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Abstract

This work includes the results of our research on the measurement of the dose
delivered by an external beam in radiotherapy. The use of scintillating fibers in high-
energy experiments produced rapid and reliable results and allows new dosimeters
to be built and extends their use to measure the dose of an external beam of electrons,
photons, and hadrons in radiotherapy.The chapter starts from the description of the
radiation used in radiotherapy, presents the new approaches and then the tools used
to perform the quality control of therapeutic beams, and finally shows the character‐
istics and differences compared to the traditional quality controls by using our results
on the scintillating fibers used as a dosimeter. Some care should be taken into account
during the collection and processing of data, for the treatment of some systematic
errors in the method. In this chapter, we describe the procedure to be followed.

Keywords: radiotherapy, IMRT, dosimeter, scintillating fibers

1. Introduction

The use of ionizing radiation for the treatment of cancer can be traced back to the discovery of
X-rays and radioactive isotopes by WC Roentgen (1895), H. Becquerel (1896), and M. and P.
Curie (1898). X-rays have been used in clinical medicine since the early years of the twentieth
century [1]. Initially, X-rays used energies required for diagnostic purposes and then higher
energies (180–200 kV) of the photons produced by X-ray tubes developed to treat tumors. The
ability to treat tumors located in deeper tissues was guaranteed later by the development in

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



the 1950s of linear accelerators of electrons with energies of 4–20 MeV and the production of
intense beams of photons with delivery of higher doses [2]. The most important limitation to
their use was the excessive radiation in normal tissue surrounding the tumors. To overcome
this, the approach of multifield treatment plans has been developed to guarantee the dose
necessary for the tumor, thus reducing the high dose to normal tissues. In the same years, the
technology developed to produce accelerators of massive particles allowed therapeutic trials
of protons and ions to kill cancer cells to be started [3]. The development of more powerful
computers allowed treatment plans to be set up with the assistance of the computer, and from
1984, excellent treatment systems with beams of protons and ions for clinical use were realized.
The method of treatment with protons and ions is advantageous for its characteristic of
maximum energy transfer near the stopping point of the particle. Using electrons or photons
the dose delivered is continuously reduced by increasing its depth. For this reason, hadron
beams are preferable for deep tumors. Currently, the systems required for the use of hadrons
are expensive, and there are few centers in the world in which they are available [4]. The
systems that produce beams of electrons and photons are cheaper and have spread widely in
health facilities. They are referred to as “conventional radiotherapy.” Research for the im‐
provement of their use has produced an impact on the treatment method by introducing new
ways to deliver the dose: the intensity-modulated radiation therapy (IMRT) and the volumet‐
ric-modulated arc therapy (VMAT). The new methodologies require more accurate detectors
for measuring the dose delivered and for assuring quality controls of the system used, with
high spatial and temporal resolutions.

2. Ionizing radiation used in radiotherapy

Radiotherapy, also called radiation therapy (RT), indicates the treatment of cancer and other
diseases with ionizing radiation, which are used to deposit energy in tumor cells and directly
or indirectly damage the genetic material (DNA) in the individual cells, making it impossible
for them to continue to grow.

One type of radiation therapy commonly used is with photons, “packets” of energy, or
particles, which, depending on the amount of energy they possess, destroy cancer cells on the
surface of an area or penetrate to tissues deeper in the body. The higher the energy of the
photon beam, the deeper the distance at which a given dose is delivered into the target tissue.

Linear accelerators are generally adopted in Radiotherapy departments to focus ionizing
radiation on a cancer site, and this modality is called external beam radiotherapy (EBR). With
modern radiation equipment, the radiation is focused on the target thanks to a multileaf
collimator (MLC) and a complex sequence of their movements aimed at delivering conformal
dose distribution using static or dynamic position of leaves at different static or dynamic gantry
positions.
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All the above delivery modalities are potentially associated to an on board imaging device in
order to improve the treatment setup reproducibility, thanks to 2D/3D imaging based on kV
or MV-based imaging.

