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Abstract

Nature has its ways of resolving imbalances in its environment and microorganisms
are one of the best tools of nature to eliminate toxic pollutants. The process of eliminat‐
ing pollutants using microbes is termed Bioremediation. Metagenomics is a strategic
approach for analysing microbial communities at a genomic level. It is one of the best
technological upgradation to bioremediation. Identification and screening of metage‐
nomes from the polluted environments are crucial in a metagenomic study. This chapter
emphasizes recent multiple case studies explaining the approaches of metagenomics
in bioremediation in different contaminated environments such as soil, water etc. The
second section explains different sequences and function-based metagenomic strategies
and tools starting from providing a detailed view of metagenomic screening, FACS,
and multiple advanced metagenomic sequencing strategies dealing with the preva‐
lent  metagenomes  in  bioremediation  and  giving  a  list  of  different  widespread
metagenomic organisms and their respective projects. Eventually, we have provided a
detailed view of different major bioinformatic tools and datasets most prevalently used
in metagenomic data analysis and processing during metagenomic bioremediation.

Keywords: Metagenomics, Bioremediation, Microbial Metagenomes, Bioinformat‐
ics, Pollution

1. Introduction

From the day humans started invading this planet, Earth has been crammed with numerous
toxic pollutants from multiple sources. Advance scientific technology has given rise to multiple
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tools to reduce pollutants in different ways, and bioremediation is considered to be the best
way to neutralise polluted environments on Earth [1, 2]. In this genomic era, metagenomic
approaches have been developed and are known as effective methods of removing various
kinds of pollutants [3, 4]. Metagenomics is a strategic approach of analyzing microbial
communities at a genomic level. This provides a glimpse of the microbial community view of
“Uncultured Microbiota”. Recent studies suggest that microbial communities are the potential
alternatives to eliminate toxic contaminants from our environment [5-8]. The term metage‐
nomics was coined by Jo Handelsman et al. in 1998. They have accessed the collective genomes
and the biosynthetic machinery of soil microflora during a study of cloning the metagenome
[9]. Bioremediation has always been adapting new advances in science and technology for
establishing better environments. Compared with the previous years, there has been a gradual
increase of interest in metagenomics-based bioremediation studies [10-12]. These studies can
prove that metagenomics is one of the best adaptations of bioremediation leading to the
establishment of a pure nontoxic environment.

In this chapter, we discussed recent approaches of metagenomics in bioremediation with the
help of recent multiple case studies. Preliminarily, we explained the methodology behind
metagenomic analysis, starting from the sample screening and ending up with metagenomic
analysis with respect to bioremediation. Metagenomic bioremediation reviews and extracts
microbial communities applying their extensive biochemical pathways in degrading toxic
pollutants. A part of our study aims to emphasize multiple case studies of metagenomic
applications on air, water, and soil contaminations. Our analysis provided a topic-specific
landscape with respect to metagenomic bioremediation of water contaminations, soil contam‐
inations, and followed by air contaminations. The following part of our study focuses on
recently developed sequence and function-based metagenomic strategies to analyze metage‐
nomes from contaminated environments. In addition to this, our study explains the highly
prevalent metagenomes derived from metagenomic communities which are also highly
capable of degrading contaminations and toxins in the environment. Finally, we provided a
landscape view of multiple bioinformatic tools used in the processing and analysis of meta‐
genomic bioremediation data.

2. Applications of metagenomics in bioremediation

Environmental scientists consider metagenomic bioremediation as one of the potential tools
to remove contaminants from the environment [13-15]. As cited earlier, recent multiple studies
have reported metagenomic approaches in bioremediation. When this was compared with the
other approaches of bioremediation, metagenomic bioremediation provided best outcomes
with better degrading ratios. The results of a recent study emphasized the potential of
metagenomic bacteria derived from petroleum reservoirs [16]. In this study, microbial strains
and metagenomic clones have been isolated from petroleum reservoirs, and petroleum
degradation abilities were evaluated either individually or in pools using seawater artificial
ecosystems. The results showed that metagenomic clones were able to biodegrade up to 94%
of phenanthrene and methyl phenanthrenes with rates ranging from 55% to 70% after 21 days
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[16]. The authors concluded that bacterial strains and metagenomic clones showed high
petroleum-degrading potential.

