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Abstract

Ovarian cancer is among the most common cause of cancer death and ranks first
in the number of deaths each year in the field of gynaecological malignancies. This
is  due  to  its  late  diagnosis  and  the  development  of  chemoresistance.  Platinum
derivates,  including cisplatinum and carboplatin  in  combination with paclitaxel,
are  the  first-line  chemotherapeutic  agents.  Platinum  derivates  irreversibly
intercalates  into  the  DNA  and  creates  inter-  and  intra-strand  DNA  cross-links.
During  cell  division,  platinum-DNA-adducts  block  the  replication  machinery,
inducing  DNA  damage  and  apoptosis.  Nearly  all  patients  respond  to  first-line
chemotherapy  before  it  comes  later  to  recurrence  of  the  disease.  At  time  of
recurrence,  tumours  are  usually  more  aggressive,  form metastasis  in  secondary
tissues and acquire resistance to conventional chemotherapeutics. Drug resistance
is a common problem in tumour therapy not only restricted to ovarian cancer. It
is characterized by gene mutations, increased DNA repair, reduced drug efficacy
and enhanced drug clearance and detoxification. Up to now the complex molecular
mechanism of chemoresistance is not well understood. Increasing evidence points
towards AKT over-expression and alteration of the PI3K/AKT/mTOR cascade as a
central mechanistic reason for this resistance.
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1. Introduction

There were 14,1 million new cancer cases, 8,2 million cancer deaths and 32,6 million people
living with cancer (within 5 years of diagnosis) in 2012 world-wide [1].

Gynaecological tumours are among the most common cause of cancer death and currently
causing more than 100,000 deaths per year [2]. Ovarian cancer is an important public health
problem because it has the highest tumour-associated mortality of gynaecological malignan‐
cies and 239,000 women have been diagnosed with ovarian cancer in 2012 [2]. Furthermore
there has been no appreciable improvement in survival for woman with advanced ovarian
cancer over the past 40 years. The survival of ovarian cancer is poor and more than 70% of
cases are diagnosed at late stage.

In ovarian cancer treatment platinum-based chemotherapy plays a pivotal role as first-line
chemotherapy option alone or in combination with taxane [3]. Therefore platinum-resistance
is the most crucial problem for treating ovarian cancer. Increasing evidence points towards
AKT over-expression and alteration of the PI3K/AKT/mTOR cascade as a mechanistic reason
for this resistance.

This chapter provides a short overview of the PI3K/AKT/mTOR-signalling network by
summarizing in-vitro cell culture based studies that confirm the role of AKT as an important
mediator of platinum resistance. The rationale for targeting this pathway in cancer will be
discussed with a special focus on tumour immunological aspects also based on in-vitro studies.
Moreover the PI3K/AKT/mTOR-signalling cascade other general mechanisms of resistance
will be shortly addressed. Platinum-resistance can be also caused by differential expression of
microRNAs as well as by detoxification of bioactive platinum-complexes by sulphur-contain‐
ing peptides or proteins, cellular compartmentation, increased DNA repair and alteration in
apoptotic signalling pathways [4]. Furthermore diminished drug accumulation caused by
reduced uptake or increased efflux of platinum compounds via heavy metal transporter can
result in platinum therapy failure [4].

A better understanding of the molecular mechanisms causing cancer therapy-resistance might
result in new therapeutic options for patients suffering from tumours.

2. Phosphatidylinositol-3-Kinase (PI3K)/AKT/mTOR-signal transduction
pathway

One of the most frequently altered signalling pathways involved in cancer as well as in
development of resistance especially in ovarian cancer is the PI3K/AKT/mTOR pathway.

PI3K is a member of the lipid-kinase-family that can phosphorylate the 3´-OH-group of
inositolphospholipids as phosphatidylinositol-4,5-bisphosphate (PIP2) which is converted into
the second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) [5]. According to
different protein structure of the catalytic subunit, PI3Ks are subdivided into three classes.
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Class I PI3Ks are the most studied class of PI3K and the most interesting with regard to
signalling in tumours. Class I PI3Ks are activated by extracellular signal transduction via
receptors with tyrosine-kinase activity or via G-protein coupled receptors (GPCR). In tumour
cells growth-factors that bind to the specific receptors activate class 1 PI3Ks and this results in
inhibition of autophagy [6].

