interaction of QD charge degrees of freedom
with phonons (of all types). The same energy scale of both types of excitations—local in
QDs and collective in the surrounding crystal—results in the strong mutual hybridization of
these excitations or in the dressing of electrons (holes) or excitons with phonons and in the
creation of composite particles (quasi-particles)—polarons [21, 22, 26–29].

The creation of polarons in QDs is a strongly decoherent process (much more than it is in
bulk materials). The dynamics of this process can be investigated by employing the Green
function technique [28]. By means of this technique, the correlation function of the exciton
(electron) in the QD can be expressed, which defines the overlap (the scalar product) of the
state of the carrier gradually dressed by phonons with the initial state of the bare exciton (or
electron) in the dot. Thus, it is possible to quantitatively characterize the leakage of quantum
information (fidelity loss) due to the entanglement (in a quantum sense) of the QD’s charge
with the deformation and polarization degrees of freedom of the whole crystal, which are
entirely beyond our control.
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The inertia of the crystal lattice is so disadvantageous that it makes it impossible to maintain
the coherence of orbital degrees of freedom dynamics (the unitary quantum evolution of the
excitations) within the time periods required by the DiVincenzo conditions. The typical times
of dressing charge-type excitations with phonons are located within the time-range of single
picoseconds, which is the middle of the six-orders time window between the amplitude
decoherence time for excitons in QDs and the time-scale of the quickest techniques for
their excitation. On both sides of this window, there appear windows of three-orders of
magnitude, which precludes the implementation of the quantum error-correction scheme
due to the non-fulfilment of the DiVincenzo conditions.

These strongly unfavourable estimations indicate that it may be impossible to scale a
quantum computer in a QD technology with only by light control unless more effective
quantum error-correction schemes would be proposed [7, 13, 14].

It should be emphasized that LA phonons are of greater importance to the process of dressing
the excitons with phonons (polaron decoherence effects), despite the fact that their interaction
with excitons is energetically much weaker (at least by one or two orders of magnitude)
than in the case of LO phonons. Strong dephasing due to LA phonons corresponds with a
wide linear dispersion of acoustic phonons, which in turn leads to a more immediate and
significant induced change in the wave functions of charge-type excitations in QDs than in
other phonon modes.

LA phonons-induced decoherence (phase decoherence or dephasing, corresponding to the
reduction of the off-diagonal elements of the density matrix [8–12]) is—and as can be shown
by means of a microscopic analysis—a relatively fast process and its time-scale is of the order
of the ratio of the dot diameter and the sound velocity (it is of the order of picoseconds).
Acoustic phonons are especially inconvenient as they are present in any crystal (as well as in
any amorphous material), and this is why the above-presented mechanism of decoherence
is unavoidable by its nature [strong dephasing also exists at a temperature of 0 K due to
phonon emission; at higher temperatures, the dephasing effects are enhanced due to phonon
absorption effects, which become more important with the increase in temperature].

Strong decoherence restrictions on the quantum evolution of the charge degrees of freedom in
QDs encouraged the researchers to concentrate their attention on the spin degrees of freedom
in nanostructures (spin does not interact directly with phonons) instead of pursuing the idea
of constructing an quantum computer based on QDs that is only controlled by light [7, 14, 28].

4.1. Phonon-induced dephasing of excitons localized in quantum dots

An exciton created in a QD by means of an non-adiabatic process (in the sub-picosecond
order) [4, 5, 30] is a bare particle (an electron-hole pair) which is gradually dressed with
phonons until it becomes a polaron. The time within which the polaron is created depends
upon the lattice inertia. It is relatively long and its accurate evaluation is an important task.
The process of the hybridization of a QD-localized exciton with the collective excitations
of the crystal lattice surrounding the QD is, in fact, a time-dependent evolution of a
non-stationary state, which at the initial time (the moment of the excitation’s creation) is
identical with the state of the bare exciton. The bare exciton is not the stationary state
of the whole system, the QD exciton and the sea of phonons in the surrounding crystal
interacting with it (a polaron represents a stationary state of such a complex system). The
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non-stationary initial state (the bare exciton) [the electric field of the e-m wave interacts with
the charge and, in consequence, excites a bare electron from the valence band into the QD;
the resulting hole is also captured by the QD—a bare QD exciton is thus created] undergoes
further non-stationary evolution. In the non-stationary state, the energy is not determined;
however, the mean energy is shared over time between the subsystems, the QD and the
phonon sea. The mean energy of a bare QD exciton is higher in comparison with the polaron
energy (whose energy is lower and therefore the polaron is created by means of interaction
with phonons due to energy minimization). The excess energy of the lattice deformation (for
acoustical phonons) together with the polarization energy (for optical phonons) is carried
outside the QD by the LA and LO phonons, respectively (by their wave packets). A QD
polaron is created—a hybridized state of an exciton dressed with an LA and LO phonon
cloud [actually, the name of the polaron refers to electrons dressed with LO phonons [22]—a
process dominating in strongly polar materials; here, the name refers generally to an electron
or exciton dressed with all types of phonons]. The time-scale of QD polaron creation is of
the same order as the time that a phonon-wave packet needs to leave the QD area. It should
be emphasized that this process is not to be interpreted in terms of Fermi’s golden rule [in
such an approach, quantum phase transitions resulting from a time-dependent perturbation
refer to transitions between stationary states, which is not the case here] [25]. The process
of polaron creation is a non-stationary state evolution, in which the elementary processes of
phonon absorption or emission contribute in the virtual sense (without energy conservation).
Note that the polaron energy is shifted with respect to the bare QD exciton energy by a few
meV [28], while the LO phonons energy has a much greater gap, h̄Ω ≃ 36, 4meV (in GaAs).
The kinetics of polaron creation correspond with the coherent evolution of an entangled state
of two interacting systems, namely a QD exciton and the sea of phonons (of various types),
and this state in non-separable [28].

The exciton-phonon system is represented by the following Hamiltonian:

H = ∑n Ena+n an + ∑q,s h̄ωs(q)c+q,scq,s

+ 1√
N

∑q,n1,n2,s Fs(n1, n2, q)a+n1
an2

(

cq,s + c+−q,s

)

,
(2)

where the LO interaction (s = o) and the LA interaction (s = a) are represented by the
following functions:

Fo(n1, n2, q) = −
e

q

√

2πh̄Ω

vǫ̃

∫

Φ∗
n1
(Re, Rh)

×
(

eiq·Re − eiq·Rh

)

Φn2 (Re, Rh)d
3Red3Rh

(3)

and:

Fa(n1, n2, q) = −

√

h̄q

2MCa

∫

Φ∗
n1
(Re, Rh)

×
(

σeeiq·Re − σheiq·Rh

)

Φn2 (Re, Rh)d
3Red3Rh.

(4)
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Figure 1. The vertices representing the exciton-phonon interaction; the dotted lines—phonons; the continuous
lines—excitons.

Figure 2. The exciton mass operator (the thick lines represent the full Green functions; the effective vertex of the
exciton-phonon interaction is marked [the shaded vertex]).

Here, c
(+)
q,s denote annihilation (creation) boson operators for LO (s = o) and LA (s = a)

phonons with quasi-momentum q; the phonon frequency ωo(q) ≡ Ωq ≃ Ω − βq2 (Ω
represents an energy gap for LO phonons at Γ point) and ωa(q) = Caq, Ca is the sound
velocity (for LA phonons); M represents the mass of ions in the unit cell; σe,h is the
deformation potential constant of an electron and hole, respectively; v is the volume of the
unit cell; N is the number of cell in the crystal; ǫ̃ = (1/ǫ∞ − 1/ǫ0)

−1 is the effective dielectric
constant; Re, Rh represent the coordinates of an electron and hole; Φn(Re, Rh) denotes the

QD exciton (electron) wave function and a
(+)
n is the exciton or electron annihilation (creation)

operator in n-th state (of boson type for excitons and of fermion type for electrons). The
interaction between a charge and longitudinal phonon modes is considerably stronger than
with transversal modes, which is why only the first ones are further considered [21, 22].
The interaction between an exciton and phonons from both branches (LO and LA) has
the simplest linear form with respect to the phonon operators (the third element in the
Hamiltonian). It can be represented by means of graphs, as in Fig. 1.

Vertices of this type (as in Fig. 1) result in the mass operators of Green functions, both for
the exciton (electron) and the phonon (note that without the linear term with respect to the
interaction due to the specific form of the vertices); for the exciton, this is illustrated by the
graphs in Fig. 2.