In fact, in radiation therapy, a sharply defined dose distribution minimizes the side effects of
treatment because only small amounts of radiation travel to the surrounding tissues. Gamma
rays are produced spontaneously as certain elements (such as cobalt 60) release radiation as
they decompose, or decay and are another form of photons used in radiotherapy. Each element
decays at a specific rate and gives off energy in the form of gamma rays and other particles.

Another technique for delivering radiation to cancer cells relies on the possibility of placing
radioactive implants directly into a tumor or body cavity and are denoted as brachytherapy,
interstitial, or intracavity irradiation. This technique is also called internal radiotherapy, and
it is appreciated because it is able to deliver high doses concentrated in a small area, generating
a high-dose gradient. Internal radiotherapy is sometimes used for cancers of the tongue, uterus,
prostate, and cervix but in some cases is considered an invasive procedure.

Other proposed approaches include intraoperative irradiation, in which a large dose of
external radiation is directed on to the tumor or tumor bed during surgery, thanks to conven‐
tional use of dedicated mobile linear accelerators. Other investigational techniques include the
particle beam radiation therapy based on the acceleration of proton or ions to treat localized
cancers. The acceleration of these particles requires very sophisticated machines generating
modulated or conformal beams to damage tumor cells. Several of these particles, depending
on their energy, could produce damage radiobiologically more efficacious than conventional
radiotherapy on both tumor and normal tissues, the latter spared by using very conformal
dose distributions.

Other recent radiotherapy modalities are based on radiolabeled antibodies to deliver doses of
radiation directly to the cancer site due the presence of tumor-specific antibodies (radioim‐
munotherapy) or in general radionuclides, which thank to their chemical features or their
direct injection in the target tissue/tumor bed can target more precisely. The success of this
technique will depend upon both the identification of appropriate radioactive substances and
the determination of the safe and effective dose of radiation that can be delivered in this way.

Scientists are also looking for ways to increase the effectiveness of existing radiation therapy
techniques, based on investigational drugs including radiosensitizers, which make the tumor
cells more likely to be damaged, radioprotectors, which protect normal tissues from the effects
of radiation, or anti-angiogenic drug, interfering with the neo-angiogenic process. Hyperther‐
mia, or the use of heat, is also being studied for its effectiveness in sensitizing tissues to
radiation.