PI3K activity is associated with cytoskeletal organization, cell division, inhibition of apoptosis
and glucose uptake [7-9]. The second messenger PIP3 in turn activates in the PI3K/AKT-
pathway different proteins like AKT (protein kinase B), a serine-threonine kinase [5, 10].
PIP3 itself is reconverted in PIP2 via different phosphatases especially PTEN and SHIP [5]. AKT
is the key protein in the PI3K/AKT signalling pathway; it binds PIP3 over the plekstrin-
homology-domain (PH-domain) and by this AKT translocates to cell membrane where it
interacts with various phospholipids [10]. Cell membrane bound AKT is phosphorylated by
phosphoinositide-dependent kinase-1 (PDK1) at threonine 308 and by PDK2 at serine 473 [5,
10, 11]. AKT can also be activated by mTOR2 [5, 12]. Phosphorylated AKT is the active form
that modulates and regulates a huge range of proteins involved in diverse cellular processes
such as cell cycle regulation, cell proliferation and cell viability [13]. Phosphorylation of AKT
can be blocked by the carboxy-terminal modulator-protein (CTMP) and by this preventing the
AKT activation as well as further signal transduction [5]. Phosphorylated AKT activates
another serine-threonine-kinase, the mammalian target of rapamycin (mTOR) an important
regulator for translation, cell growth and cell cycle [14, 15]. Furthermore mTOR has an
important role in regulation of autophagy [6, 16, 17].

In general the PI3K/AKT-signal transduction pathway is of pivotal importance for mediating
and controlling several cellular processes including cell growth, cell proliferation, survival,
motility, adhesion, migration, differentiation, metabolic processes and cell cycle progression
in cells [18, 19]. Amplifications, mutations, translocations and deregulation result in aberrant
activation of this pathway [5, 20-23]. Furthermore the loss-of-function caused by mutation or
deletion of phosphatase and tensin homolog (PTEN) protein results in an increased activity of
the PI3K/AKT pathway [6]. The PTEN protein acts as a phosphatase and dephosphorylate
PIP3, resulting in the biphosphate product PIP2. The dephosphorylation is essential as it
triggers the inhibition of the AKT signalling pathway [24, 25].

3. Alteration of the PI3K/AKT/mTOR-signal transduction pathway in
tumours

Recent studies indicate that numerous components of the PI3K/AKT/mTOR-pathway are
deregulated by amplification, mutation and translocation more frequently than any other
pathway in cancer patients with resultant activation of this pathway [20].

Both genetic and biochemical data suggest that activation of the PI3K/AKT/mTOR survival
pathway contributes to ovarian cancer development and tumourigenesis [15]. Such activation
is caused by different mechanisms and one mechanism is somatic alterations in PI3KCA gene
that have been found in a substantial fraction of ovarian cancers [26]. PIK3CA amplifications

Analysing Molecular Mechanism Related to Therapy-Resistance in In-vitro Models of Ovarian Cancer
http://dx.doi.org/10.5772/60727

169



are present in 40% of ovarian cancers [19]. Furthermore, activation of PI3K/AKT/mTOR signal
transduction pathway is caused by mutations in the gene coding for PIK3CA. Another
alteration that results in increased activity of the PI3K/AKT/mTOR pathway is PTEN loss-of-
function. PTEN loss is observed in about 7% of all ovarian cancer cases and it seems to be more
common in type I ovarian tumours [27-32].

For AKT a point-mutation in the PH-domain has been detected in ovarian cancer [33]. This
point-mutation results in conformational change of the PH-domain so that AKT can be
activated without the presence of PI3K [33].