The graphs in Fig. 2 correspond to the complete expressions for the mass operator (thick
lines represent the full Green functions; the effective vertex of the exciton-phonon interaction
is also marked [the shaded vertex]). It is an accurate form of the mass operator. Within
the first approximation, the effective vertex can be replaced with a bare one (it is an
approximation with controlled accuracy—the terms of a higher order than the quadratic

Quantum Dots - Theory and Applications56



with respect to the interaction are omitted [subsequent bare vertices enter the effective
vertex]. Given that the charge-phonon interaction is weak, this approximation leads to a
small error. The bare vertices of this interaction (the corresponding functions appearing in
the Hamiltonian) attain the form (which results from the mechanism of interaction between
the charge and LO phonons—by means of polarization, and with LA phonons—by means
of deformation) [21, 22] given by the (3, 4) formulae, with the integrals representing the
overlap integral of the localized exciton states (initial and final) with the phonon plane wave.
These integrals represent the bottleneck effect, typical for QDs [32, 33], resulting from the
absence of the translational invariance of a QD system and leading to the non-conservation
of the momentum (quasi-momentum). The overlap integral with the plane wave favours

the momentum q ≃ h̄
d , where d denotes a QD size. If the exciton is not localized—i.e., is

represented by a plane wave—this integral would yield the law of momentum conservation,
corresponding to the translational invariance of the system in that case. In the case of a
QD-localized exciton, this integral does not become Dirac’s delta but rather defines those
quasi-momenta q of phonons which were involved in the interaction. At the same time, the
law of conservation of energy holds true for each vertex (i.e., for the interaction process),
which results from the unperturbed uniformity of time in the case of QD-localized states.
Due to the above functions, the fact of the selection of the fixed values of quasi-momentum
for QD-localized exciton (electron) states is called ’the bottle neck effect’. The presence of
the above-mentioned integrals results in the elimination of all the phonon modes except for

those found within the range of q ≃ h̄
d (d a QD size, typically of the order of 10 nm); thus,

the range of the significant quasi-momentum of a phonon interacting with a QD charge is of
the order of 1-10% of the Brillouin zone close to its centre (as illustrated in Fig. 3).

The model (variational) ground state exciton wave function in a parabolic QD assumes the
following form (including Coulomb interaction e-h):

Φ0(re, rh) =
1

(π)3/2

1

LeLhLz
exp

[

−
r2

e⊥

2L2
e
−

r2
h⊥

2L2
h

−
z2

e + z2
h

L2
z

]

, (5)

where re,h⊥ denotes the positions of the exciton components (e and h) in the xy plane of
the QD. The numerically estimated parameters for a QD characterized by the values in Tab.
1 are Le = 6.6 nm, Lh = 5.1 nm and Lz = lz (which agrees sufficiently well with a more
accurate numerical calculation and diagonalization [28]). The noticeable difference between
the electron and the hole’s effective lateral dimensions results from the fact that the e-h
Coulomb interaction energy is comparable to the inter-level energy of the heavier holes,
while the energy of the lighter electrons is quantized with greater inter-level gaps.

The above form of the ground state QD exciton wave function yields the following phonon
coupling functions:

|Fo(0, 0, k)|2 ≃ πe2 h̄Ωk2

18vǫ̃
(L2

e − L2
h)

2e−αk2
= go

k2

k2
m

e−αk2
,

|Fa(0, 0, k)|2 ≃ h̄k
2MCa

(σe − σh)
2e−αk2

= ga
k

km
e−αk2

,
(6)
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Figure 3. Comparison of the interaction form-factors of the exciton-LO phonon (∼ k2e−ak2
) and the exciton-LA phonon

(∼ ke−ak2
) according to the (6) functions for various values of a.

where km = (6π
2/v)1/3 denotes the Debye wave vector (≃ 1.1 · 1010m−1), α = l2/2, l is

the QD size averaged over all directions (this is the averaged ground-state dimension of an
exciton), and the same for e and h (l is significantly smaller than the lateral dimensions

Le(h) but greater than the vertical one Lz). The exponential factor e−αk2
corresponds to

the above-mentioned bottleneck QD effect. These functions are illustrated by the lines
in Fig. 3. Both these functions (often called the ’form-factors’ of the exciton-phonon
interaction) assume non-zero values in the vicinity of point Γ and reach the maximum

for quasi-momentum p ≃ h̄
d (d ∼ l). What matters here is the fact that this behaviour

closely corresponds with the bottleneck effect, which replaces the momentum-conservation
condition for the system without translational invariance [32, 33].

The bottleneck effect (which seems to limit the importance of phonons in nanostructures)
led to an under-evaluation of the phonons’ role in QDs and of their input in the total
interaction in nanostructures [32]. This mistaken view often resulted in the underestimation
of phonon-induced phenomena in many physical processes in QDs. Despite the fact that the
coupling constants (and form-factors including the bottleneck effect) are rather low-valued,
the resonant coincidence (proximity) of the energy levels of the quantum states for carriers
localized in the QDs and bulk phonon energy characteristics results in a strong increase in the
non-perturbative effects of the mutual hybridization of both subsystems (excitons/electrons
and phonons), leading to significant polaron-type effects, both for LA and LO phonons. It is
a vital process in the case of QDs, for which such hybridization effects result in the change of
quantum states by as much as 10% and lead to significant effects regarding time-dependent
processes of amplitude decoherence (relaxation, i.e., a decrease in the diagonal elements
of the density matrix [27, 34, 35]), and phase decoherence (dephasing, i.e., a decrease in
the off-diagonal elements of the density matrix) [8–12]. From the list of parameters for the
GaAs/InAs system (Tab. 1), one can notice that the interaction between the exciton and the
LO phonons is significantly bigger (by one order of magnitude) than with LA phonons (cf.
the values of the parameters g in formulae (6)).

In order to give the description of fidelity loss [8, 13], we will discuss the exciton correlation
function 〈an1 (t)a+n2

(0)〉. For n1 = n2, this corresponds to the overlap of the exciton state at
time t = 0 with this state at the initial moment t = 0 (for n1 = n2 = 0—for the ground
state of the exciton changing into a polaron after being gradually dressed with LA and
LO phonon clouds). The modulus of this correlation function thus gives a measure of
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fidelity of the time-dependent (non-stationary) exciton state. The averaging 〈...〉 denotes
the temperature-dependent averaging over the phonon states, assuming the exciton vacuum
state [36]—that is, without a change of state of a bare exciton—which corresponds to the fact
that the great canonical averaging sector without exciton, vacuum, it energetically distant
from the next exciton sectors. The energy separation is here of order of 1 eV.

The Fourier transform of the correlation function is called the ’spectral density’ [37, 38]:

In1,n2 (ω) =
∫ ∞

−∞
〈an1 (t)a+n2

(0)〉eiωtdt, (7)

The spectral density function can be expressed by the imaginary part of the retarded Green
function:

ImGr(n1, n2, ω) = −I(n1, n2, ω)/(2h̄), (8)

where:

Gr(n1, n2, t) = − i
h̄ Θ(t)〈[an1 (t), a+n2

(0)]−〉

= 1
2π

∫ ∞

−∞
Gr(n1, n2, ω)e−iωtdω,

(9)

is the commutation-retarded Green function which describes the linear dielectric response
to the electromagnetic wave coupled to an exciton [in the case of the instant creation of
an exciton, the time-dependent electromagnetic signal is assumed to be Dirac’s delta δ(t)].
In our case, the Green function Gr(n1, n2, t) and the correlation function can be obtained by
including the interaction between the exciton and the LA and LO phonon sea via the standard
temperature-dependent Matsubara-Green function techniques [37, 38]. The advantage of the
Matsubara-Green function approach over the others consists of the derivation of the Dyson
equation with the mass operator and the possibility of its modelling in terms of Feynman
graphs; the causal function technique needs the Tyablikov splitting-type procedures [39]
with a relatively lower level of transparency, even though it is fully equivalent to Matsubara
attitude. Both these methods lead to the Dyson equation with an appropriate mass operator,
which accounts for the interaction of the exciton with the see of phonons.

In the case of weak exciton-phonon coupling (which is the nature of the case currently being
discussed), the mass operator attains the form of [39] as illustrated by the graphs in Fig. 2.
For the QD exciton (similarly as for the bulk semiconductor [40]), with an accuracy up to g2

s
[note that Fs(n1, n2, k) ∼ gs where gs is an exciton-phonon constant], both real and imaginary
parts of the mass operator M are obtained in the following form (for the effective vertex, the
components of a higher-order are omitted, i.e., multi-phonon processes are not included):

∆n(ω) = 1
N ∑k,s,n1

|Fs(n, n1, k)|2
[

(1+Nk,s)[h̄ω−En1
−∆n1

(ω−ωs(k))−h̄ωs(k)]

[h̄ω−En1
−∆n1

(ω−ωs(k))−h̄ωs(k)]2+γ2
n1
(ω−ωs(k))

+
Nk,s [h̄ω−En1

−∆n1
(ω+ωs(k))+h̄ωs(k)]

[h̄ω−En1
−∆n1

(ω+ωs(k))+h̄ωs(k)]2+γ2
n1
(ω+ωs(k))

]

(10)

and:
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γn(ω) = 1
N ∑k,s,n1

|Fs(n, n1, k)|2
[

(1+Nk,s)γn1
(ω−ωs(k))

[h̄ω−En1
−∆n1

(ω−ωs(k))−h̄ωs(k)]2+γ2
n1
(ω−ωs(k))

+
Nk,sγn1

(ω+ωs(k))

[h̄ω−En1
−∆n1

(ω+ωs(k))+h̄ωs(k)]2+γ2
n1
(ω+ωs(k))

]

,

(11)

where: Nk,s is the Bose-Einstein distribution function defining the temperature-dependent
population of the phonon mode k, s, Mn,n(ω) = ∆n(ω) − iγn(ω), Gr(n, n, ω) = [h̄ω −
En − Mn,n(ω) + iǫ]−1 (for T = 0, Nk,s = 0). The above system of equations enables the
time-dependent analysis of the dressing of the exciton with a cloud of phonons.