Metagenomic approaches in bioremediation aid in comprehending the characteristics of
bacterial communities in different kinds of contaminated environments. A metaproteogenom‐
ic study was carried out on long-term adaptation of bacterial communities in metal-contami‐
nated sediments [17]. The aim of this study was to understand the effect of a long-term metal
exposure (110 years) on sediment microbial communities. In this study, the authors selected
two freshwater sites differing by one order of magnitude in metal levels. The samples extracted
from the two sites were compared by shotgun metaproteogenomics which resulted in a total
of 69–118 Mpb of DNA and 943–1241 proteins. The two communities were found to be
functionally very similar. However, significant genetic differences were observed for three
categories: synthesis of exopolymeric substances, virulence and defense mechanisms, and
elements involved in horizontal gene transfer. This study can be considered as a best example
of advanced metagenomic approaches applied in bioremediation of different contaminated
environments.

3. Metagenomic bioremediation of different contaminations

The environment where human activity abounds is being more polluted and contaminated by
different kinds of toxic contaminants [18-20]. The contaminations are diverse and cover almost
all sources of life including water, soil, and air which are considered the most important sources
of life [21-23]. Metagenomic analysis is applied to multiple kinds of polluted environments
primarily soil- and water-contaminated environments [24, 25].

3.1. Metagenomic bioremediation of soil contaminations

Soil contamination is a serious contamination [26, 27] as soil is considered as one of the major
sources of life [28]. Compared with other approaches of bioremediation, microbial and
environmental researches are more inclined in applying metagenomic approaches to biore‐
mediation [10, 29, 30]. A recent case study discusses the metagenomic analysis of arctic soils
contaminated by high concentration of diesel in Canada [31]. As this study was on arctic soils,
the objective framed was to trace out microorganisms and their functional genes which are
abundant and active during hydrocarbon degradation at cold temperature. In this study,
scientists have sequenced the soil metagenome and performed reverse-transcriptase real-time
PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudo‐
monas species were detected as the most abundant organisms in diesel-contaminated soils at
cold environments. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species
actively expressed hydrocarbon degradation genes in arctic biopile soils. The results of this
study indicated that biopile treatment leads to major shifts in soil microbial communities which
favors aerobic bacteria to degrade hydrocarbons [31].
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3.2. Metagenomic bioremediation of water contaminations

Water pollution has dramatically increased in comparison with the conditions of the 20th
century [32, 33]. Metagenomic application in the bioremediation of water contamination is one
of the best ways to reduce water contaminations [34-37]. Recent multiple case studies suggest
that metagenomic applications have been widely used for the identification and treatment of
pollutants and contaminations in the sea, ground water, and drinking water [34-37]. A recent
research performed at the Gulf of Mexico beaches precisely talks about the longitudinal
metagenomic analysis of water and soil affected by deepwater horizon oil spill [34]. Approx‐
imately 7×105 cubic meters of crude oil were released into the Gulf of Mexico as a consequence
of deepwater horizon drilling rig explosion, where thousands of square miles of the earth’s
surface were covered in crude oil. During this study, researchers performed high throughput
DNA sequencing of close-to-shore water and beach soil samples before and during the
appearance of oil in Louisiana and Mississippi. The sequencing results have identified an
unusual increase in the human pathogen Vibrio cholera, a sharp increase in Rickettsiales sp., and
decrease of Synechococcus sp. in water samples [34]. In addition, a metagenomic analysis was
also performed for the bioremediation of hexavalent chromium-contaminated water that
existed in fixed-film bioreactor [38]. This study talks about hexavalent chromium (Cr6+)
contamination from a dolomite stone mine in Limpopo Province, South Africa, causing
extensive groundwater contamination. To restrict any further negative environmental impact
at the site, an effective and sustainable treatment strategy for the removal of up to 6.49 mg/l
Cr6+ from the groundwater was developed. The microbial community shifted in relative
dominance during operation to establish an optimal metal-reducing community, including
Enterobactercloacae, Flavobacterium sp. and Ralstonia sp., which achieved 100% reduction. This
study provides a glimpse of effective demonstration of a biological chromium (VI) bioreme‐
diation system [38].