Deregulation, mutation or over-expression of cell surface receptors can also result in an
increased activity of the PI3K/AKT/mTOR signalling pathway in ovarian cancer [34]. Further‐
more Ras mutations are found in 20% of low-grade ovarian cancers [35]. Since Ras has been
shown to activate both the Ras/Raf/MEK/ERK and the PI3K/AKT/mTOR pathways, mutations
of Ras should theoretically activate both pathways simultaneously. Nevertheless so far it has
not been evaluated in detail if Ras mutations can result in an increased activity of the
PI3K/AKT/mTOR-signalling pathway. Although one study demonstrates that some Ras
mutations result in deregulated PI3K and downstream AKT activation [36]. Beside Ras
mutations also the over-expression of several other proteins e.g. Rab25 [37], Twist2 [38] or
MyD88 [39] seems to enhance activation of AKT. The fact that AKT can be activated by a
number of different proteins underlines the key role of AKT signalling under physiological
and pathophysiological conditions. As evidence, in human specimens of ovarian cancer AKT
was found to be activated in 68% of cases [40].

4. Effects of altered PI3K/AKT/mTOR-signal transduction pathway in
tumours

As mentioned before, AKT is an important regulator of various cellular pathways that promote
cell survival, cell proliferation, angiogenesis and invasion. Furthermore, the epithelial-
mesenchymal-transformation, an important step for tumour metastasis, has been shown to be
related to AKT activation [41]. Deregulation of components of the PI3K/AKT-cascade not only
contributes to ovarian cancer development and tumourigenesis but also to chemotherapeutic
drug and radiation resistance as it was recently shown [4, 5, 18, 42-56]. The sensitivity of cells
to radiation and chemotherapeutic drug-induced apoptosis is determined by the balance
between cellular survival and apoptosis [5, 12]. Due to the well-known anti-apoptotic role of
AKT, an AKT over-expression in cancer cells might be related to increased resistance to
radiation and chemotherapy.

Beside the PI3K/AKT/mTOR signalling cascade other general mechanisms of resistance exist.
However in this chapter other possibilities of platinum-resistance will be mentioned only
shortly.

In general diminished drug accumulation caused by reduced uptake or increased efflux of
platinum compounds via heavy metal transporter can result in platinum therapy failure [4].
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Furthermore in some resistant cell lines with increased cisplatinum efflux an increased
intracellular pH was detected [57]. Intra-cellularly, cisplatinum´s chlorides are replaced by
neutral hydroxyl or highly reactive positively charged aqua groups, with the pKa for the
interconversion between chloro-hydroxy and chloro-aqua species being 6.56 [58]. Hence, if
intracellular pH is high, a higher proportion of drug may be represented in the uncharged
chloro-hydroxy form, with increased passive efflux of this form.

Another general resistance mechanism is detoxification of bioactive platinum-complexes by
sulphur-containing peptides or proteins. Increased glutathione (GSH) level has been shown
to cause resistance by binding and inactivating cisplatinum, enhancing DNA repair and
reducing cisplatinum-induced oxidative stress [59-62].

Increased DNA repair and reduced apoptotic response are further possible reasons for
platinum resistance [4, 63]. Cisplatinum may induce apoptosis through the Fas/Fas ligand
signalling complex (with activation of caspase-8, then caspase-3), or by mitochondrial cyto‐
chrome-c release [64]. In the presence of ATP and cytochrome-c, apoptotic-protease-activating-
factor-1 (Apaf-1) activates caspase-9, with subsequent caspase-3 activation [64]. Cisplatinum
may also kill via a caspase-3 independent apoptotic pathway, by a defective apoptotic pathway
or by necrosis [64]. Caspase-3, -8 and -9 are important in cisplatinum-induced apoptosis [62].
A cisplatinum-resistant cell showed global down-regulation of caspase and Bax expression,
but increased Bcl-2 [65].

