
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 4

Genetics of Posttraumatic Stress Disorder — Candidate
Genes and Their Implication in the Disease-Associated
Molecular Pathomechanisms

Boyajyan  Anna, Avetyan Diana, Hovhannisyan Lilit and Mkrtchyan Gohar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60443

Abstract

Posttraumatic stress disorder (PTSD) is a complex psychiatric disorder (DSM-V code:
309.81; ICD-10 codes: F43.1). PTSD is an anxiety disorder developed in a person
experiencing, witnessing, or learning about an extreme physically or/and psycholog‐
ically distressing event. Its incidence and the number of this disease-affected people
are threateningly increasing in contemporary society. Therefore, the development of
prognostic strategies and novel efficient methods on early diagnostics and treatment
of PTSD is currently considered as one of the most important healthcare problems
worldwide.

Results of epidemiologic, clinical, and experimental studies suggest implication of
both environmental and genetic factors in pathomechanisms of PTSD and that, most
probably, PTSD belongs to complex disorders with polygenic inheritance. Whereas
the environmental factors triggering PTSD are well defined, less is known about
PTSD-associated genetic variations and molecular etiopathomechanisms.

Several studies, including our own reports, suggest the involvement of neuro-immune
alterations in the pathophysiology of PTSD. These include changes in neuronal
plasticity, synaptic connectivity, humoral and cellular immune-mediated responses,
and apoptosis rate leading to cognitive deficit and behavioral changes in patients with
PTSD accompanied with development of low-grade inflammatory reactions.
Currently, many research groups working on elucidation of molecular mechanisms
of PTSD are exploring whether these changes have genetic background or are induced
by other external or internal environmental factors.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



In the present chapter, we provide overview and discussion of the existing data,
including our own results, on variations in genes encoding neuro-immune and
apoptotic mediators and regulators and related transcription factors in PTSD patients.
Potential role of these genetic variations in generation and development of PTSD is
considered and the implication of relevant candidate genes in mechanisms responsi‐
ble for disease progression is proposed.

Keywords: Apoptosis, candidate genes, complement system, posttraumatic stress dis‐
order, synaptic plasticity

1. Introduction

Posttraumatic stress disorder (PTSD; DSM-V code: 309.81; ICD-10 codes: F43.1) is a complex,
severe, and chronic psychiatric illness [1–2]. PTSD is an anxiety disorder developed in a person
experiencing, witnessing, or learning about an extreme physically and/or psychologically
distressing event [3–7]. Its incidence and the number of disease-affected people are threaten‐
ingly increasing in contemporary society. They usually remain out of society, become drug
addicted, alcoholic, and often commit suicide [8–10]. Therefore, development of prognostic
strategies, novel efficient methods on early diagnostics and treatment of PTSD is currently
considered as one of the most important health care problems worldwide.

Results of epidemiologic, clinical, and experimental studies suggest implication of both
environmental and genetic factors in pathomechanisms of PTSD, and that, most probably,
PTSD belongs to the complex disorders with polygenic inheritance. PTSD is also unique in its
exposure to an environmental (traumatic) event as the first criterion for diagnosis. Whereas
the environmental factors triggering PTSD are well defined, less is known about PTSD-
associated genetic variations and molecular etiopathomechanisms [11–17]. Although it is
beyond the scope of many studies to comprehensively discuss the genetics of PTSD, it should
be noted that there is an emerging literature on genetic variations in those neurobiological
systems which drive responses to trauma and, consequently, are risk factors to develop PTSD.
Many studies on detection of candidate genes association with PTSD are being carried up to
date [18–26].