3. New methodology in radiotherapy

Radiation therapy (RT) is an integrated part of the modern comprehensive cancer manage‐
ment. Radiotherapy has seen continuous technological improvements since the discovery of
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X-rays in 1895 [5]. The main focus in radiation therapy has always been to increase the level
of precision and accuracy of dose delivery to the tumor target volume while sparing normal
tissue. Remarkable progress has been made in this area, which is especially based on the new
delivery systems, new imaging modalities, and more powerful computers and software. These
include, for external beam radiotherapy (EBR), the development of advanced linear accelera‐
tors, with higher energies and better dose characteristics and skin sparing, as well as smaller
sources for reduced lateral penumbra, which date back to the 1950s [6]. One of the major
advances in radiation oncology in the early 1990s was the application of computer-graphics
technology to CT scanning, when 2D RT was largely replaced by 3D RT, based on CT imaging.
Furthermore, radiation dosimetry based on 3D conformal therapy has been studied more
accurately, and Monte Carlo methodology [7] has been also introduced into the current
calculation for patient dosimetry. Based on EBTR approach, in the first few years of this
century, the next technical step forward consisted of the great interest generated in another
form of conformal treatment planning, that is, intensity-modulated radiation therapy (IMRT).
IMRT allowed better conformation around the tumor and surrounding normal tissue,
involving the delivery of optimized, nonuniform irradiation beam intensities. A uniform dose
distribution can be created around the tumor by either modulating the intensity of the beam
during its journey through the linear accelerator or by using multileaf collimators (MLCs).
IMRT is now available in many clinical departments and can be delivered by linear accelerators
with smaller segments of differing MLC shape, such as in the case of static IMRT, or modulated
by continuously moving MLC, such as in the case of dynamic IMRT [8]. Other derived
techniques include tomotherapy, which uses a dedicated CT scan unit and is well suited to
treat large volumes [9]. This has led to improvements in the therapeutic ratio for several tumor
sites, such as head and neck [10], prostate [11], and gynecological cancers [12]. Volumetric-
modulated arc therapy (VMAT) is an advanced form of IMRT that can be delivered using
conventional linear accelerators with conventional MLC. VMAT can provide highly conformal
dose distribution and improve the IMRT delivery efficiency significantly. The basic concept of
arc therapy is the delivery of radiation by means of a continuous rotation of the radiation source
and allows the patient to be treated from a full 360 beam angle. However, a major advantage
over fixed gantry IMRT is the improvement in treatment delivery efficiency, as a result of the
reduction in treatment delivery time and the reduction in monitor unit (MU) usage, with
subsequent reduction of integral radiation dose to the rest of the body [13, 14]. In the last
decade, there has been a very rapid growth in the clinical application of stereotactic radiosur‐
gery (SRS) and stereotactic body radiation therapy (SBRT). Although the first stereotactic
devices were designed by Leksell [15] for the treatment of intracranial benign or malignant
lesions, and this was the primary indication, technical improvements in SBRT planning have
allowed its use for extracranial lesions [16]. Stereotactic treatment requires strict immobiliza‐
tion, advanced image guidance, and sophisticated treatment planning and delivery systems,
resulting in highly conformal dose distributions that allow decreases in the size of treatment
volumes relative to conventional radiotherapy. This, in turn, allows for delivery of large doses
of radiation per fraction and increased biologically effective doses (BED) beyond those possible
with conventional treatments.
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4. Quality control and dosimetry of the beam

IMRT and VMAT treatments are extremely complex and require patients’ specific quality
assurance be performed to ensure the dose calculated by treatment planning systems to be the
actual dose delivered to the patient at the treatment unit. Guidelines for IMRT commissioning
have been published by AAPM Task Group (TG) 119 [17]. The guidelines established test cases
to benchmark the overall accuracy of IMRT planning and delivery. The AAPM TG 119 relies
on two preliminary tests to evaluate a dose calculating module and four commissioning cases:
test prostate, head and neck (H&N), C-shaped target, and multitarget [17].

Typically, IMRT patient-specific QA is performed on a linac using a homogeneous phantom
and a dose-measuring device to measure the absolute dose in representative points in the
phantom or planar doses. This method requires time on a linac and increases the workload for
medical physicist staff. Unfortunately, it is difficult to replicate patient geometries and
heterogeneity using a phantom-based QA method.

Treatment plan QA software has been proposed to act as an independent plan evaluation and
dosimetry check, thus removing the need to carry out measurements. Unfortunately, this
method does not take into account potential failure during delivery that could affect the
expected fluence flow map generated by linac.

VMAT [14] is an arc-based IMRT to be delivered on a conventional linac provided of MLC.
During arc beam delivery, the dose rate, the speed of the gantry, and the position of the MLC
leaves can be adjusted dynamically. RapidArc and SmartArc are examples of VMAT. For most
of the commercial planning solutions, no more than two arcs are needed to significantly
improve the dose conformity. Rotating the MLC by 45° for VMAT can improve monitor unit
efficiency [18].

Generally, VMAT deliver doses faster than IMRT, generating plans with higher or at least
equivalent quality, with a very few exceptions. Due to necessary synchronization of both dose
rate and gantry motion with MLC movement, it is clear that VMAT involves new and different
QA steps relative to conventional IMRT. This should be reflected in acceptance testing (AT),
commissioning (COM), and routine QA for VMAT. Finally, VMAT uses fewer monitor units
resulting in lower patient total body dose. Plan quality is determined by the number of
independent aperture variations generated by a conversion algorithm to produce the calcu‐
lated fluence maps. Specific controls should be used for this purpose [19].