For GaAs in the surrounding medium, the material parameters are taken from Ref. [41],
while a InAs/GaAs QD is modelled in terms of parabolic approximation [1] with a curvature

h̄ω
e
0 = 20 meV, h̄ω

h
0 = 3.5 meV, le =

√

h̄

m∗
e ω

e
0
= lh =

√

h̄

m∗
hωh

0

= 7.5 nm, which results in the

identical size of the ground state of the electron and the hole (when the Coulomb interaction

is not accounted for); the QD vertical dimension (the QD is significantly flattened) is l
e(h)
z ≃ 2

nm (with a suitably adjusted parabolic curvature ω
e(h)
z ) [numerical estimations including

particularities of the QD shape show that they only weakly affect the QD structure and the
polaron characteristics [28].

For exciton-LO phonon interactions, the Fröhlich constant is of importance [21, 22]:

αe =
e2

ǫ̃

√

m∗

2h̄
3Ω

. (12)

Its value grows in nanostructures [24, 26], which significantly influences QD polaron-related
processes.

In equation (10), the first component provides the main contribution—polaron red-shift
resulting from exciton-LO polaron interactions prevails in a polar material (GaAs is a weakly
polar material). Note that equations (10)–(11) contain the full Green function (in accordance
with the graph in Fig. 2). Taking γn(ω) = 0 on the right-hand side of equation (10), the
first-order approximation for the energy shift is:

∆n(ω) =
1

N
∑
k,n1

|Fo(n, n1, k)|2
[

1 + Nk,o

h̄ω − En1 − ∆n1 (ω − Ω)− h̄Ω
(13)

+
Nk,o

h̄ω − En1 − ∆n1 (ω − Ω) + h̄Ω

]

+
1

N
∑
k,n1

|Fa(n, n1, k)|2
[

1 + Nk,a

h̄ω − En1 − ∆n1 (ω − Cak)− h̄Cak

+
Nk,a

h̄ω − En1 − ∆n1 (ω − Cak) + h̄Cak

]

.
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As has already been pointed out, the first term of the equation provides the dominating
contribution while the second—of a significantly smaller order of magnitude [due to the
smaller value of the LA phonon coupling constant]—can safely be neglected here. However,
this term—to a greater extent than the first one—contributes substantially to the derivative
d∆/dω|ω=E+∆. The derivative of the first term [∼ F2/(h̄Ω)2] is small due to the gap in
dispersion of the LO phonons, but this derivative is important for estimating the residuum
of the Green function at its pole—in equation (16). Moreover, in the first term of this equation,
the weak dispersion of the LO phonons is neglected due to its insignificant contribution to
the energy shift ∆ (which has been verified via numerical methods) [28]. The numerical
solution of equation (13) for n = 0 yields the polaron energy shift ∆0 ∼ −5 meV (for the
structure parameters listed in Tab. 1).

For the description of the kinetics of polaron creation, i.e., of the process of the dephasing
of an non-adiabatically excited exciton (this is experimentally observed at the picosecond
time-scale [30]), the imaginary part of the mass operator and the out-of-pole form of the
imaginary part of the Green function is of especially importance—it provides complete
information about the spectral intensity (not limited to the poles defining the energy and
lifetime of quasi-particles, here polarons). The Fourier transform of the spectral intensity
yields the unknown correlation function. The imaginary part of the mass operator is given
by Eq. (11). Taking γ = 0 on its right-hand side:

γn(ω) = π
N ∑k,n1

{

|Fo(n, n1, k)|2
[

(1 + Nk,o)δ(h̄ω − En1 − ∆n1 − h̄Ωk)
+Nk,oδ(h̄ω − En1 − ∆n1 + h̄Ωk)

]

+|Fa(n, n1, k)|2
[

(1 + Nk,a)δ(h̄ω − En1 − ∆n1 − h̄Cak)
+Nk,aδ(h̄ω − En1 − ∆n1 + h̄Cak)

]}

.

(14)

The first term in equation (14) defines the polarization energy transfer to the LO phonon sea,
while the second one defines the deformation energy transfer (smaller) to the LA phonon sea
during the process of the gradual exciton-dressing with both types of phonon modes. The
term γ can be estimated for the ground state of the exciton (n = 0) [higher excited levels are
neglected]; integrating over k yields:

γ0(ω) ≃ Ax
3
e
− αx2

h̄2C2
a [Θ(x)(1 + N(x))− Θ(−x)N(−x)] (15)

+B

[

Θ(h̄Ω − x)(h̄Ω − x)3/2
e
− α(h̄Ω−x)

h̄β Θ(−0.6h̄Ω + x)(1 + N(x))

+Θ(h̄Ω + x)(h̄Ω + x)3/2
e
− α(h̄Ω+x)

h̄β Θ(−0.6h̄Ω − x)N(−x)

]

,

where x = h̄ω − Ẽ0, Ẽ0 = E0 − ∆0 is the energy of an excited polaron, N(x) = (e
x

kB T − 1)−1:
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Figure 4. The spectral intensity versus energy (x = h̄ω − Ẽ′

0) for a QD of a dimension averaged over all directions l = 6
nm (upper); the temperature evolution of the side-band due to the LA phonons (middle) and the satellite peak due
to the LO phonons (bottom). Only the side-band (due to the LA phonons) increases in value as the temperature rises
(within the mentioned range of temperature). LO absorption processes are negligible within this temperature range
(the left-hand satellite peak corresponds to LO phonon absorption and is smaller by several orders of magnitude than
the right-hand one corresponding to emission of LO phonons; the emission contribution becomes more significant for
T > 80 K); the satellite peak that is LO phonon-induced increases significantly with the increase in the value of the
QD’s Fröhlich constant [expressed by the Huang-Rhys factor][23]—Fröhlich constant in bulk (a), in a QD (b).

A =
(σe − σh)

2

4πρh̄
3
C5

a

, B =
e2h̄Ω(L2

e − L2
h)

2

36ǫ̃2(h̄β)5/2

(LO phonon dispersion as defined in [31] Ωk = Ω − βk2 and at the Brillouin zone edge,
i.e., for k = km attains the value Ωkm

= 0.6Ω). The first term of equation (15) corresponds
to the LA phonon channel of energy dissipation, while the second one corresponds to the
LO phonon dissipation channel. The numerical parameters of this equation for the structure
under investigation (Tab. 1) are listed in Tab. 2.

As γ0 equals 0 at x = 0 [which results from equation (15)], this point is understood as the
the well-defined Green’s function pole (it corresponds to a stable quasi-particle—the polaron,
this is the exciton dressed in phonon clouds [a generalization of an ordinary electron polaron
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dressed only in an LO phonon cloud [22, 34]]). The time-dependent evolution of the phonon
dressing is given by the correlation function, corresponding to the Green function in the form
of:

Gr(0, 0, ω) =
1

h̄ω − E0 − ∆(ω) + iγ(ω) + iǫ
(16)

=
a−1

x + iγ′(x) + iǫ
,

where:

a = 1 − d∆(ω)
h̄dω

|ω=Ẽ′
0

= 1 + 1
N ∑k,s

∣

∣

∣

Fs(0,0,k)
h̄ωs(k)

∣

∣

∣

2
[1 + 2Ns(k)],

(17)

γ′(x) = γ(x)/a (x = h̄ω − Ẽ′
0, Ẽ′

0 = Ẽ0/a), ǫ = 0+. The imaginary part of this retarded
Green’s function (16) attains the form:

ImGr(0, 0, ω) = −a
−1πδ(x)−

a−1γ′(x)/x2

1 + (γ′(x)/x)2
. (18)

The inverse Fourier transform of the spectral intensity (the imaginary part of the retarded
Green’s function) gives the correlation function in the time domain:

I(t) = −2h̄
1

2π

∫ ∞

−∞
dωImGr(0, 0, ω)e−iωt,

(the indices n1 = n2 = 0 of function I are suppressed). The first term in (18) yields:

I
(1)(t) = a

−1
e
−i

Ẽ0
h̄

t.

Notice that in the second term of equation (18), for temperatures T < 100 K, the second
term in the denominator can be safely neglected for LA phonons (consistently with the
accuracy assumed within the perturbative treatment). This allows us to exchange the order
of integration with respect to ω and k—the inverse Fourier transform can be calculated first
and, simultaneously, Dirac’s delta can be employed in equation (14). Such integration over
frequencies (energy) yields a convenient representation of the correlation function:

I(2)(t) = 1
N ∑k

∣

∣

∣

Fa(0,0,k)
h̄ωa(k)

∣

∣

∣

2

×
{

[1 + Ns(k)]e−i[Ẽ0/h̄+ωs(k)]t + Ns(k)e−i[Ẽ0/h̄−ωs(k)]t
}

.
(19)
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Figure 5. The evolution of the side band due to acoustic phonons (LA) versus the QD’s dimension and temperature
for T ≥ 0 K (the same temperatures for each QD dimension l = 3, 6, 12 nm).

Notice that, when comparing with Eq. (17), for t = 0 this leads to I(1)(t = 0) = a−1

and I(2)(t = 0) = 1 − a−1, which in effect results in the appropriate normalization of the
correlation function.