Recent reports describe that platinum-resistance can be also caused by differential expression
of microRNAs (miRNAs) [66-69]. miRNAs belong to the family of small non-coding RNAs;
they are generally 21-25 nucleotides long and play key role in post-transcriptional modulation
of gene expression thus representing fine regulators in tumour development and progression
as well as response and resistance to anti-tumour agents [70]. miRNA-152 was identified as an
autophagy-regulating miRNA down-regulated in cisplatinum-resistant cell lines and also in-
vivo in ovarian cancer tissues reduced expression has been associated with cisplatinum-
resistance. miRNA-152 regulates autophagy by targeting ATG14 the key player in
orchestrating autophagy. Thus over-expression of miRNA-152 sensitized cisplatinum-
resistant ovarian cancer cells by reducing cisplatinum-induced autophagy, enhancing cispla‐
tinum-induced apoptosis and by inhibition of cell proliferation [69]. Microarray analyses have
been used to identify miRNAs involved in cisplatinum-resistance and it was demonstrated
that miRNA-21-3p over-expression, the passenger strand of the known oncomiR 5p, increased
resistance to cisplatinum in a range of ovarian cell lines [66]. Furthermore a high level of
miRNA-490-3p expression was identified as involved in the development of drug resistance
against paclitaxel [68]. Another miRNA, miRNA-449a, was found to be down-regulated in
cisplatinum-resistant ovarian cancer cells and NOTCH1 was identified as direct target of its
modulation [67]. Therefore it is evident that down-regulation as well as over-expression of
miRNAs can result in resistance to anti-tumour agents. Recently it was demonstrated that
miRNAs involved in platinum-resistance are directly involved in regulation of PTEN, AKT or
other downstream molecules of the PI3K/AKT pathway [71-79].

The evidence that members of the PI3K/AKT/mTOR pathway are regulated by miRNAs
involved in platinum-resistance increases the importance of the PI3K/AKT/mTOR signalling
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cascade as therapeutic target. Therefore inhibition of PI3K/AKT/mTOR signalling in ovarian
carcinomas appears a promising target to enhance the efficacy of anticancer agents such as
cisplatinum and to overcome the resistance of tumour cells against therapy. This hypothesis
was tested in different preclinical in-vitro studies. Cancer cell lines are frequently used as in-
vitro tumour models especially for analyzing and studying the effects related to a single gene
modification. Nowadays approximately 100 ovarian cancer cell lines are publicly available
[80]. Some of these cell lines are known to be platinum resistant e.g. SKOV-3/DDP and Caov-3.
Among different ovarian cancer cell lines established there are also the parental A2780 cells
and the cisplatinum-resistant A2780cis cells [81]. Both cell lines are p53 and K-Ras wild-type
and they share the same genetic background. The cisplatinum-resistant A2780cis cell line has
been developed by chronic exposure of the parental cisplatinum-sensitive A2780 cell line to
increasing concentrations of the chemotherapeutic agent [81]. These cell lines are excellent
models for analyzing the molecular basis for cisplatinum resistance in ovarian cancer [47-49,
82-85]. According to these studies AKT over-expression in ovarian cancer is strongly related
to platinum resistance in this specific tumour [37, 47, 86]. It was shown that high AKT protein
expression is strongly associated to cisplatinum-resistant A2780cis cell line compared to the
parental A2780 cell lines [47, 48]. The platinum resistance in A2780cis cell line could be
overcome by AKT down-regulation via siRNA [47]. This was demonstrated in several
functional in-vitro assays, e.g. clonogenicity assays and irradiation assays (Figure 1), as by
determination of the apoptosis rate. Furthermore the cytotoxicity of cisplatinum was ad‐
dressed in proliferation assays. Stable increase of AKT amount in the cell lines results in an
increased IC50 value for cisplatinum whereas a stable decrease of AKT results in an increased
accessibility for cisplatinum treatment [47].

However in the same isogenic model it was shown that AKT-over-expression was able to
transform platinum-sensitive A2780 cells into platinum-resistant. On the contrary, platinum-
resistance of A2780cis cells could be reversed by down-regulation of AKT [47]. FACS analysis
demonstrated also that cisplatinum induces cell cycle arrest predominantly in the S and the
G2/M phase but also in the G1 phase regardless of the AKT-expression status (Figure 2).
However, required doses of cisplatinum to induce cell cycle arrest were progressively higher
in cell lines with AKT over-expressed [47, 87].