In the present chapter, we provide overview and discussion of the existing data, including
genetic variants of serotonergic and dopaminergic systems, hypothalamic–pituitary–adrenal
(HPA) axis, and other genes related to neurotransmission, neuromodulation, and stress
physiology. Here, we have also included our own results on variations in genes encoding
neuro, immune, and apoptotic mediators and regulators, and related transcription factors in
PTSD patients. Potential role of these genetic variations in generation and development of
PTSD is considered and the implication of relevant candidate genes in mechanisms responsible
for disease progression is proposed.
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2. Genetic Studies of PTSD

2.1. Neuroendocrine system candidate genes

Many studies indicate association between PTSD and polymorphisms of number of genes,
suggesting a polygenic nature of PTSD. Several studies indicate that functional abnormalities
in neuroendocrine system detected in PTSD patients are conditioned with hereditary factor
[21–26]. Thus, as it follows from Table 1, PTSD is associated with the genetic mutations in a
number of genes encoding neurotransmitters, hormones and their enzymes, hormone
receptors and transporters.

Candidate genes Cytogenetic location Studied SNPs Source

Dopaminergic system

Dopamine D2 receptor (DRD2) 11q23 rs1800497 [24-30]

Dopamine D3 receptor (DRD3) 3q13.3 rs2134655,
rs201252087,
rs4646996,
rs9868039

[31]

Dopamine D4 receptor (DRD4) 11p15.5 VNTR [32]

Dopamine transporter type 1 (SLC6A3, DAT1) 5p15.3 VNTR [33]

Dopamine beta-hydroxylase (DBH) 9q34 rs1611115 [37, 38]

Catechol-O-methyltransferase
(COMT)

22q11 rs4680
rs4633C

[39-41]

Serotonergic system

Serotonin transporter (SLC6A4, SERT) 17q11 rs4795541,
rs25531

[42-45]

Serotonin type-2A receptor
(HTR2A)

13q14.2 rs6311 [46, 47]

Tryptophan hydroxylase 1
(TPH1)

11p15.1 rs2108977 [48]

Tryptophan hydroxylase 2
(TPH2)

12q21.1 rs11178997 [41, 48]

GABAergic system

Gamma-aminobutyric acid receptor alpha-2
(GABRA2)

4p12 rs279836, rs279826 [49]

Hypothalamic-pituitary-adrenal axis

Cannabinoid receptor 1 (CNR1) 6q15 [50]
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Candidate genes Cytogenetic location Studied SNPs Source

Glucocorticoid receptor
GCCR (NR3C1)

5q31.3 rs41423247
rs258747

[51, 52]

Corticotropin-releasing hormone receptor-1
(CRHR1)

17q21.31 rs12944712 [53]

Pituitary adenylate cyclase 1 receptor
(ADCYAP1R1, PAC1)

7p14.3 rs2267735 [54, 55]

FK506 binding protein 5 (FKBP5) 6p21 rs9296158, rs3800373,
1360780, rs9470080

[56-62]

Neurotrophic factor

Brain-derived neurotrophic factor (BDNF) 11p14.1 rs6265 [30, 63-66]

Other genes

Apolipoprotein E (ApoE) 19q13 rs429358,
rs7412

[67]

Monoamine oxidase B (MAOB) Xp11.3 rs1799836 [70]

Neuropeptide Y
(NPY)

7p15.3 rs16139 [71]

Phosphoribosyl transferase domain-containing
protein 1 (PRTFDC1)

10p12.1 rs6482463 [73]

Regulator of G-protein signalling 2 (RGS2) 1q31.2 rs4606 [74]