The spectral intensity and its reverse Fourier transform (its modulus) are plotted in Figs.
4—9 for various temperatures and QD dimensions. The fact that the numerically calculated
correlation function agrees well with the experimentally obtained data [30]— cf. Fig. 7
(upper), for a small QD and sub-picosecond excitations, may confirm the validity of the
theory developed here. The LA channel (although negligible in terms of energy compared to
the LO channel in GaAs) is the fastest and most effective in the dephasing process. The LO
channel is slower and accompanied by fast oscillations (beats of ∼ 100 fs corresponding to the
existence of the LO gap) [the LO channel of dephasing can be significantly intensified due to
the anharmonic decay of the LO phonons, e.g., for GaAs/InAs up to 10 ps] [42]. Dephasing
produced by LO phonons is significantly weaker than that for LA phonons (contrary to the
energy shift). The inclusion of the LO channel results in the weak modification of strong LA
dephasing—cf. Figs 8 and 9. Figure 9 (right) presents the type of the scaling of the dephasing
time versus a QD dimension—linear for the LA channel and quadratic for the LO channel.
This behaviour agrees well with the simple relationship: dephasing time ≃ l

vg
, vg—phonon

group velocity, l—QD dimension. For LA phonons vg = Ca, which yields a linear function
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Figure 6. Evolution of the satellite peak (the right-hand one—corresponding to LO phonon emission—versus the QD’s
dimensions; in practical terms, it is not dependent on temperature for T < 80 K.

electron effective mass in GaAs m∗

e 0.067me

hole effective mass (heavy) in GaAs m∗

h 0.38me

dielectric constant in GaAs (static) ǫ0 12.9
dielectric constant in GaAs (dynamic) ǫ∞ 10.9
electron deformation potential in GaAs σe 6.7 eV
hole deformation potential in GaAs σh −2.7 eV
LO phonon energy at Γ point in GaAs h̄Ω 36.4 meV
density of GaAs ρ 5.36 g/cm3

sound velocity (LA) in GaAs Ca 4.8 × 105 cm/s
electron confinement energy in a GaAs/InAs dot h̄ωe

0 20 meV
hole confinement energy in a GaAs/InAs dot h̄ωh

0 3.5 meV

lateral dimension of a QD (electron) le =
√

h̄
m∗

e ωe
0

7.5 nm

lateral dimension of a QD (hole) lh =
√

h̄

m∗

h
ωh

0

7.5 nm

dot height (electron and hole) l
e(h)
z 2 nm

Debye wave vector in GaAs km =
(

6π2

v

)1/3
1.1 × 1010 m−1

Fröhlich constant in a GaAs-bulk (electron) αe =
e2

ǫ̃

√

m∗
e

2h̄3Ω
0.07

Fröhlich constant in a GaAs/InAs dot (electron) α′

e =
e2

ǫ̃′

√

m∗
e

2h̄3Ω
0.15

Table 1. Quantum dot and material parameters for GaAs/InAs

of l, and for LA phonons vg = 2βk ∼ 2β/l, which results in a quadratic dependence on the

QD dimension ∼ l2/(2β). Conclusive proof of this result follows below.

5. The universal rule for the estimation of the dephasing time of

localized excitons in nanostructures

In order to estimate the dephasing time of a QD’s (or other nanostructures) localized
excitation (e.g., an exciton) due to hybridization with collective excitations in the surrounding
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exciton-LA phonon coupling constant A =
(σe−σ

h
)2

4πρh̄3C5
a

≃ 0.29 meV−2

exciton-LO phonon coupling constant B =
e2 h̄Ω(L2

e −L2
h
)2

36ǫ̃2(h̄β)5/2 ≃
(

l[nm]
6

)4
6.3 × 105 meV−1/2

lateral exciton dimension (electron) Le ≃ 6.6(l[nm]/6) nm
lateral exciton dimension (hole) Lh ≃ 5.1(l[nm]/6) nm
mass operator exponent (LA) α

h̄2C2
a

≃ (l[nm]/6)21.8 meV−2

mass operator exponent (LO) α
h̄β ≃ (l[nm]/6)2149 meV−1

Table 2. Parameters of exciton-phonon (LA and LO) interaction for a GaAs/InAs dot
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Figure 7. Modulus of the correlation function |〈a(t)a+(0)〉| (the fidelity measure of the ground excitonic state) versus
time for rising temperatures. The three plots correspond to small, medium and large QDs, and contain curves related
to the same set of temperatures as given in the upper plot. For the small QD, the experimentally observed fidelity loss
for a non-adiabatically excited exciton (for 0.2 ps pulse) [30] is reproduced well in the upper figure.

medium (e.g., with band phonons), a phenomenological picture can be applied that is
motivated within the Green function approach [28]. The correlation function:

I(t) =< a0(t)a
+
0 (0) >= −

h̄

π

∫

dωImGre
−iωt (20)

[where a(+) denotes the QD exciton annihilation (creation) operator] permits a reasonable
assumption that the characteristic dephasing time parallels the rapid decrease in the value
of its modulus (clearly evident in Figs. 7, 8). The correlation function is an inverse Fourier
transform of spectral intensity (cf. Fig. 4), which is expressed via the imaginary part of the
retarded one-particle commutation of Green function Gr of the exciton [37, 38]. For a short
time-scale (i.e., large values of Fourier frequencies ω), the imaginary part of the retarded
Green function is proportional to the imaginary part of the mass operator (due to Eq. (18)),
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which is expressed (with multi-phonon effects neglected) by the following formula [37, 38]:

γ ∼
∫

dk |F(k)|2 δ(ω − E − ω(k)), (21)

where the interaction vertices assume their general form (the interaction between the QD
localized excitation and the non-localized crystal excitations expressed by means of plane
waves):

F(k) ∼< Ψ0|e
ikr|Ψ0 >, (22)

where |Ψ0(r) > is a wave function of a QD localized exciton corresponding to its ground
state with energy E (for simplicity of description, a single particle-localized excitation is
considered here, e.g., an electron [one-dimension picture, h̄ = 1]). Thus, the correlation
function:

I(t) ∼ e−iEt
∫

dr |Ψ0(r)|
2
∫

dkF∗(k)ei(kr−ω(k)t), (23)

appears to attain the form of a time-dependent overlap of a probability density of a QD
localized particle:

|Ψ0(r)|
2 , (24)

with a collective excitation wave packet (phonons) escaping from the QD-space region:

∫

dkF∗(k)e
i
(

r− ∂ω(k)
∂k t

)

k
(25)

(where k is the centre, k ∼ 1/l, l is the QD diameter due to the above-mentioned QD
bottleneck effect entered here via F(k)]). The wave packet carries off the excess (deformation
or polarization) energy of the particle being dressed to the QD’s surrounding region in

the crystal with the group velocity vg = ∂ω(k)
∂k (for k ∼ 1/l). Thus, the dephasing time

corresponds to the time for the decrease in value of the modulus I(t), which here is of the

order of τ ≃ l
vg

, where l is the QD dimensions averaged over all directions [the QD exciton

state dimension] (as illustrated in Fig. 10).

In this representation, the dephasing time is of the order of the proportion of a QD dimension
l to the phonon group velocity, i.e., the velocity of the phonon packet carrying off the excess
energy from the QD to the surrounding medium (this is the evolution of a non-stationary
QD state of a non-adiabatically excited bare exciton). For LA phonons, the group velocity
remains constant and equals the sound velocity vg = Ca, which results in a linear dependence
of the dephasing time with respect to the QD’s dimension,

τ ≃
l

Ca
;
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time

Figure 8. The typical shape of the modulus of the correlation function of an exciton interacting simultaneously
with LO and LA phonons. The oscillations, corresponding to the gap in the LO phonon spectrum [the frequency is
∼ 1/Ω ∼ 100fs], are significantly stronger for a QD due to the increase in the value of the effective Fröhlich constant
(upper).
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Figure 9. Left: the modulus of the correlation function for, respectively, LA (upper) and LO (lower) phonons only.
Right: the exciton dressing time vs the averaged QD dimensions l for the LA channel (upper), the linear dependence,
and for the LO channel (lower), which is a quadratic dependence on l.

for optical phonons vg = 2βk ∼ 2β/l leading to a quadratic dependence of the dephasing
time on l,

τ ≃

l

vg
= l

(

∂ǫ

∂p

)

−1

=

h̄l

2βk
≃

h̄l2

2β
,

as k ≃ 1/l (due to the bottleneck effect on the centre of the wave packet in the momentum
space). In the case of LO phonons, the dephasing time-scales quadratically with the dot’s
dimensions, and thus for the state-of-art structures it attains values much larger than the
dephasing time for the LA channel (with the linear scaling) (cf. Fig. 9).