Testing tools and Devices for VMAT Commissioning include dedicated phantoms, electronic
portal imager or films, dedicated programmed MLC files (provided by vendors), and software
for analysis. Testing protocols should be based on few parameters, defined method, and
appropriate tolerance, supported by documentation or specific QA baselines.

In the Ling et al. paper based on a Varian accelerator for testing, proposed procedures were
based on a good knowledge of the use of log files and relatively simple equipment.

In the Bedford et al. paper an Elekta accelerator was used for testing based on complex and
expensive equipment [20, 21].
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To validate VMAT, the understanding of the limits of planning optimization, gantry rotation,
beam blocking, couch rotation, leaf speed, and collimator settings is a prerequisite.

Machine-specific QA should include the following:

• Accuracy of the MLC leaf positions during VMAT delivery

• Ability of the system to vary accurately the dose rate and gantry speed during VMAT
delivery

• Ability of the system to vary accurately the MLC leaf speed during VMAT delivery

• Tolerances: baselines from commissioning.

The AAPM TG 142 report represents an update on the TG-40 report, specifying new tests and
their tolerance, and added recommendations for not only the new ancillary delivery technol‐
ogies but also for imaging devices that are part of the linear accelerator. In particular, the
imaging devices include X-ray imaging, photon portal imaging, and cone-beam CT.

Deviation from the baseline values could result in suboptimal treatment of patients. Machine
parameters can deviate from their baseline values as a result of many reasons, such as
unexpected changes in machine performance due to machine malfunctioning, mechanical
breakdowns, physical accidents, or component failure. Major component replacement
(waveguide, bending magnet, etc.) or degradation of components due to the aging of machines
may also alter machine performance from the original parameters. These patterns of failure
must be considered when establishing a periodic QA program.

Machines used for SRS/SBRT treatments, TBI, VMAT, or IMRT require different tests and/or
tolerance. Specific tests could be adopted for dedicated machines such as tomotherapy, VERO,
and Cyberknife. For these devices, vendors in some cases provide phantoms and software to
be used, such as black box.

The patient-based QA for irradiation techniques involving spatially dishomogenous fluences
needs 2D/3D arrays of dosimeters or matrixes (such as Mapcheck/Arccheck, seven-29/
Octavius, delta4, MatriXX/Compass, and Gafcromich), EPID-based dosimetric systems
(EPIQA, dosimetry check, and DISO) and online systems attached to linac collimator (compass
AP and DAVID). To be noted, a dosimetry check has been proposed as useful for tomotherapy,
based on measurements from detectors integrated in the accelerators [22–26].

Additional dosimetric issues requiring novel devices/correction factors include the following:
(1) small field dosimetry for which ongoing research suggests diamond-based detectors,
microchambers, and scintillators; and (2) high-fluence irradiations chambers with appropriate
correction factors, alanine, and Gafcromich [27–30].

5. Use of scintillating fibers

Scintillating fibers have been used extensively in experiments of high energy particles. They
were used in detector tracers but primarily in calorimetric detectors to measure the corre‐
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sponding features of hadronic particles and electromagnetic primaries. The measure of the
energy absorbed and the topology of the shower were related to the properties of the incident
particle. In recent years, scintillating fibers have been used to measure the density of energy
absorbed in the fibers directly and hence the dose delivered by a beam of particles used in
radiotherapy. Scintillating fibers have been used in some tests [31–34] in small volumes
coupled to light guides for connection to the electronics of conversion and reading; in other
tests, they were placed in a water phantom or water equivalent to guarantee an accurate
measurement 3D [35–37].