As already mentioned above the sensitivity of cells to radiation and drug-induced apoptosis
is determined by the balanced expression between pro-apoptotic and anti-apoptotic proteins
[5, 12]. Therefore the effect of the PI3K/AKT cascade on pro-apoptotic protein like BAD, a
known substrate of AKT, has been studied in both cisplatinum-resistant Caov-3 and sensitive
A2780 human ovarian cancer cells [88]. Treatment of Caov-3 and A2780 cells with cisplatinum
was able to stimulate the activation of AKT, whereas the PI3K inhibitor wortmannin blocked
the cisplatinum-induced AKT activation. Cisplatinum treatment was capable to activate
phosphorylation of BAD at Ser-112 and Ser-136 sites in Caov-3 and A2780 cells. While
phosphorylation of BAD at Ser-136 was blocked by treatment with wortmannin, its phos‐
phorylation at Ser-112 was blocked by a MAP/ERK kinase inhibitor PD98059 [89]. Transient
exogenous expression of a dominant-negative AKT in both Caov-3 and A2780 cells decreased
cell viability after treatment with cisplatinum. In contrast, no sensitization to cisplatinum was
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observed in cells expressing wild-type AKT. These findings suggested that cisplatinum-
induced DNA damage causes phosphorylation of BAD via an extracellular signal-regulated
protein kinase (ERK) cascade and via a PI3K/AKT/mTOR cascade. Inhibition of both cascades
enhance the sensitivity of ovarian cancer cells to cisplatinum thus providing further evidence
that AKT-pathway is involved in cisplatinum resistance in ovarian cancers [88]. Additional

Figure 1. Clonogenicity-Assays. (A) Cells were treated with different concentrations of cisplatin (cis-Pt) for 6 days and
(B) cells were first irradiated with 2.5 Gray and then treated with 3.5 nM cisplatin (cis-Pt) for 11 days. Cells were
stained and fixed with crystal violet. The formed cell colonies were counted. The figure shows the colony numbers in
relation to the colonies formed by untreated A2780 (set to 100%). Three independent experiments were performed, and
each experiment was carried out in triplicate. Statistically significant difference (p<0.05) between a sample and the rele‐
vant control is indicated by *. All data were previously published in “Oncology Reports” [47] and is reprinted by per‐
mission of Spandidos Publications ©2012.
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results suggest that AKT confers platinum-resistance in part by modulating the direction of
p53 on the caspase-dependent mitochondrial death pathway [90]. Thus in ovarian cancers
while p53 is a determinant for platinum sensitivity AKT contributes to chemoresistance in part
by attenuating p53-mediated PUMA upregulation and phosphorylation of p53 [91]. Recent
results suggest that in platinum sensitive ovarian cancer cells cisplatinum-induced apoptosis
can also proceed to a lesser extent via a caspase-independent mechanism involving apoptosis
inducing factor (AIF) and that AKT activation additionally confers resistance to cisplatinum-
induced apoptosis by blocking this pathway [90].

A recent work evaluated the anti-tumour efficacy of the AKT inhibitor perifosine in platinum-
sensitive and –resistant human ovarian cancer cells [45, 92]. In different ovarian cancer cell
lines and in-vivo experiments it has been possible to show that cells with higher levels of
phospho-AKT are more sensitive to treatment with AKT-inhibitor perifosine. Furthermore,
coincubation with perifosine sensitized A2780cis cells to treatment with cisplatinum. AKT-
inhibitor perifosine has already been tested in phase II studies in patients with breast, prostate,
pancreatic, head and neck, colorectal cancer, malignant melanoma, multiple myeloma, and
soft tissue sarcoma [93-99]. A recent phase I study with perifosine combined with radiotherapy
performed in patients with advanced solid tumours has shown preliminary evidence of anti-
cancer activity, including complete responses [100]. Thus, perifosine seems to be an attractive
compound for further clinical studies in particular phenotypes tumour like platinum-resistant
ovarian cancers.