Quantum Dots - Theory and Applications68



- 3 - 2 - 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

- 3 - 2 - 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

- 3 - 2 - 1 0 1 2 3
0

1

2

3

4

5

6

- 3 - 2 - 1 0 1 2 3
0

1

2

3

4

5

6

- 3 - 2 - 1 0 1 2 3

0.5

1

1.5

2

2.5

3

- 3 - 2 - 1 0 1 2 3

0.5

1

1.5

2

2.5

3

- 3 - 2 - 1 0 1 2 3

1

1.5

2

2.5

3

- 3 - 2 - 1 0 1 2 3

1

1.5

2

2.5

3

- 3 - 2 - 1 0 1 2 3

1.5

1.75

2

2.25

2.5

2.75

3

- 3 - 2 - 1 0 1 2 3

1.5

1.75

2

2.25

2.5

2.75

3

- 4 - 2 0 2 4

0.5

1

1.5

2

2.5

3

- 4 - 2 0 2 4

0.5

1

1.5

2

2.5

3

- 4 - 2 0 2 4
0.5

1

1.5

2

2.5

3

- 4 - 2 0 2 4
0.5

1

1.5

2

2.5

3

t=2 t

t=3 t

t=1.5 t

t= t

t=0.5 t

t=0
Y Y( )

*
r

vg

Figure 10. The correlation function’s decrease in value corresponds to the decrease in the overlap of the local
distribution of a QD particle (exciton) with the phonon (LA) wave packet carrying off the excess energy; the correlation
function is the overlap of a QD particle (exciton) probability density, |Ψ(r)|2 (upper left), with the wave packet escaping

from the QD-space region A(r, t) =
∫ ∫

e−ikr′ |Ψ(r′)|2dr′e
i(r±

dǫ(|k|)
d|k|

sign(k)t)k
dk (illustrated here as A(r) for a sequence of

times τ—time-scale of dephasing).

6. Decoherence of the degrees of freedom of spin in quantum dots

Spin do not interact directly with with phonons—the spin of the QD excitations interacts
weakly with the lattice oscillations due to their links to orbital (charge) degrees of freedom
via:

• spin-orbit coupling [43],

• specific Hund-like rules for multi-electron QDs [1]—the filling of the subsequent shell in
the multi-electron QD depends upon the total electron (hole) spin of a given shell [the
generalization of singlet and triplet states] which, in effect, link spin and orbital degrees
of freedom.

Weak spin coupling with phonons suggests that the spin of a QD electron constitutes a
well-isolated quantum system (an insignificant spin-orbit interaction results in an extremely
slow spin decoherence, the same is due to weak interaction with nuclear spin) that is suitable
for a qubit’s definition. One can expect that for spin qubits in QDs, DiVincenzo’s conditions
would be satisfied [7, 14, 15]. Due to the minor influence of the surrounding medium,
the QD’s spin coherence is maintained until the time period of order of µs [16]. However,
a difficulty arises when Rabi oscillations are implemented (for single qubit operations).
Because of the low value of the gyromagnetic factor in semiconductors, qubit spin control (a
qubit spanned across two spin orientations in an external constant magnetic field) via Rabi
oscillations is extremely slow and the DiVincenzo conditions are again not satisfied (the Pauli
term, gµBszB, leads to very slight Zeeman splitting of only 0.03 meV/T, in GaAs).
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For two-qubit operations of spin qubits, no such disadvantage exists—there is an effective
procedure for switching spin qubit interactions on and off [15, 16] resulting in qubit
entanglement control at the time-scale of picoseconds. The idea of spin interaction control
follows from the phenomenon of exchange interaction between two spins, being induced by
strong Coulomb interaction [44]. The exchange energy for it is the singlet-triplet energy gap
for the spin pair [44], and consequently it is of (several) meV in magnitude, resulting in a
picoseconds time-scale for the control of the entanglement of qubits. The scheme of this
control relies upon the singlet and triplet states of an electron pair (each electron captured in
an individual QD but located closely enough to maintain their quantum indistinguishability
[their localized wave functions must overlap]) and their relation with the orbital structure of
the corresponding wave functions. Due to the fermionic nature of electrons:

• the singlet state 1√
2
(| ↑>1 ⊗| ↓>2 −| ↓>1 ⊗| ↑>2) ⇐⇒ |0, 0 > corresponds to the

symmetric orbital wave function,

• the triplet states











| ↑>1 ⊗| ↑>2 ⇐⇒ |1,−1 >

1√
2
(| ↑>1 ⊗| ↓>2 +| ↓>1 ⊗| ↑>2) ⇐⇒ |1, 0 >

| ↓>1 ⊗| ↓>2 ⇐⇒ |1, 1 >











correspond to the

antisymmetric orbital wave function,

so that the complete spin-orbital wave function remains antisymmetric, as is required for
fermions. In the absence of a magnetic field, the singlet state is the ground state [44], but as
the field increases in value [i.e., the magnetic field breaks the symmetry of time-reversion],
it becomes less energy-efficient and, finally, the triplet state is preferred (with parallel spin
orientation) [a parallel spin orientation is also preferred due to the Pauli term, which is,
however, of very low value, and its contribution to energy competition is negligible; the triplet
spin state is preferred due to the minimization of the energy of Coulomb interaction by the
antisymmetric orbital state in the presence of the magnetic field breaking the time-reversion
symmetry [44]]. For the critical field (of the order of a few T for QDs), both the singlet and
the triplet states have the same energy, which means that the exchange qubit interactions is
switched off (the exchange interaction constant is expressed via the difference in the energy
value for the singlet and the triplet) [44]. It can be switched on again by varying the value
of the applied external magnetic field and shifting the system out of the degeneracy point.
The exchange interaction equal to the energy gap between the triplet and singlet states is
originated by the relatively strong Coulomb interaction and varies within the range of several
meV or more, which allows for the rapid entanglement of qubits.

Let us also mention that the possibility of using the exchange interaction to implement and
exert control over single-spin qubits has been investigated, which has resulted in:

• a singlet- and a triplet-defined qubit on a two-electron QD of He-type [45],

• a spin qubit defined by the spin states with Sz = ±1/2 for three electrons [16] but
separated energetically by a strong exchange-like interaction—i.e., a qubit defined by
a pair |1/2,−1/2 >s, |1/2, 1/2 >t or a pair |1/2, 1/2 >s, |1/2,−1/2 >t [the spin states
of three electrons can be classified according to the spin addition rule: first, two spins of

1/2 are added, yielding a singlet |0, 0 > and a triplet:







|1,−1 >

|1, 0 >

|1, 1 >







and then the third
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spin of 1/2 is added yielding eight three-electron spin states:






|1/2,−1/2 >s |1/2, 1/2 >s

|3/2,−3/2 >t |3/2,−1/2 >t |3/2, 1/2 >t |3/2, 3/2 >t

|1/2,−1/2 >t |1/2, 1/2 >t







].

In both cases, however, for the collective qubit’s definition, the number of particles must
be increased, which results in the enhancement of local decoherence ∼ e

N (N—number
of qubits). On the other hand, however, it might be conveniently directed towards the
application of collective-global (and thus more robust against decoherence) subspaces of the
Hilbert space for multi-particle systems for QIP [13].

The scheme for the entangled qubits’ control relies upon the symmetry-induced close
connection between spin exchange interaction and the orbital (thus, strong) Coulomb
interaction of electrons (leading to an energy gap between the singlet and triplet states of an
order of magnitude in meV). Due to this strong Coulomb interaction, and following the spin
exchange interaction, the time-rates of double-qubit gate unitary operations are of the order
of picoseconds, which suggests the convenience of spin degrees of freedom for QIP in QDs. A
model of a quantum gate based on the above-mentioned idea was proposed by DiVincenzo
[15, 16, 20]. In his model, a pair of H-type QDs (a single qubit spanned across electron
spin states |1/2,−1/2 >, |1/2, 1/2 >) was analysed for two-qubit operations. However,
for the implementation of a quantum computer, single-qubit operations are necessary as
well, which unfortunately are extremely slow for the defined spin qubit on single-electron
spin states. The idea of accelerating single-qubit operations can be associated with the
enhancement of the gyromagnetic factor in semiconductor environments with magnetic
dopants (as in so-called ’diluted magnetic semiconductors’) [46–50] in a magnetically ordered
phase. In such materials with low concentrations of magnetic ions (of a few percent range),
typically Mn2+ ones, phase transition to a magnetically-ordered phase takes place due to the
mediating role of band holes [49]. Such a phase transition takes place even at temperatures
exceeding 100 K (in Ga(Mn)As) [49, 50] and, additionally, can be controlled via the hole
concentration in the semiconductor [47, 48, 51–53]. The magnetic ordering of the material
produces an extremely strong Weiss-like magnetic field internally, which acts exclusively
on the degrees of freedom of the spin (i.e., it does not act on orbital ones), thus leading
to a significant increase in value of the Pauli term, i.e., in the enhancement of the effective
gyromagnetic factor. This suggests that single-qubit operations could be accelerated up to
the level required by the DiVincenzo criteria in QDs in DMSs (such structures have already
become available).

However, introducing an additional spin subsystem (and such is the magnetic dopant part
of the semiconductor) causes a new problem. Such a subsystem is a source of collective
excitations—spin waves, which interact directly with the qubit spin. In this system, spin
waves (magnons) behave like phonons and produce similar spin decoherence effects (as
presented for phonons and the charges in the previous paragraphs).