Table 1. Neuroendocrine system candidate genes in PTSD

2.1.1. Dopaminergic system

Dopaminergic system dysregulation has long been implicated in the pathophysiology of PTSD.
A positive association between the risk for development of PTSD and Taq1A (rs1800497)
polymorphism of the dopamine D2 receptor gene was found [24–30]. The dopamine D3
receptor (DRD3) gene's 4 SNPs (rs2134655, rs201252087, rs4646996, and rs9868039) showed
evidence of association with PTSD [31]. Also, positive association was revealed between
tandem repeat polymorphism of dopamine transporter gene and PTSD, as well as between
dopamine D4 transporter gene long allele and severity of PTSD symptoms [32]. Recent
publications reported that carriers of the 9R of allele of the gene, encoding the dopamine
transporter (SLC6A3, DAT, or DAT1), had increased the risk of PTSD [33–36]. This finding
suggests that genetically determined features of DAT may contribute to the development of
PTSD among trauma survivors. Genetic variants in dopamine beta-hydroxylase (DBH) gene
represent a likely candidate for examining genetic contributions to PTSD because of the role
this enzyme plays in converting dopamine to norepinephrine as a part of catecholamine
synthesis [37, 38]. A significant association between one or more copies of the rs4680 allele of
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COMT and PTSD has been reported. Thus, regulation of COMT and subsequent catecholamine
neurotransmitter cascades may be an important factor in fear processing for those with PTSD
and similar psychiatric disorders [39, 40]. Moreover, a recent study has shown a significant
association of the COMT allele rs4633C with total PTSD, and severity scores of D category
(negative alterations in cognitions and mood) of DSM-V categories [41].

2.1.2. Serotonergic system candidate genes

Dysregulation of brain serotonergic systems has been implicated in the pathophysiology of
PTSD; indeed, this pathway represents the most studied candidate in PTSD. The most studied
polymorphism in this system is located in the promoter region of the serotonin transporter
encoding gene (SLC6A4, 5-HTTLPR). Several studies indicated that this risk was associated
with rs4795541, rs25531 genotypes, and PTSD [35, 42–45]. Serotonin receptor 2A rs6311
polymorphism has also been found to be associated with PTSD [46–47].

Goenjian and colleagues' studies have suggested association of TPH1, TPH2, and 5HTTLPR
with PTSD and depressive symptoms [48]. It was shown that the TPH-2 allele rs11178997T and
COMT allele rs4633C together accounted for 7% of the variance in severity scores of PTSD.
Carriers of these COMT and TPH-2 alleles may be at increased risk for PTSD. These findings
provided biological support for dividing DSM-IV category C symptoms into DSM-V categories
C and D [41].

2.1.3. GABAergic system

Inhibitory neurotransmitter, gamma-aminobutyric acid receptor gene (GABAA) has been
studied in relation to PTSD. Three polymorphisms in the GABAA receptor subunit alpha 2
(GABRA2) had significant interactions with childhood trauma to predict PTSD [49].

2.1.4. HPA axis candidate genes

PTSD is also characterized by dysfunction of the stress response system, such that activity of
the HPA axis is altered. Recent studies reported associations between PTSD and cannabinoid
receptor (CNR1) gene variants NM_016083 and NM_033181; [50], glucocorticoid receptor
(NR3C1, rs41423247, and rs258747) gene [51, 52], and between SNP in corticotropin-releasing
hormone receptor-1 (CRHR1, rs12944712) and PTSD [53]. Also neuropeptide pituitary
adenylate cyclase-activating polypeptide is regulating the stress response. Recently, a genetic
variant in the PAC1 receptor (ADCYAP1R1; rs2267735) was found to be associated with PTSD
[54, 55]. Of particular interest were the findings that a genetic variation of the glucocorticoid
receptor cochaperone protein, FKBP5, moderates risk of developing PTSD in childhood abuse
cases [56–61]. Binder and colleagues found that 4 SNPs in FKBP5 (rs9296158, rs3800373,
1360780, rs9470080) interacted with child abuse severity to predict adult PTSD symptoms [62].

2.1.5. Neurotrophic factor candidate genes

Brain derived neurotrophic factor (BDNF) is involved in the neural plasticity underlying the
extinction of fear and recovery from stress, both disrupted in PTSD. Based on its role in
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hippocampal-dependent learning and the neurobiology of anxiety and depression, the BDNF
gene has been studied in relation to PTSD. A significant interaction between DRD2 Taq1A
(rs1800497) and Val66Met (rs6265) predicts PTSD severity [30]. Interestingly, a recent study in
humans and rats suggested that BDNF overexpression may be a critical stress response
underlying PTSD by showing that the Val66Met allele confers vulnerability to PTSD via startle
data and plasma BDNF levels [63–66].