Both the scintillating fibers and the light guides are subjected to the radiation beam in all the
tests mentioned. The production of light for Cerenkov effect is negligible in the scintillating
fibers compared to the scintillation light [38, 39]; it cannot be ignored in the light guides [40].
Systems with subtraction of this contribution were then required [40].

We experimented a different approach using scintillating fibers, performing tests of thera‐
peutic beams of electrons and photons. The detailed description of the material used and some
results have been included in the papers [41–43]. In this chapter, we present the main issues
raised and described in previous works and insert recent results obtained using the detector
in a vertical configuration.

We used a homogeneous plane of scintillating fibers (380 BCF-60 square scintillating optical
fibers produced by Saint Gobain Crystals, each fiber of 0.5 × 0.5 mm2) directly coupled to the
conversion system and reading as shown in Fig. 1.

The fibers are square (0.5 mm per side) and glued in a single ribbon as shown in Fig. 1. To
eliminate optical crosstalk among nearby fibers, each fiber is covered with a white EMA (Extra
Mural Absorber).

The detector has been made using a ribbon of 20 × 20.5 cm2 but with a useful sensitive area of
17 × 20.5 cm2 because 3 cm of the fibers is covered of lead to shield the electronics.

The readout system is composed of photodiodes arranged along four arrays optically coupled
with the fiber bundles.

Figure 1. Scintillating fibers, glued in one ribbon, connected to the four arrays of photodiodes.
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We selected four arrays S8865-128 (Hamamatsu, Shizuoka, Japan), each with 128 photodiodes
with a sensitive area of 0.3 × 0.6 mm2 and a pitch of 0.4 mm assembled as shown in Fig. 1, and
four drivers C9118 (Hamamatsu) for the readout in sequence of the photodiodes.

The linear connection between the response in volts and the energy absorbed in the fibers is
shown in [41].

The detector was tested using a 6-MV photon beam generated through a Varian Clinac 2100
DHX (Varian Medica Systems, Palo Alto, CA, USA) at the Cosenza Hospital (Cosenza, Italy).

The modalities used for the exposition were the same described by Lamanna et al. [43]. The
integration time of 0.3 s was chosen to ensure a dynamic range large enough to have a linear
response from the detector.

Figure 2. Detector response delivering the same dose to the fibers. The channels of the four arrays of photodiode are
shown together with the electronic noise.

The response of the detector to the energy deposited in the scintillating fiber is determined by
various contributions such as the production and the propagation of light in the fibers, the
electronic gain, the coupling between the fibers and the photodiode array, and geometrical
and optical. All these effects have been taken into account measuring a calibration factor for
each photodiode response by exposing the fibers to the same dose, as explained in detail by
Lamanna et al. [43]. We selected a beam of photons with field of view (FOV) 17 × 28 cm2, large
enough to cover half the size of the ribbon along the fiber axis.

The response of the detector is shown in Fig. 2. The choice of an integration time of 0.3 s ensures
a dynamic range wide enough to have a voltage response in the linear region of the electronics
readout. This region is limited between the response of the electronic noise and the saturation
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voltage. A weight for each channel was estimated to normalize the response of the photodio‐
des. All the measurements that follow were calibrated using Equation (1):

( )i i i i i
i Ri

D W V N W
R N

1 with  = ´ - =
-

(1)

The index i is related to the ith photodiodes. Di is the relative calibrated response of the
photodiode. Wi is the calibration factor (weight). Vi is the measure in volts. Ni is the electronic
noise. Ri is the response when all the fibers are exposed to same dose (as shown in Fig. 2). NRi

is the electronic noise associated with the response Ri.

Figure 3. Data taken in two different conditions, (a) red and (b) brown; the same data in blue and green after the cali‐
bration.

In Fig. 3, two distributions of data taken in different conditions and the same data after
calibration are shown. The procedure described was used for the series of measurements that
follow.