A more detailed analysis of the problem (as will be presented below) shows that spin waves
cause harmful decoherence within time-rates of the order of 500-1000 ps, which is a serious
negative side-effect threatening the feasibility of the spin logic gate (again, in the centre
of the six-order time window between the control time and the amplitude decoherence for
spins [54]). It exists, however, the promising opportunity to diminish the amplitude of this
spin dephasing, which is in contrast to the phonon-induced effect in the case of spin waves
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and can be achieved at very low temperatures, as will be demonstrated in the following
paragraphs. The essential elements of the analysis are as follows: (1) the averaging over the
random distribution of magnetic admixtures in a DMS [55] yields a spin waves spectrum in
a Holstein-Primakoff representation [56, 57] [the averaging restores the effective translational
invariance in a randomly doped system [55] and allows for the application of momentum
representation]; (2) the determining of the spin wave dispersion in a DMS with respect to the
hole and the magnetic dopant concentration; (3) analyzing the structure of the interaction
between the spin waves and the spin of a QD exciton. The quadratic dispersion of spin
waves found as the result of this analysis turns out to be crucial for the timing of the phase
decoherence of spin in QDs. The estimation of the time rate of this process is given as the QD
dimension divided by the spin wave group velocity, according to the general rule presented

in the paragraph 5, (vg = ∇ǫ(p) ∼ p ∼
h̄
d ), τ ∼

d
1/d ∼ d2; the time-rate scales as the square

of the QD dimension (marked as d), similarly as in the case of LO phonons (and similarly
as for LO phonons rapidly increases with the dot dimension growth) and for typical dots of
dimension of about 10 nm reaches values of the order of 500 ps.

6.1. Dephasing induced by the dressing of QD exciton spin with magnons in a
diluted magnetic semiconductor’s surroundings

An interesting question arises with regard to the QD spin in the magnetic surroundings
when the Pauli term causing the Rabi oscillations for spin can be strengthened due to an
increase in the effective gyromagnetic factor. Spin does not interact directly with phonons,
and thus it is free from phonon-induced dephasing. Nevertheless, the dephasing role of
phonons may be played by spin waves in magnetically-ordered media which, on the other
hand, are convenient for accelerating single-qubit QD spin control to the level required
by the DiVincenzo conditions. Spin waves (frequently called ’magnons’) are collective
spin-type excitations in the ferromagnetic or anti-ferromagnetic medium (or in any other
magnetically-ordered spin system), and possess similar band properties to phonons in
crystalline structures. The spin-exchange interaction between the magnons and the local QD
spin (of an exciton trapped in a QD) is relatively strong and causes the dressing of the QD
spin with the magnons in a similar fashion to the dressing of the QD charges with phonons.
The opportunity for the experimental study of such a spin dressing phenomenon may be
linked to the so-called ’diluted magnetic semiconductors’ of the type III-V (e.g., Ga(Mn)As)
or II-VI (e.g. Zn(Mn)Se). In these magnetically and weakly doped semiconductors, some
relatively small part of the cations (usually a few %) is randomly substituted by transition
metal ions (typically of Mn). The admixture spins interact with the spins of band holes and
as a result the ferromagnetic ordering of the admixture spins is observed. The related Weiss
field enhances the effective gyromagnetic factor in the Pauli term, describing the spin action
of the external magnetic field conveniently for the acceleration of the control over the local
QD spin.

6.2. Spin waves in the diluted magnetic semiconductor

To describe the dephasing of QD spin caused by magnons in DMSs quantitatively, the
analytical expression of the spin wave spectrum in the DMS is needed. This can be found
in the paper [64]. For the relevant theoretical description of the spin subsystem of the DMS,
the model of dopant spin exchange mediated by band holes is utilized [58, 59], assuming
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that the p − d exchange between the band holes and the impure magnetic atoms may lead
to the ferromagnetic alignment of the magnetic dopants (Mn). Note that the holes taking
part in the spin exchange with the dopant Mn ions cause an indirect exchange beyond the
weak, direct, short-range and anti-ferromagnetic exchange between the magnetic dopants
[48]. The hole-induced indirect coupling, even for low concentrations of holes xp (lower than
the magnetic dopant concentration x) occurs strong and leads to the ferromagnetic ordering
of Mn spins even at relatively high temperatures, ∼ 110 K in Ga0.947Mn0.053As [58, 60].
Let is be emphasized that, in III(Mn)V DMSs, the Mn atoms of the magnetic dopants are
simultaneously shallow acceptor centres, whereas in II(Mn)VI-type DMSs, the Mn dopants
are not acceptors and the holes must be supplied by additional p doping.

To briefly sketch the derivation of the magnon spectrum in DMSs, let us set out the
Hamiltonian for the DMS system with magnetic dopants Mn2+ (with spin S = 5/2) in the
form:

Ĥ = Ĥs + Ĥp, (26)

where Ĥs describes the spin subsystem of the DMS:

Ĥs = −2
Np

∑
j=1

∑
n

Ap

(

Rj − Rn

)

ŝj · Ŝn, (27)

where ŝj, Rj and Ŝn, Rn are operators for the spin and position of the j-th hole and the
n-th impurity atom (in the lattice point Rn; the interstitial positions of the dopants are not

accounted for); Ap

(

Rj − Rn

)

is the p − d exchange integral; Ap (R) < 0 (antiferromagnetic)

and
∣

∣Ap (R)
∣

∣

∼ 1eV; n summation goes over lattice points occupied by magnetic dopants;

hole concentration xp =
Np

N , magnetic dopant concentration x = Ni
N , Np is the number

of band holes which contribute to exchange with the impurity atoms, Ni is the number
of magnetic impurities, N is the number of elementary cells and Ĥp is the fermionic
Hamiltonian of the holes.

The important property of the considered system is the randomness of the distribution of the
magnetic impurity atoms and the acceptors. The averaging over these random distributions
conveniently results, however, in the effective restoring of the translational symmetry broken
at any particular dopant distribution, though it is again present after averaging. This
allows for momentum-representation for collective excitations, which can be utilized in the
diagonalization of the spin part of the Hamiltonian. This procedure is originally presented in
[64] and results in the explicit form for the low-temperature excitation spectrum of the DMS
spin subsystem. This spectrum of magnons in DMSs consists of two branches: the gap-less
branch ε1 (k) and the "optical-type" gapped branch ε2 (k). The value of the gap is given by
the formula ε2 (0) = −Ãp (0)

(

xp + 2Sx
)

(’tilde’ denotes the Fourier picture). The energy of
the magnon branch ε1 (k) grows with increasing k, whereas the energy for the branch ε2 (k)
diminishes with increasing k. Within the long-wave limit, i.e., for small k, the spin wave
energy spectrum can be written as follows [64]:
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{

ε1 (k) = Dk2,
ε2 (k) = D0 − Dk2,

(28)

with: D0 = −Ãp (0)
(

xp + 2Sx
)

, D = −Ãp (0)
2Sxxp

xp+2Sx l2
ex , where lex expresses the

space-range of the exchange interaction.

6.3. Dressing of the QD’s local exciton spin by magnons from the surrounding
DMS

In analogy to the creation of the polaron in a QD by the dressing of the QD exciton with
band phonons, one can observe the formation of the excitonic-magneto-polaron (EMP), i.e.,
of the localized QD exciton spin dressed with magnons in the surrounding DMS (in the case
of the magnetically ordered phase of the DMS at a sufficiently low temperature). Similar
to the ordinary polaron, the dephasing of the spin caused by the magnons expresses the
inertia of the collective spin wave system. For the non-adiabatically and rapidly excited bare
exciton to the QD one deals with a non-stationary state of the whole system of QD with
surrounding DMS. Similarly to the dephasing of the QD charge by phonons, in the case
of step-by step formation of the exciton magneto-polaron (EMP) in QD one deals with the
outflow of an excess energy to the region outside the QD. This excess energy is linked now
with the spin exchange interaction and the carriers for the energy outflow are magnons. The
corresponding quantum evolution of the total system is the evolution of the non-stationary
state (originally at t = 0 defined by the non-stationary initial state of the bare exciton rapidly
excited in the QD). During this evolution, the mean energy is shared between the QD and the
surrounding magnons in the DMS (the spin wave sea). The final EMP localized in QD and
dressed with the cloud of magnons has a lower mean energy than the initial bare exciton.
Together with the magnons escaping from the QD region (these ones remove the excess of
the spin exchange energy outside the QD), the whole system remains in the non-stationary
state, although the local EMP might be treated as the ’stationary’ component of the eventual
state of the system. In order to estimate the time-rate corresponding to the dressing of the
local spin in the QD by magnons resulting in the formation of the EMP, the same rule as that
for the QD charge with phonons can be utilized.

In analogy to phonon dressing, one arrives at the formula for the correlation function,

I(t) ∼ e−iEt
∫

dr |Ψ0(r)|
2
∫

dkF∗(k)ei(kr−ε(k)t),

describing the time-dependent evolution of the overlap of the local QD particle distribution,

|Ψ0(r)|
2, with the wave-packet of the spin waves escaping the dot region step-by-step,

∫

dkF∗(k)e
i
(

r− ∂ε(k)
∂k t

)

k
(where k corresponds to the centre of the wave-packet being of the

order of ∼ 1/l, as caused by the QD bottleneck effect similar to that for phonons and which is

visible from the form of F∗(k)). The group velocity of this wave-packet is equal to vg = ∂ε(k)
∂k

(at k ∼ 1/l). Thus, one can conclude that the dephasing time defining the time-scale of the
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Figure 11. The EMP formation time τ = l
vg

(the spin dephasing time-rate) for an exciton localized in a QD

embedded in a DMS versus the dot dimension for various hole-concentration rates xp (x is an Mn admixture rate)
in the Zn0.75Mn0.25Se/CdSe DMS/QD structure; the parabolic scaling with the dot dimension is similar to that for LO
phonons but distinct from LA phonon wave-packet kinetics.

dressing of the QD spin with magnons and expressed by the function I(t) is given by that

according the general rule, τ ≃
l

vg
.