4. Metagenomic strategies and tools for bioremediation

Advanced scientific technology has given rise to the advancements in research tools applied
in different fields of scientific research [39]. These technologically advanced inventions have
driven scientific  researchers  towards finding out some unrevealed things of  nature [40].
Multiple  technologies  have  started  getting  embedded  to  metagenomics  for  a  better
understanding  of  biological  and  life  sciences  [41].  Thus,  in  this  section,  we  have  dis‐
cussed recent major metagenomic strategies and tools applied in the process of metagenom‐
ic bioremediation.

4.1. Screening of metagenomes from polluted environments

Identification and screening of metagenomes from polluted environments are crucial in a
metagenomic study. The microbial community interaction can be detected precisely when
metagenomes are finely screened from a contaminated environment. A methodology pro‐
posed from a recent study [42] suggested an updated technology of high throughput genetic
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screening of a soil metagenomic library. The study was initiated by adding a typical compo‐
sition of oligonucleotide probes to soil metagenomic DNA for hybridization. The pooled radio-
labeled probes were designed to target genes encoding specific enzymes. The soil metagenomic
DNA of fosmid clone library were spotted on high-density membranes before the addition of
oligonucleotide probes. This next step was followed by affiliation of positive hybridizing spots
to the corresponding clones in the library and sequencing of metagenomic inserts.

Figure 1. An ideal systematic workflow of steps involved in contaminated-soil metagenomics.
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When assembly and annotation were completed, new coding DNA sequences related to genes
of interest were identified with low protein similarity against the closest hits in the databases.
This work basically highlights the sensitivity of DNA/RNA hybridization techniques as an
effective and complementary way to recover novel genes from large metagenomic clone
libraries with respect to soil microbiota. Nevertheless, multiple molecular biological-based
techniques [43] may also be applied during the process of metagenome extraction and
screening. The basic workflow of extracting metagenomes out of contaminated soil has been
explained in Fig. 1. The steps were initiated by collecting contaminated soil from the environ‐
ment. The collected contaminated soil sample can be processed in two ways; one is by direct
cell lysis and DNA purification and second, by separation of cells from contaminated soil and
then followed by cell lysis and DNA purification. The isolated DNA is then cloned using
specific cloning vectors. The cloned contaminated soil DNA is then delivered into host cells
using different gene delivery systems. The multiplied host cells containing contaminated soil
DNA forms a Metagenome library and these contaminated soil metagenomes were then
screened. A recent study conducted screening of biosurfactant producers from petroleum
hydrocarbon contaminated sources in cold marine environments. In this study, the researchers
have isolated and characterized 55 biosulphant microbiota of 8 different genera including 1
Alcanivorax, 1 exiguobacterium, and 2 halomonas strains [44].

4.2. Florescence-Activated Cell sorting (FACS)

Florescence-activated cell sorting is one of the most widely used cell sorting techniques which
is applied to sort microbial cells based on florescence during the process of metagenomic
screening [45], with an accuracy rate of 5,000 cells per second [46]. Figure 2 shows the schematic
flow of SIGEX and intercellular biosensors methods. High-throughput screening does not
require a selectable phenotype. This phenomenon has led to the focus on phenotypes such as
pigments that are readily visible providing the use of fluorescence-activated cell sorting.
Moreover, FACS can be used to detect expression of certain types of genes by regulation of a
fluorescent biosensor present in the same cell as the metagenomic DNA [47, 48]. Hence, these
screen methods will be a critical tool for rapid selection of cells from metagenomic libraries.