6. Dose profile at fixed depth

The dose profile at a fixed depth is reconstructed using an approach very similar to that
adopted in X-ray computed tomography [38], reading 1D radon transformation of the dose
absorbed.
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Figure 4. Setup configuration for the horizontal exposition; the red area describes the beam field of view (FOV). The
fiber ribbon is enclosed between two sheets of polystyrene to ensure the homogeneity top down.

The response of the detector was tested through exposure to a beam orthogonal to the ribbon
surface as shown in Fig. 4. Two passive layers were inserted on the top and bottom of the fibers
of thickness, respectively, of 1.6 and 5 cm. The polystyrene of density 1.05 g/cm3, transparent
to the light as the core of the fibers, was selected to build a homogeneous phantom.

Figure 5. Projected dose at 37 rotating angles around the beam axis. The data are normalized to the maximum value
measured.

The field of view (FOV) of 8 × 8 cm2 was selected. The system was rotated manually around
the beam axis, and the data were collected every 5° for a total of 36 positions from 5° to 180°.
The distribution of doses, on the axis orthogonal to that of the fibers, is shown for each angle
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of rotation in Fig. 5. We observe a variation of the dose and of the width of the distributions,
by varying the angle. Angles with maximum dose and minimum width are 45° and 135°,
corresponding to a fiber orientation in the direction of the diagonals of rectangular FOV of the
beam.

The 36 projections were used to reconstruct the transverse profile of the dose. Using a back-
projection approach without filter, we obtained a poor profile, while the reconstruction, shown
in Fig. 6, top left, seems to be more precise with the introduction of a ramp filter. A better
reconstruction is obtained using the Hann filter, shown in Fig. 6, top right.

Figure 6. Top: dose map reconstruction using a filtered back projection with ramp filter (left) and Hann filter (right).
Bottom: comparison dose profile around Y = 0 measured using an ionization chamber superimposed on the recon‐
structed dose profiles using the back projection with and without filters.

A more accurate comparison is shown at the bottom of Fig. 6 where the reconstructed dose
profiles, around the center of the beam, are superimposed on the profile obtained using the
PTW Freiburg TM31010 ionization chamber. The reconstruction through the back projection
approach with ramp or Hann filter, described in [44, 45], reproduces quite accurately the dose
profile. A more detailed description of the method and some comments are provided by
Lamanna et al. [43].
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7. Percentage depth dose

The delivered dose in depth was measured by rotating the detector in a vertical exposition of
the layer, as shown in Fig. 7.

Figure 7. Configuration of the detector for the vertical exposure.

The photon beam was delivered to the sensitive layer placed between two polystyrene sheets
of 2.5 cm of thickness. An FOV of 6 × 6 cm2 was selected to contain the beam completely all
along the fiber. In this configuration, the dose is measured along a line in the FOV area and a
granularity of 0.5 mm in depth.

The percentage dose in depth (PDD) measured through the fiber detector (b) is superimposed
on those obtained using the PTW TM31010 ionization chamber and the water phantom PTW
MP3 (PTW, Freiburg, Germany) (a) in Fig. 8. The response of the fibers after the calibration is
shown in curve c.

Two features emerge from the comparison of curves a and c:

• Shift of the point of maximum dose

• Different slopes of the curves

The fiber response is in agreement with the ionization chamber after two corrections of the
data. The first correction is reported in Equation (2):

d c
i i i i

i

i

W W

cm

0

0 0

width
PDD * PDD  with  

width
width  6 cm ; width  0.08*width 6 

= =

= = +
(2)
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The integrated doses along each fiber are measured through the scintillating fibers, and the
region of the absorbed dose increases in width as a function of the depths. The behavior is
shown in the left region of Fig. 9, where the profiles of the dose at different depth in water for
a 6-MV photon beam are plotted. The full width at half maximum of the profiles increases
linearly with the depth, as shown on the right of Fig. 9.