The dressing of the QD exciton spin with magnons is similar to the dressing of the QD
charge with LO phonons, since both LO phonons and magnons have a quadratic dispersion.
Utilizing now the formulae for magnon energies as given by Eqs. (28), we arrive at the
assessment for the time of formation of the EMP in form,

τ ≃

l

vg
= l

(

∂ε

∂k

)

−1

=
l

2Dk
≃

l2

2D
,

k ≃ 1/l because of above-mentioned QD bottleneck. Note that the derived time for dressing
with magnons scales as l2. Therefore, it is relatively lengthy for state-of-the-art QD sizes
(typically of the order of 10 nm for the diameter). The dephasing time of the exciton
spin given by the above estimation depends upon the magnetic admixture and band-hole
concentrations in the DMS because of the concentration-dependence of the factor D. To
illustrate this behaviour, several examples are presented in Fig. 11.

For the experimentally observed QD in the structure Zn(Mn)Se/CdSe with a dimension of
∼ 10 nm and with concentrations of x = 0.25, xp = 0.025, one can estimate using the above
formula the spin dephasing time as being of the order of 150 ps, which agrees with the
timing of the formation of the EMP experimentally observed in Zn0.75Mn0.25Se/CdSe (note
that, for this structure, the time for exciton annihilation is considerably longer, ∼ 600 ps, and
the complete formation of the EMP can thus be observed) [65–67].
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Figure 12. Contribution to the exciton mass operator resulting in the pure dephasing of spin in the state n of an exciton
(continuous lines—exciton Green-Matsubara functions, dashed lines—magnon Green-Matsubara functions).

6.4. Explicit form of the interaction of magnons with QD spin causing the spin
pure dephasing

An important observation might be made that it is a considerable difference between
the phonon- and magnon-assisted dephasing phenomena of charges and spin in QDs,
respectively. To demonstrate this difference, it is necessary to analyse the exchange-spin
interaction of QD excitons with magnetic admixture spin waves. This interaction can be
expressed as follows:

Ĥsd(Re, Rh) = −2β0 ∑
n

Ae(Re − Rn)ŝe · Ŝn − 2β0 ∑
n

Ah(Rh − Rn)ŝh · Ŝn, (29)

where ŝe(h) is the spin operator of the electron (hole) of the exciton in the QD, Rn is

the position of the magnetic dopant (Mn2+), Ŝn is the spin operator of the dopant, and
the n summation goes over the lattice sites occupied by magnetic dopants. The term
Ae(h)(Re(h) − Rn) describes the exchange-spin interaction between the electron (hole) spin
of the QD exciton and the spin of the dopant, whereas an effective coefficient β0 accounts for
the additional decrease of the exchange integrals due to the dot-structure proximity in real
system (β0 is assumed to be 0.1 as estimated from the experimental data [65, 66]).

For the four-fold spin structure of the QD exciton, we use the notation (j, n, sz = ± 1
2 ),

where j = 1, 2 correspond with the anti-parallel and parallel spin alignments of the e-h
pair, respectively, and sz is the spin projection of the electron in the e-h pair. Taking
these representations for e-h pair spins ŝe(h) and the magnon representation (in the

Holstein-Primakoff picture) for dopant spins Ŝn [64], one can rewrite the Hamiltonian (29)
in the manner presented below.

By a
(+)
jnsz

, we denote the bosonic annihilation (creation) operator of the exciton in the

(jnsz) state (j = 1, 2 indicates the opposite and the same spin mutual alignment of
electron-hole pair creating an exciton, correspondingly; sz denotes the spin alignment of
the electron in electron-hole pair). One can now rewrite the Hamiltonian (29) in the
basis of these excitonic states, namely, ∑

µ,µ′
< µ|Hsd|µ

′
> a+µ aµ′ , where µ = (jnsz).

Taking the Holstein-Primakoff representation [68] for the spins of dopants and averaging

over the dopant random distributions [64] and changing to the magnons—α̂
(+)
i , i = 1, 2
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(diagonalization transformation is given explicitly in Ref. 64)—we arrive at the following
form of the exchange Hamiltonian (29) [69]:

Ĥsd = Ĥ1
sd + Ĥ2

sd, (30)

Ĥ1
sd = −

(

v0

(2π)3

)2
2Sxiβ0

∫

d3k1

∫

d3k2

[

vk2
α̂+1 (k2) + uk2

α̂+2 (k2)
]

×
[

vk2+k1
α̂1(k2 + k1) + uk2+k1

α̂2(k2 + k1)
]

× ∑
n,n′

1/2
∑

sz=−1/2
sz

{[

Fe
nn′ (k1)− Fh

nn′ (k1)
]

â+1nsz
â1n′sz

+
[

Fe
nn′ (k1) + Fh

nn′ (k1)
]

â+2nsz
â2n′sz

+
[

Fe
nn′ (k1)â+1nsz

â2n′sz
+ hc

]

+
[

Fh
nn′ (k1)â+1nsz

â2n′−sz
+ hc

]}

,

(31)

Ĥ2
sd = −√

2Sxiβ0
v0

(2π)3

∫

d3k ∑
n,n′

{[vkα̂1(k) + ukα̂2(k)]

×
[

Fe
nn′ (k)

(

â+1n1/2 â1n′−1/2

+â+2n1/2 â2n′−1/2 + â+1n1/2 â2n′−1/2 + â+2n1/2 â1n′−1/2

)

+Fh
nn′ (k)

(

â+1n−1/2 â1n′1/2

+â+2n1/2 â2n′−1/2 + â+1n1/2 â2n′−1/2 + â+2n1/2 â1n′−1/2

)]

+ hc
}

.

(32)

In the first part, Ĥ1
sd, we can identify the term describing the interaction without any change

in the exciton spin (neither the electron nor the hole in the e-h pair). This term thus describes
the interaction channel when the spin of the created (annihilated) magnon has to be cancelled
by an annihilated (created) magnon (spin is conserved—it is different compared to phonons).
It should be emphasized that, in the second part, Ĥ2

sd, the exciton spin-flip processes are
included only with involvement of a single magnon. Therefore, the term, without any change
of the state (the spin state here) and which leads to a pure dephasing of spin, contributes
only to Ĥ1

sd. The Hamiltonian part Ĥ2
sd does not cause any pure dephasing because this part

of the interaction does not conserve the exciton state (spin). The term Ĥ2
sd always causes an

amplitude (diagonal) decoherence as a changing of the exciton spin state.

With the first term in Ĥ1
sd, and significantly for the pure dephasing of the QD exciton spin,

one can associate the vertex which gives an imaginary part of the mass operator, cf. Fig. 12
(leading to the pure dephasing of the exciton ground state). Note that this is different from
that for phonons, cf. Fig. 2.

The imaginary part of the mass operator given by the graph in Fig. 12 can be written as
follows:

γn(ω, T)

= π
2
∑

i,j=1
∑

k1,k2

|V(n, k1, i; n, k2, j)|2[ni(k1) + 1]nj(k2)δ(ω − En − εi(k1) + ε j(k2)),
(33)
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n = 0 comprises here all the exciton ground state quantum numbers (1, 0, 1
2 ), and:

V(n, k1, i; n, k2, j)|n=0 = β02Sxi

[

vk2
vk1

, vk2
uk1

uk2
vk1

, uk2
uk1

]

(

Fe
00(k1 − k2)− Fh

00(k1 − k2)
)

,

The matrix is addressed to the magnon branches: {ij} =

[

11, 12
21, 22

]

, ni(k) is Bose-Einstein

distribution for the i-th magnon branch, uk, vk are coefficients of the DMS magnon
diagonalization transformation [64], and

F
e(h)
nn (k) = Ãe(h)(k)

∫

d3Re

∫

d3RhΨ∗
n(Re, Rh)e

ik·Re(h)Ψn(Re, Rh),

Ãe(h)(k) =
1
v0

∫

d3RAe(h)(R)e−ik·R, Ψn(Re, Rh) is the orbital part of n-th exciton state (for the
ground state the trial wave function has been assumed in the form of the Gaussian function,

Φ0 = 1
(π)3/2

1
Le Lh Lz

exp
[

−
r2

e⊥

2L2
e
−

r2
h⊥

2L2
h

−
z2

e+z2
h

L2
z

]

, where re,h⊥ are the positions of the electron and

hole in the xy plane, Le(h) denotes variational parameters introduced in order to account for

e-h Coulomb attraction [64, 70]), Ae(h)(R) = Ae(h)e
−2R/lex with the range of the exchange

lex ∼ a, (a3 = v0), Ãe(h)(k) =
Ãe(h)(0)

[1+k2 l2
ex/4]2

, Ãe(h)(0) =
π2

4
l3
ex
v0

Ae(h).