2.1.6. Other candidate genes

Apolipoprotein E (ApoE) is involved in stress dysregulation. A significant association between
the ApoE2 allele and impaired memory and greater re-experiencing symptoms has been found
in combat-exposed PTSD patients [67–69]. The monoamine oxidase B gene (MAOB) rs1799836
polymorphism has been studied in relation with PTSD because MAOB expression in platelets
has been implicated in several psychopathologies and may represent a biomarker for vulner‐
ability to psychiatric illness [70]. Recent studies of the link between neuropeptide Y (NPY) and
PTSD were published [71]. However, another study did not find any association between
polymorphism in NPY (Leu7Pro; rs16139) and PTSD in a population of Caucasian combat
veterans [72]. Nievergelt and colleagues found evidence for phosphoribosyl transferase
domain-containing protein 1 (PRTFDC1) as a potential novel PTSD gene, but this finding needs
further replication [73]. Finally, it was reported that the regulator of G-protein signaling 2
(RGS2) belongs to a protein family that has been widely involved in neural plasticity, partic‐
ularly associated with learning and memory, and may play a critical role in PTSD-associated
cognitive dysfunction. In PTSD patients experiencing high stress and low social support, an
association with RGS2 (rs4606) was found [74].

2.2. Complement system candidate genes

The complement system is major effector of the immune response, which acts on the interface
of innate and adaptive immunity, and is a key component and trigger of many immunoregu‐
latory mechanisms. Changes in the functional activity of the complement cascade contribute
to the pathology of many human diseases [75–77], including mental disorders [78–83], and are
also detected during physiological stress [84, 85]. It has already been demonstrated that
complement system alterations are involved in PTSD pathogeneses, particularly hypoactiva‐
tion state of the complement alternative pathway in PTSD patients, which positively and
significantly correlates (p < 0.05) with total (frequency and intensity) PTSD symptom cluster
of re-experiencing, avoidance, and hyperarousal, and with PTSD total symptom score [13].
Now, our interest is focused on studying the genetic basis of complement system regulators,
particularly the role and genetic variants of complement factors B, H, and I (CFB, CFH, and
CFI, accordingly) in PTSD. The distributions of genotypes for CFB, CFH, and CFI SNPs in both
patients and control groups were in compliance with Hardy–Weinberg equilibrium (p > 0.05).
The allele and phenotype frequencies of CFB, CFH, and CFI genetic variants in the groups of
PTSD patients and controls are shown in Table 2.
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Gene (SNP) Genotypes Alleles Carriage

CFB rs12614 CC CT TT C T T

PTSD 87 (0.58) 59 (0.4) 3 (0.02) 233 (0.78) 65 (0.22) 62 (0.42)

Controls 125 (0.55) 89 (0.4) 12 (0.05) 339 (0.75) 113 (0.25) 101 (0.45)

p 0.32 0.56

OR 0.84 1.13

95% CI: 0.59-1.19 0.75-1.72

CFB rs1048709 GG GA AA G A A

PTSD 134 (0.918) 11 (0.075) 1 (0.007) 279 (0.955) 13 (0.045) 12 (0.08)

Controls 167 (0.92) 14 (0.08) 0 (0) 348 (0.96) 14 (0.04) 14 (0.08)

p 0.7 0.87

OR 1.16 0.94

95% CI: 0.54-2.50 0.42-2.09

CFH rs424535 TT TA AA T A A

PTSD 56 (0.38) 47 (0.32) 44 (0.3) 159 (0.54) 135 (0.46) 91 (0.62)

Controls 74 (0.344) 108 (0.502) 33 (0.154) 256 (0.6) 174 (0.4) 141 (0.6)

p 0.145 0.47

OR 1.25 1.17

95% CI: 0.93-1.69 0.76-1.81

CFHrs1061170 CC CT TT C T T

PTSD 30 (0.21) 53 (0.36) 63 (0.43) 113 (0.39) 179 (0.61) 83 (0.47)