Figure 2. Effect of cisplatin (cis-Pt) on the cell cycle distribution. A2780 (A), A2780cis (B), A2780cis AKT+ (C) and
A2780cis AKT- (D) cells were treated with different concentrations of cisplatin (cis-Pt) for 24 h, fixed, permeabilzed,
stained with propidium iodide and analysed by flow cytometry. The figure shows the distribution of the cells to the
different phases of cell cycle (%). All data were previously published in “Oncology Reports” [47] and is reprinted by
permission of Spandidos Publications ©2012.
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New attractive therapeutic targets are presented by the PI3K/AKT/mTOR-pathway activating
cell surface receptors like vascular endothelial growth factor (VEGF) receptors [101]. VEGF is
a key activator of angiogenesis, a physiological multi-step process that includes endothelial
cell growth and movement [102]. It plays important roles in wound healing and endothelial-
cell-mediated degradation of the extracellular matrix, as well as the transition of benign tissue
into solid tumours [102-104]. Recent studies have suggested that the PI3K/AKT signalling
cascade may be implicated in tumour angiogenesis [105-107]. In clinical trial studies, high
VEGF levels have been negatively correlated with survival of patients. Ovarian cancer cells
over-expressing VEGF own a metastatic advantage over those VEGF low expressing [108,
109] and even more higher levels of serum VEGF are found in patients with metastasis if
compared to metastasis-free patients [110]. Moreover, down-modulation of VEGF has been
shown to inhibit tumour growth and to suppress tumour invasion and metastasis. These
findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling
pathway in patients with ovarian cancer [101]. Bevacizumab (Avastin) has been the first and
most studied anti-VEGF agent in clinical evaluation for ovarian cancer [111]. Bevacizumab
showed additive or synergistic effects in combinational therapy with paclitaxel and marked
reduction of tumour growth and ascites formation [112]. Using a murine ovarian cancer model
a significant antitumour activity of Bevacizumab as a single agent or in combination with
cisplatinum was demonstrated [113]. In the meantime Bevacizumab was approved as a
treatment in combination with paclitaxel, topotecan, or pegylated liposomal doxorubicin
chemotherapy for women with recurrent ovarian cancer that are resistant to platinum-based
chemotherapy [114-117].

Furthermore, other agents targeting VEGF receptors have also been evaluated for the use in
treatment of ovarian cancer as Ramucirumab, a fully humanized monoclonal antibody, that
specifically block VEGFR-2 resulting in reduced tumour growth, increased apoptosis and
decreased tumour microvessel proliferation and density [118]. Following a phase I evaluation
[119], it is currently being assessed in a phase II trial as monotherapy in patients with platinum-
refractory persistent or recurrent epithelial ovarian cancer.

5. Role of AKT expression level in tumour cells in regard to NK killing

Another important aspect in cancer development and progression is the role of the immune
system. Since survival is strongly influenced by immunological parameters, immunothera‐
peutic strategies appear promising and for this reason during the last years the interest in
tumour immunology has constantly increased. A necessary prerequisite for immunotherapy
in patients is a better understanding of the interaction between ovarian tumour cells and cells
of the immune system especially with natural-killer (NK)-cells. NK-cells are a critical compo‐
nent of the innate immune response against infectious pathogens and malignant transforma‐
tion [120, 121]. NK-cells mediate this activity through the elaboration of various cytokines as
well as through direct cytolytic activity. However, unlike adaptive immune cells, which utilize
specific clonal recognition receptors, NK-cell activation depends on a complex balance
between activating and inhibitory signals [122, 123]. Nevertheless, NK-cells play an important
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role in immune surveillance and coordinating responses of other immune cells. Most tumour
cells express surface molecules that can be recognized by activating receptors on NK-cells
[124]. The expression of these receptors make such cells susceptible to endogenous NK-cells,
but malignant cells have developed mechanisms to evade these mechanisms of innate immune
surveillance [125-127]. In patients with cancer, it is presumed that tumour cells have developed
mechanisms to suppress NK-cell activation and resist lysis by endogenous NK-cells, but the
molecular basis for target resistance is not well understood. Recent studies have suggested
that AKT can regulate the development and functions of innate immune cells [128] thus
providing evidence that AKT plays also an important role in immune modulation. However
in this chapter will be addressed only the role of activated AKT in tumour cells in regard to
NK-cells.