The imaginary part of the mass operator can be rewritten in the form:

γ0(ω, T) = π ∑
k1,k2

|V(k1 − k2, 0)|2

×
{

[n1(k1) + 1]n1(k2)v
2
k2

v2
k1

δ(ω − E0 − ε1(k1) + ε1(k2))

+ [n1(k1) + 1]n2(k2)v
2
k2

u2
k1

δ(ω − E0 − ε1(k1) + ε2(k2))

+ [n2(k1) + 1]n1(k2)u
2
k2

v2
k1

δ(ω − E0 − ε2(k1) + ε1(k2))

+ [n2(k1) + 1]n2(k2)u
2
k2

u2
k1

δ(ω − E0 − ε2(k1) + ε2(k2))
}

,

(34)

with ε1(k) = Dk2, ε2(k) = D0 −Dk2, V(k1 −k2, 0) = β02Sx(Fe
00(k1 −k2)− Fh

00(k1 −k2)) =

f (k1 − k2 = k) = A e−αk2

[1+κk2]2
, A = β02Sx(Ãe(0) − Ãh(0)), κ = l2

ex/4, α = l2/2 (l—the

dimension of the exciton in the ground state averaged over all directions [70]). Finally:

γ0(ω, T) = πA2 ∑
k1,k2

e−2α(k1−k2)
2

[1+κ(k1−k2)2]4

×
{

[n1(k1) + 1]n1(k2)v
2
k2

v2
k1

δ(ω − E0 − D(k2
1 − k2

2))

+ [n1(k1) + 1]n2(k2)v
2
k2

u2
k1

δ(ω − E0 + D0 − D(k2
1 + k2

2))

+ [n2(k1) + 1]n1(k2)u
2
k2

v2
k1

δ(ω − E0 − D0 + D(k2
1 + k2

2))

+ [n2(k1) + 1]n2(k2)u
2
k2

u2
k1

δ(ω − E0 − D(k2
2 − k2

1))
}

,

(35)
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n1(k) = 1
eDk2/kT

−1
, n2(k) = 1

e(D0−Dk2)/kT
−1

and (for small k, k/kmax << 1, kmax = π/a) u2
k =

xp

xp+2Sx − Bk2, v2
k = 2Sx

xp+2Sx + Bk2, B =
xp

x
2S−xp/x

(2S+xp/x)3 2Sl2
ex, D0 = −Ãp(0)(xp + 2Sx), D =

−Ãp(0)
2Sxp x

xp+2Sx l2
ex.

The above formula (35) allows for the calculation of the correlation function I(t) and the
estimation of the spin dephasing timing. The results are presented in Fig. 11.

It should be emphasized that due to spin conservation in the vertex, the two magnons
must take part simultaneously in the interaction, which is responsible for the dressing
of the exciton state with the magnon cloud (i.e., this interaction part, which causes
the pure dephasing of the exciton spin). This property leads, however, to the special
temperature-dependent factors [ni(k1) + 1]nj(k2) → 0 (for T → 0) which occur in the

equation for γ0(ω, T). These factors tend towards zero with decreasing temperature and
completely freezes the pure dephasing of the exciton spin at T = 0 (in contrast to the
charge dephasing process by phonons, which is maintained strong even at T = 0—this
is due to the emission factor 1 + n(k) → 1 for T → 0, i.e., a non-zero low temperature
limit for a triangle-type vertex with phonons). Additionally, let us note that for magnons at
low temperatures n1 >> n2, and due to the magnon gap, contribute only the terms with
n1(1 + ni), (i = 1, 2).

7. Magnon-induced versus phonon-induced QD exciton dephasing

Due to the different types of vertex interactions responsible for pure dephasing, namely
exciton-phonon (triangle vertex) and exciton-magnon (quadratic vertex), they lead to
significantly different phenomena. Spin conservation in the vertex (during interaction)
requires the participation of two magnons (the exciton spin state remains unchanged), unlike
phonons, in which case single-photon emission or absorption is feasible with the exciton state
unchanged. For magnons, magnon emission must be accompanied by magnon absorption
(in order to balance the loss of spin in the vertex due to the spin wave emission—equation
(33)). Although factors corresponding to the emission (of type [1 + n]) assume non-zero
values even at T = 0 (this is true for phonons as well), the absorption factor (of type n; the
probability of magnon absorption is proportional to the number of magnons) falls to zero for
T → 0, and this is the reason why exciton spin dephasing by magnons becomes smaller and
smaller (→ 0) as the temperature falls to T = 0 (in the case of phonons, dephasing remains
non-zero even at T = 0 due to only phonon emission, even in a phonon vacuum for T = 0).
Moreover, for magnons, n2 << n1 in the limit T → 0 (due to a magnon gap) and therefore
at low temperatures only terms with factors n1(1 + ni) contribute.

At higher temperatures, when the number of thermodynamic magnons (liable to absorption)
increases sufficiently, magnon-induced spin dephasing is as effective as phonon-induced
charge dephasing. The difference between both effects presented herein emphasizes the
fact that spin is more resistant to DMS-magnon-induced dephasing at low temperatures due
to spin conservation constraints in comparison to phonon-induced charge dephasing (which
is strong even at T = 0).

8. Conclusions

In conclusion, we can state that in the case of QDs we deal with a specific type of
phonon-induced phenomenon, which is essentially distinct from the phonon-induced effects
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in bulk semiconductors. This difference is caused by the compatibility of the energy scale
for carriers trapped in QDs with the band-phonon energy scale. Owing to this energy
coincidence, the coupling of carriers in QDs with phonons always meets its strong regime
limit. This coupling cannot be treated perturbatively, in general, and the resonance effects
are of primary importance, resulting in strong polaron-type modifications of the QD electron
and exciton spectra. The typical energy shift due to the formation of electron-polaron is of
the order of 10%, while for exciton-polaron it is of the order of 5% with respect to the bare
energy levels in QDs treated as separated from the environment. The confinement of carriers,
as in the case of QDs, also causes the significant enhancement of the effective Fröhlich
constant due to non-adiabatic effects, which additionally strengthens the electron-LO phonon
interaction. The dressing of the electrons/holes/excitons in QDs with band phonons from
the surrounding crystal induces the dephasing of charge (orbital degrees of freedom) in
QDs (the off-diagonal decoherence). The typical time-scale of this dressing process in the
case of the formation of an exciton-polaron in QDs turns out to be of the one picosecond
time-scale (for a typical QD of 10 nm diameter). This dephasing is caused by the exciton
dressing with LA phonons. Worth noting is the observation that the dephasing due to
LO phonons is considerably smaller and slower—of the 100 ps scale. This phenomenon
is caused by the relatively weak LO phonon dispersion near the Γ point (in the Brillouin
zone), in contrast to the dispersion of LA phonons. Nevertheless, the outflow of the excess
polarization energy to the space region outside the QD, as a typical process during LO
polaron formation, is eventually accelerated by the anharmonic coupling (LO-TA is the most
important anharmonic channel in GaAs), which results in a few ps time-scale. It is important
to note that these effects of QD-charge dephasing by band phonons refer not only to QDs but
also to all nanostructures in solids, because the carrier localization (the space-confinement of
trapped carriers) plays the essential role here.

We have observed also that in magnetically-ordered media (like in DMSs), magnons (spin
waves)play a similar destructive role to phonons. Spin waves cause the dephasing of the
exciton spin in QDs, in a process of the formation of excitons-magnetos-polarons by the
step-by-step dressing of the local spin of exciton in QD with the magnon cloud from the
surrounding magnetically-ordered medium. By using the Green function technique, we have
estimated the time for the dressing of the local exciton spin with band magnons in the case of
DMSs which surround QDs by analogy to the dressing of QD charge (i.e., QD orbital degrees
of freedom) with band phonons from the surrounding crystal. Nevertheless, the significant
difference between these two phenomena is observed and elucidated, namely, in the case
of spin dressing two magnons are needed (creation and annihilation) owing to the spin
conservation in the interaction vertex, which results in the complete freezing (vanishing) of
the spin pure dephasing at T = 0. This is in contrast to the phonon-induced pure dephasing,
which maintains strong even at T = 0.

The dephasing scheme for the exciton charge and spin in QD structures is important for
the feasibility assessment of QIP implementations in QDs. The picoseconds time-rate for QD
charge dephasing probably precludes the feasibility of the implementation of error-correction
schemes for all optically-controlled gates in QD technologies. The dressing of a localized spin
with magnons in a DMS (i.e., the time corresponding to the formation of EMP in a QD) takes
place at a longer time-scale in comparison to dressing charges with phonons, and the related
time-scale is of the order of 150-200 picoseconds due to the relatively weak quadratic magnon
dispersion, similar to as was the case for LO phonons. Nevertheless, the time-rate for QD
spin dephasing induced by magnons in the surrounding DMS is also inconvenient for QIP
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applications, similarly to the case of the dephasing of QD charges by phonons. The overall
time-scale for QD spin kinetics (QD/DMS-embedded structures) is shifted by three-orders
of magnitude to longer periods in comparison to QDs’ orbital degrees of freedom, though
again with the same inconvenient dephasing time-rate falling right in the middle between
the control-timing and the relaxation-timing (which does not allow the satisfaction of the
DiVincenzo conditions). In this way, the ’three-orders time-limit’ caused by the dephasing
phenomena is repeated for spin in the QD/DMS.

The pure dephasing of spin in QD/DMS structures disappears, however, at T = 0, and is
strongly suppressed in amplitude at low temperatures (in contrast to the charge dephasing),
which supports expectations of some advantages of spin degrees of freedom in QDs for QIP
applications.
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