Controls 24 (0.11) 104 (0.46) 97 (0.43) 152 (0.34) 298 (0.66) 128 (0.57)

p 0.17 1.0

OR 0.81 1.92

95% CI: 0.60-1.10 1.05-3.52

CFH rs800292 CC CT TT C T T

PTSD 117 (0.8) 25 (0.17) 4 (0.03) 259 (0.89) 33 (0.11) 29 (0.2)

Controls 166 (0.74) 55 (0.24) 4 (0.02) 387 (0.86) 63 (0.14) 59 (0.26)

p 0.29 0.16

OR 0.78 1.43

95% CI: 0.50-1.23 0.87- 2.37

CFI rs10033900 TT TC CC T C C

PTSD 38 (0.3) 62 (0.4) 49 (0.3) 138 (0.46) 160 (0.54) 111 (0.75)

Controls 69 (0.31) 99 (0.44) 57 (0.25) 237 (0.53) 213 (0.47) 156 (0.69)
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Gene (SNP) Genotypes Alleles Carriage

p 0.089 0.279

OR 1.29 0.77

95% CI: 0.962-1.73 0.486-1.23

CFIrs1000954 GG GA AA G A A

PTSD 98 (0.66) 40 (0.27) 10 (0.07) 236 (0.8) 60 (0.2) 50 (0.34)

Controls 84 (0.488) 75 (0.436) 12 (0.076) 243 (0.71) 101 (0.29) 87 (0.51)

p 0.02a 0.006b

OR 0.61 2.03

95% CI: 0.42-0.88 1.29-3.2

CFI rs4469075 CC CG GG C G G

PTSD 19 (0.13) 60 (0.42) 65 (0.45) 98 (0.34) 190 (0.66) 79 (0.55)

Controls 17 (0.1) 76 (0.5) 71 (0.4) 110 (0.3) 218 (0.7) 93 (0.57)

p 1.0 0.75

OR 0.98 1.32

95% CI: 0.7-1.37 0.64– 2.70

apcorrected values for comparison of mutant allele frequency between PTSD patients and controls.
bpcorrected values for comparison of mutant allele carriage between PTSD patients and controls.

Table 2. Distribution of genotypes, alleles and carriage of minor alleles of CFB, CFH and CFI polymorphisms in
patients with PTSD and controls.

According to the results obtained, the CFI rs1000954*A allele was more frequent in controls
than in patients (0.29 vs. 0.20, pnominal = 0.008, OR = 0.61, 95 %CI: 0.42-0.88). Also, the carriers of
this allele were overrepresented in the group of controls compared to patients (0.51 vs. 0.34,
pnominal = 0.002, OR = 2.03, 95% CI: 1.29–3.2). In case of other selected polymorphisms, no
significant association with PTSD was found (p > 0.05).

2.3. Candidate genes of apoptosis

Apoptosis is a genetically programmed, morphologically distinct form of cell death that can
be triggered by a variety of physiological and pathological stimuli [86]. According to various
apoptotic stimuli, apoptosis can be induced by two major pathways: the intrinsic pathway
(mitochondria-dependent pathway) and the extrinsic pathway (death receptor-dependent
pathway) [87]. Recent studies reported that neuronal apoptosis of amygdala, hippocampus,
and medial prefrontal cortex (mPFC) have a certain relationship with the pathogenesis of PTSD
[88]. However, the role of apoptosis in the pathogenesis of PTSD is not yet entirely clear.

Apoptosis is the process of strict control multigene, known in the process of apoptosis with a
series of apoptosis-related genes, such as Bcl-2 family, caspase family, C-myc oncogenes, and
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tumor suppressor gene P53, etc. The Bcl-2 family proteins play a crucial role in the process of
apoptosis and are considered to be the final passage of apoptosis. Bcl-2 family proteins regulate
mitochondrial structure and functional stability with the help of other apoptosis protein
synergy. According to the recent study, the increase of the Bcl-2 and Bax expression and the
imbalance in the Bcl-2/Bax ratio were few of the mechanisms causing mPFC neuronal apop‐
tosis, which may be one of the reasons of PTSD development in rat [88].