4.3. Metagenomic sequencing strategies

Genome sequencing technologies have been frequently upgraded [49] since the completion of
the human genome at the beginning of the 21st century [50]. Multiple next-generation genomic
sequencing strategies are applied to sequence the metagenomes of different microbial
communities [51, 52]. Sequencing technologies were initiated by the Sangers sequencing
method which was widely used during the process of human genome sequencing [53, 54].
Technological drift has gifted next-generation sequencing techniques like pyrosequencing [55,
56], ligation sequencing [57, 58], reverse terminator [60, 61], and single-molecule sequence by
synthesis [62, 63], providing a high throughput that reads comparatively in less time [64-66].
A comparative overview of recent sequencing technologies applied in metagenome sequenc‐
ing is provided in Table 1 for a more detailed understanding. However, most metagenomics
researchers prefer the pyrosequencing method for sequencing the metagenomes of microbial
communities [67-70].
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Sequence
Reaction Method

Read
Length

Amplification
Data
Production

Templates
per run

Commercially
Available as

Sanger’s Method ~900 to 1,100 PCR 1 Mb per day 96 ABI 3730xl

Pyrosequencing ~400 Emulsion PCR
400 Mb per run in
7.5 to 8 hours

1,000,000 454 FLX Roche

Reverse Terminator 36 to 175 Bridge PCR
>17 Gb per run in
3 to 6 days

40,000,000
Illumina SOLEXA
Genome Analyser

Ligation Sequencing ~50 Emulsion PCR
10 to 15 Gb per
run in 6 days

85,000,000 ABI SOLiD

Single Molecule
Sequence by
Synthesis

30 to 35 None
21 to 28 Gb per
run in 8 days

800,000,000 Helicos Heliscope

Table 1. A Comparative overview of next-generation sequencing technologies applied in metagenome sequencing

5. Prevalent metagenomes for bioremediation

Metagenomes extracted from uncultured microbial communities from multiple contaminant
sites are screened and further identified for degrading properties [71]. Microbial communities

Figure 2. Systematic workflow representing the examples of high-throughput screens of (A) SIGEX and an (B) intracel‐
lular biosensor. SIGEX exploits the principle that catabolic genes are often substrate-induced by fusing a promoterless
GFP to the metagenomic DNA and identifying clones in which GFP production is induced by the substrate of interest.
An intracellular biosensor detects biologically active small molecules. GFP expression is dependent on the presence of
a small molecule that activates a regulator. Finally, FACS is used to sort the GFP+ and GFP- cells separately.
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vary according to the characteristics of source and site of contamination [72]. A metagenomic
analysis conducted on the heavy metal-contaminated groundwater revealed metagenomes of
γ- and β-Proteobacteria dominated by Rhodanobacter-like γ-proteobacterial and Burkholderia-
like β-proteobacterial species from the habitat of extremely high levels of uranium, nitrate,
technetium and various organic contaminants [73]. Moreover, multiple metagenome projects
have been taking place around the world; we have sorted out a list of multiple environmental
metagenome projects with top microbe having the highest percentage of presence in the
metagenomic community (Table 2). Studies on microbial adaptation of toxic environments
may give rise to trace new metagenomic communities useful for efficient bioremediation.
Specific functions and interactions of microbial communities with respect to contamination-
degrading capabilities can be a result of environmental-based gene switching in the metage‐
nomes.

Top Phylum
Percentage of
Presence in
Community

Domain Metagenome Projects Source

Actinobacteria 38.04 Bacteria BASE - Biomes of Australian Soil
Environments

Soil

Chlorobi 56.04 Bacteria Antarctica Aquatic Microbial
Metagenome

Environmental

Actinobacteria 38.21 Bacteria American Lake Mendota metagenome Water

Proteobacteria 31.62 Bacteria Swedish Lake Vattern metagenome Water

Proteobacteria 29.68 Bacteria Detoxification of arsenic mediated by
microbial sulphate reduction in
Mediterranean marine sediments

Environmental

Proteobacteria 48.12 Bacteria Illumina and 454-based
metatranscriptomic analyses of a
diatom-induced bacterioplankton
bloom in the North Sea

Environmental

Unassigned Bacteria 34.8 Bacteria Functional metagenomic profiling of
Tibetan Plateau soils affected by
permafrost or seasonal freezing

Soil

Euryarchaeota 22.71 Archaea Lonar Lake Sediment prokaryotic
metagenome

Water

Unassigned Bacteria 53.84 Bacteria Metagenome of a microbial consortium
obtained from the tuna oil field in the
Gippsland Basin, Australia