Figure 8. Percent dose depth (PDD) as a function of the depth. The blue curve (a) is the PDD measure through ioniza‐
tion chamber and water phantom at AO Cs; the black points (b) are the measured values in Volt; the brown points (c)
are the (b) values, calibrated and normalized to the maximum value; the green points (d) are the (c) values corrected
for width; the red points (e) are the (d) values after the correction of the depths.

Figure 9. Left side: dose profiles at different depths measured through the ionization chamber and a water phantom in
the center of the FOV. Right side: full width at half maximum of the previous profiles as a function of the depth.
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The correction factor Wi guarantees the same integration length for all the fibers at different
depths. The results are shown in curve d of Fig. 8. The slope is close to that of the curve obtained
through the ionization chamber but they are not equal.

The second correction is reported in Equation (3):

( )
( )

i
i i i i

i

IW IW8 82 2C HH O

8 8

ionization H O
Depth Depth  with   

ionization C H
= ´ = (3)

In the assembled configuration to measure the PDD, shown in Fig. 7, both the layer of
scintillating fibers and the passive sheets are mainly made up of transparent polystyrene
(C8H8). The ionization is different from that in the water at the same depth. The correction
factor IW i is needed to find the depth in water corresponding to the ionization measured in
polystyrene.

The factor IW has been measured by exposing two phantoms, a water and a transparent
polystyrene phantom, in the same conditions. We used a beam of electrons of 9 MeV. The
results are shown in Fig. 10. The two behaviors are different. The correction factor in depth IW
has been evaluated to produce a full superposition.

Figure 10. Dose measured through the ionization chamber, in water (black) and in a phantom of transparent polystyr‐
ene (red), at different depths. A correction factor for the depth has been evaluated to superimpose the two sets of data.
The green points are the red points with the correction of the depths using Equation (3).

The layer of scintillating fibers can be used to measure the PDD in a vertical configuration of
the exposure, taking into account that the integration of the dose along the fiber requires the
corrections inserted in Equations (2) and (3).
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8. Conclusions

The new techniques of delivering the therapeutic dose to the tumor tissues with an external
beam require dosimeters that have better spatial and time resolutions than the standard
detectors used in current clinical practice. The properties of scintillating fibers of dimensions
less than 1 mm and their gluing in homogeneous layers allow these requirements to be
obtained. The single-layer 1D can be used to reconstruct the dose profiles XY at a fixed depth,
adopting the tomographic technique of filtered back-projection. The same configuration 1D
may be used to measure the dose profiles in depth by applying the corrections inserted in
Equations (2) and (3).

The final response is quite rapid. The data are acquired in few milliseconds and processed in
2–3 s, using a single layer. This characteristic together with the reduced thickness of two
orthogonal layers in a 2D configuration (1 mm of water equivalent), allow the use of layers of
fibers also online to measure the characteristics of an incident beam (a similar approach was
published in [46]).

The positive results obtained and described in this chapter justify an investment of this
approach and suggest some directions for future developments:

a. Acquisition can be speeded up by automating the process of rotation of the dosimeter.

b. The tomographic reconstruction can be improved by introducing iterative reconstruction
methods available in the literature.

c. A 3D detector can be achieved by assembling layers 1D orthogonally to the beam axis in
a solid phantom.

d. N.B. to realize point c: it is necessary to change the reading system by introducing MPPC
or FPD to the arrays of photodiodes.

Nomenclature

AAPM; American Association of Physicists in Medicine

AT ; acceptance testing

COM ; commissioning

EBR; external beam radiotherapy

EBTR; evidence-based timeline retrospective

FOV; field of view

FPD; flat panel detector

IMRT; intensity-modulated radiation therapy
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MLC; multileaf collimator

MPPC; multipixel photon counters

PDD; percentage depth dose

QA; quality assurance

SRS; stereotactic radiosurgery

RT; radiotherapy

TBI; traumatic brain injury

UM; monitor units

VMAT; volumetric-modulated arc therapy
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