Dysregulated cytokine release can either lead to or be associated with a failure in cell-cell
recognition thus allowing cancer cells to evade the killing system. The PI3K/AKT/mTOR
pathway regulates multiple cellular processes which underlie immune responses against
pathogens or malignant cells [129, 130]. Conversely, there is accumulating evidence that the
PI3K/AKT/mTOR pathway is involved in the development of several malignant traits of cancer
cells as well as their escape from immunity [131]. In some studies the interactions between
cancer cells and natural-killer (NK)-cells have been enlightened [48, 82, 132-134]. Modified
FATAL assay was used for determining the killing efficiency of NK-cells in regard to ovarian
cancer cell models in-vitro (Figure 3).

Figure 3. Lytic activity of polyclonal natural-killer (NK)-cells. A2780 and A2780cis cells (105 cells/well), respectively,
were used as targets in a modified 5 h FATAL assay using various tumour cell : NK-cell ratios. Target cell lysis was
determined by flow cytometric analysis. The percentage of tumour cell lysis was determined in relation to a control
containing tumour cells with medium alone. A representative of three independent experiments is shown. All data
were previously published in “International Journal of Oncology” [48] and is reprinted by permission of Spandidos
Publications ©2013.

In this model parental A2780 cells and the cisplatinum resistant A2780cis human ovarian
cancer cells have been used. The efficiency of NK-cell mediated cell lysis differs between A2780
cells and the cisplatinum-resistant A2780cis cells. The A2780cis cells are less accessible for NK-
cell mediated killing [48, 82] and this findings are in agreement with a report by Bellucci et
al. [135]. Using a lentiviral shRNA library targeting >1,000 human genes they identified 83
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genes that promote target cell resistance to human NK-cell-mediated killing [135]. Many of
the genes discovered by this screening belong to common signalling pathways including
multiple members of the AKT/PI3K/mTOR pathway as PIK3CA and PIK3CB [135]. The
comparison of the cancer cell lines A2780 and A2780cis revealed that the differences observed
with regard to NK-cell mediated killing rely mainly on two mechanisms. Firstly, the observed
increased expression of anti-apoptotic genes (especially ciap-1 and -2) in A2780cis cells
compared to A2780 cells is able to confer resistance to A2780cis cells to apoptosis. Second, the
CD112 ligand for NK-cell receptor DNAM-1 was expressed at a lower level in A2780cis cells
though ligands for the NK-cell receptor NKG2D, e.g. MICA/B, were more strongly expressed
in the platinum-resistant cells than in the parental A2780 cells [48]. Moreover A2780cis cells
expressed lower levels of TIMP-3, the inhibitor of MICA/B shedding, whereas specific
proteases for shedding were also found expressed and this resulted in a net increase of soluble
MICA/B in A2780cis cell lines [48]. It is well known that cleaved MICA/B protects cells against
NK mediated cell killing [48, 136, 137]. Therefore, it is reasonable to speculate that the increased
amount of soluble MICA/B is responsible for the lower killing rate of platinum-resistant
A2780cis cells compared to their parental A2780 cells [48]. It was previously well demonstrated
that PI3K/AKT/mTOR pathway is involved in inducing MICA/B expression in breast cancer
cells [138]. Overall these findings indicate a more general effect of induced PI3K/AKT/mTOR
signal transduction pathway. As well as in breast, in ovarian cancer cells with an increase of
phosphorylated AKT-activated, PI3K/AKT/mTOR pathway higher MICA/B expression has
been also detected [48]. Recently it has been demonstrated that treatment of tumour cells with
JAK inhibitors increased their susceptibility to NK-cell mediated killing [135]. The authors
suggested that common signalling pathways can regulate susceptibility of human tumour cells
to the surveillance and killing ability of the immunologic effector cells and that small molecules
inhibitors of JAK may have promising immunologic effects in-vivo [135]. Whether or not
inhibition of PI3K/AKT/mTOR pathway might render the platinum-resistant A2780cis cells
accessible for NK-cell mediated killing must be evaluated in further studies. Only the few first
steps towards the characterization of the molecular basis of resistance mechanisms in ovarian
cancer with different AKT expression levels in the context of NK-cell mediated killing are being
explored [48, 82].
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