According to our study, the rs956572*A minor allele of the BCL2 gene was overrepresented in
patients with PTSD compared to healthy subjects (0.64 vs. 0.41, pnominal = 6.02E-11, OR = 2.59, 95%
CI: 1.94–3.44). In addition, the carriers of this allele were more in the group of patients com‐
pared to controls (0.87 vs. 0.65, pnominal = 4.11E-7, OR = 3.53, 95% CI: 2.14–5.81). Further, we found
that the rs1801018*G minor allele of the BCL2 gene was more frequent among controls com‐
pared to patients (0.5 vs. 0.4, pnominal = 0.0036, OR = 0.66, 95% CI: 0.50–0.87). Also, the carriers of
the rs1801018*G minor allele were more frequent in controls than in patients (0.79 vs. 0.61, pnominal

= 8.6E-5, OR = 2.41, 95% CI: 1.54–3.75). After Bonferroni correction, difference in allele frequen‐
cy between the patient and the control groups minor alleles remained significant (Table 3).

Gene (SNP) Genotypes Alleles Carriage

ANXA5 rs11575945 CC CT TT C T T

PTSD 63 (0.79) 14 (0.17) 3 (0.04) 140 (0.875) 20 (0.125) 17 (0.21)

Controls 53 (0.71) 21 (0.28) 1 (0.01) 127 (0.85) 23 (0.15) 22 (0.29)

p 1.4a 0.75b

OR 0.79 0.65

95% CI: 0.41 - 1.5 0.31 - 1.35

ANXA11 rs1049550 GG GA AA G A A

PTSD 83 (0.415) 101 (0.505) 16 (0.08) 267 (0.67) 133 (0.33) 117 (0.59)

Controls 68 (0.34) 97 (0.485) 35 (0.175) 233 (0.58) 167 (0.42) 132 (0.66)

p 0.013a 0.12b

OR 0.695 1.38

95% CI: 0.52 - 0.93 0.92 - 2.07

BCL2 rs956572 GG GA AA G A A

PTSD 27 (0.135) 89 (0.445) 84 (0.42) 143 (0.36) 257 (0.64) 173 (0.87)

Controls 71 (0.355) 94 (0.47) 35 (0.175) 236 (0.59) 164 (0.41) 129 (0.65)

p 1.20E-10a 8.22E-07b

OR 2.59 3.53

95% CI: 1.94 - 3.44 2.14 - 5.81

BCL2 rs1801018 AA AG GG A G G
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Gene (SNP) Genotypes Alleles Carriage

PTSD 78 (0.39) 83 (0.415) 39 (0.195) 239 (0.6) 161 (0.4) 122 (0.61)

Controls 42 (0.21) 114 (0.57) 44 (0.22) 198 (0.5) 202 (0.5) 158 (0.79)

p 0.0072a 0.00017b

OR 0.66 2.41

95% CI: 0.5 - 0.87 1.54 - 3.75

apcorrected values for comparison of mutant allele frequency between PTSD patients and controls.

bpcorrected values for comparison of mutant allele carriage between PTSD patients and controls.

Table 3. Distribution of genotypes, alleles and carriage of minor alleles of ANXA5, ANXA11 and BCL2 polymorphisms
in patients with PTSD and controls.

The externalization of phosphatidylserine is one of the leading indicators of apoptosis. The
annexins are multigene family of Ca2+-regulated phospholipid-dependent and membrane-
binding annexin proteins [89]. One member of the annexin gene family, annexin A5, is known
as a Ca2+-dependent, phospholipid-binding protein that inhibits protein kinase C (PKC)
signaling. Although annexin A5 has been used for the detection of apoptosis, it shows high
affinity for surface-exposed phosphatidylserine during apoptosis and may directly involve in
apoptotic pathway [90]. Another member of annexins family is annexin A11, which is involved
in calcium signaling, apoptosis, vesicle trafficking, cell growth, and the terminal phase of cell
division [91].