Environmental

Actinobacteria 27.1 Bacteria Meta soil Soil

Table 2. List of multiple environmental metagenome projects with top microbe having the highest percentage of
presence in the metagenomic community

Advances in Bioremediation of Wastewater and Polluted Soil80



6. Bioinformatic tools for metagenomic bioremediation

In the last two decades, bioinformatics has been advanced and simultaneously adapted to
multiple fields of science such as basic sciences and advanced applied sciences [74]. Our
previous study has given a glance of basic applications of bioinformatics in bioremediation
[75]. Bioinformatics holds multiple tasks in the field of metagenomic bioremediation, majorly
during metagenomic data analysis [76, 77]. A special issue on bioinformatics approaches and
tools for metagenomic analysis has provided an advanced view towards comprehensive
bioinformatic tools and methodologies used in metagenomics [78].

Multiple metagenomic projects are generating a large chunk of metagenomic sequence data
challenging bioinformatics to develop more robust and better tools to analyze metagenomic
sequence data. A recent study reveals the metagenomic characterization of soil microbial
community using metagenomic approaches [79]. In this study, researchers have used 33
publicly available metagenomes obtained from diverse soil sites and integrated some state-of-
the-art computational tools to explore the phylogenetic and functional characteristics of the
microbial communities in soil. Recently, multiple advancements have taken place in the field
of bioinformatics with respect to metagenomic bioremediation. In this section, most of our
study focuses on recent bioinformatic tools and datasets majorly used in the analysis of
metagenomic data in bioremediation. A comparative overview of functions and suitability of
mostly used tools for metagenomic analysis is given in Table 3.

6.1. MEGAN

Meta Genome Analyzer (MEGAN) is one of the most widely used software tools for efficiently
analyzing large chunks of metagenomic sequence data [80, 81]. This tool is most preferably
used to interactively analyze and compare metagenomic and metatranscriptomic data,
taxonomically and functionally. To perform taxonomic analysis, the program places reads onto
the NCBI taxonomy and functional analysis is performed by mapping reads to the SEED, COG,
and KEGG classifications. In addition, samples can be compared taxonomically and function‐
ally, using a wide range of charting and visualization techniques like co-occurrence plots. This
software also performs PCoA (Principle Coordinate Analysis) and clustering methods
allowing high-level comparison of large numbers of samples [82]. Different attributes of the
samples can be captured and used during analysis. Moreover, MEGAN supports different
input formats of data and is capable of exporting the results of analysis in different text-based
and graphical formats. Multiple methods of analysis, acceptance and comparison of high
throughput data, robustness and being easy-to-handle are some of the features that made
MEGAN as one of the most used metagenome analyzers.

6.2. SmashCommunity

Simple Metagenomics Analysis SHell for microbial communities (SmashCommunity) is a
stand-alone metagenomic annotation and analysis pipeline that shares design principles and
routines with SmashCell [83]. It is suitable for data delivered from Sanger and 454 sequencing
technologies. It supports state-of-the-art software for essential metagenomic tasks such as
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assembly and gene prediction. It also provides tools to estimate the quantitative phylogenetic
and functional compositions of metagenomes, to compare compositions of multiple metage‐
nomes, and to produce intuitive visual representations of such analyses [84]. It provides
optimized parameter sets for Arachne and Celera for metagenome assembly, and GeneMark
and MetaGene for predicting protein coding genes on metagenomes. SmashCommunity also
includes scripts for downstream analysis of datasets. They can generate intuitive tree-based
visualizations of results using the batch access API of the interactive Tree of Life (iTOL) web
tool. SmashCommunity can also compare multiple metagenomes using these profiles, cluster
them based on a relative entropy-based distance measure suitable for comparing such
quantitative profiles, perform bootstrap analysis of the clustering, and generate visual
representation of the clustering results.

6.3. CAMERA

Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis
(CAMERA) is a database and associated computational infrastructure that provides a single
system for depositing, locating, analyzing, visualizing, and sharing data about microbial
biology through an advanced web-based analysis portal [85]. CAMERA holds a huge chunk
of data including environmental metagenomic and genomic sequence data, associated
environmental parameters, pre-computed search results, and software tools to support
powerful cross-analysis of environmental samples. CAMERA works on a pattern of collecting
and linking metadata relevant to environmental metagenome datasets with annotation in a
semantically aware environment that allows users to write expressive semantic queries to the
database. It also provides data submission tools to allow researchers to share and forward data
to other metagenomic sites and community data archives. CAMERA can be best considered
as a complete genome-analysis tool allowing users to query, analyze, annotate, and compare
metagenome and genome data [86].

6.4. MG-RAST

Rapid Annotation using Subsystems Technology for Metagenomes (MG-RAST) is an auto‐
mated analysis platform for metagenomes, providing quantitative insights into microbial
populations based on sequence data [87]. This pipeline performs quality control, protein
prediction, clustering, and similarity-based annotation on nucleic acid sequence datasets using
a number of bioinformatic tools. Users can upload raw sequence data in FASTA format; the
sequences will be normalized and processed, and summaries will be automatically generated.
The MG-RAST server provides several methods of access to different data types, including
phylogenetic and metabolic reconstructions, and has the ability to compare metabolism and
annotations of one or more metagenomes and genomes. In addition, the server also offers a
comprehensive search capability. The pipeline is implemented in Perl by using a number of
open-source components, including the SEED framework, NCBI BLAST, SQLite, and Sun Grid
Engine.
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Suitability SmashCommunity MG-RAST IMG/M RAMMCAP MEGAN MOTHUR

Single Genomes - - + + - -

Single Cell
Genomes

- - - - - -

Shotgun
Metagenomes

+ + + + + -

16S rDNA
Metagenomes

+ + - + + +

Functions

Assembly + - + - - -

Gene Prediction + - + + - -

Functional Analysis + + + + + -

Taxonomy
Assignment

+ + + + + +

Comparative
Analyses

+ + + + + +

Data Management + - + - - -

+Yes, -No

Table 3. A comparative overview of functions and suitability of mostly used tools for metagenomic analysis

6.5. IMG/M

Integrated Microbial Genomes and Metagenomes (IMG/M) system supports annotation,
analysis, and distribution of microbial genome and metagenome datasets. IMG/M provides
comparative data using analytical tools extended to handle metagenome data, together with
metagenome-specific analysis [88, 89]. IMG/M consists of samples of microbial community
aggregate genomes integrated with IMG’s comprehensive set of genomes from all three
domains of life: plasmids, viruses, and genome fragments. Function-based comparison of
metagenome samples and genomes is provided by analytical tools that allow examination of
the relative abundance of protein families, functional families or functional categories across
metagenome samples and genomes. It seems like registered users can gain more advantage
out of IMG/M as the tools focus on handling substantially larger metagenome datasets, are
available only to registered users as part of the ‘My IMG’ toolkit, and support specifying,
managing, and analyzing persistent sets of genes, functions, genomes or metagenome samples
and scaffolds.

7. Summary

Metagenomics is a strategic approach for analyzing microbial communities at a genomic level.
This gives a glimpse towards the microbial community view of “Uncultured Microbiota”.
Bioremediation has always been adapting new advances in science and technology for
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establishing better environments, and metagenomics can be considered as one of the best
adaptations ever. Identification and screening of metagenomes from the polluted environ‐
ments are crucial in a metagenomic study. The second section emphasizes recent multiple case
studies explaining the approaches of metagenomics in bioremediation. Accordingly, the third
section speaks about metagenomic bioremediation in different contaminated environments
such as soil and water. The fourth section explains different sequences and function-based
metagenomic strategies and tools starting from providing a detailed view of metagenomic
screening, FACS, and multiple advanced metagenomic sequencing strategies. The fifth section
deals with the prevalent metagenomes in bioremediation giving a list of different prevalent
metagenomic organisms and their respective projects. The last section gives a detailed view
of different major bioinformatic tools and datasets most prevalently used in metagenomic data
analysis and processing during metagenomic bioremediation.
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