According to the results obtained, the blood level of annexin-А5 was significantly lower in
PTSD and which may also be one of the factors responsible for development of PTSD-
associated low-grade inflammation [92, 93]. The results of annexin family proteins encoding
genes association with PTSD are shown in Table 3. The ANXA11 gene rs1049550*A allele was
more frequent among controls than in patients (0.42 vs. 0.33, pnominal = 0.013, OR = 0.695, 95%
CI: 0.52–0.93). There were no significant differences of carriers of rs1049550*A minor allele in
the group of patients compared to controls.

2.4. Candidate genes of synaptic plasticity

Synaptic plasticity change, which is a fundamental characteristic of the nervous system,
underlies numerous aspects of cognition. Plasticity is essential for the recovery of the nervous
system after injury, stroke, and other pathological processes and can permit remarkable
functional recovery even after devastating damage, especially in a young and otherwise
healthy brain. However, the very mechanisms of plasticity that permit development, learning,
resilience, memory, and recovery can also contribute to behavioral dysfunction and to
psychopathology [94].

Complexins are small, cytosolic proteins that bind to the soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE) complex to regulate synaptic vesicle exocytosis.
Complexin 1 and 2 are the two major isoforms in the brain [95, 96]. Significant alterations of
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complexins 2 expression levels are seen in a number of neurological and psychiatric disorders,
including bipolar disorder [97–99], major depression [98, 100], Huntington's disease (HD) [101,
102], schizophrenia [97, 100, 103–107], Parkinson's disease [108], Alzheimer's disease [109], and
PTSD [93].

Neurotrophin family are traditionally recognized for their nerve growth promoting function
and are recently identified as crucial factors in regulating neuronal activity in the central and
peripheral nervous systems. The family members including brain-derived neurotrophic factor
(BDNF), nerve growth factor (NGF), and its receptor (NGFR) are the essential mediators of
synaptic and morphological plasticity, neuronal growth, survival, and differentiation;
especially in the developing brain, thought may play an important role in pathogenesis of
PTSD. [110]

We have reviewed data related neurotransmitter/neuroendocrine systems that are known to
be involved in the pathophysiology of PTSD and that may contribute to the symptoms and
cognitive dysfunctions in these patients. In Table 4, we have collected our data concerning
candidate genes of the proteins involved in synaptic plasticity which may contribute to PTSD.

Gene (SNP) Genotypes Alleles Carriage

BDNF rs6265 GG GA AA G A A

PTSD 150 (0.75) 48 (0.24) 2 (0.01) 348 (0.87) 52 (0.13) 50 (0.25)

Controls 129 (0.645) 67 (0.335) 4 (0.02) 325 (0.81) 75 (0.19) 71 (0.36)

p 0.03a 0.02b

OR 0.65 1.65

95% CI: 0.44 - 0.95 1.07 - 2.54

CPLX2 rs1366116 CC CT TT C T T

PTSD 34 (0.39) 36 (0.41) 17 (0.2) 104 (0.6) 70 (0.4) 53 (0.61)

Controls 45 (0.6) 24 (0.32) 6 (0.08) 114 (0.76) 36 (0.24) 30 (0.4)

p 0.006a 0.02b

OR 2.2 0.43

95% CI: 1.4 – 3.6 0.2 - 0.8

CPLX2 rs3892909 CC CT TT C T T

PTSD 16 (0.18) 45 (0.52) 26 (0.3) 77 (0.44) 97 (0.56) 71 (0.82)

Controls 15 (0.2) 41 (0.55) 19 (0.25) 71 (0.47) 79 (0.53) 60 (0.8)

p 1.7a 2.4b

OR 1.13 0.9

95% CI: 0.73 – 1.76 0.4 – 1.97

NTNG1 rs628117 AA AG GG A G G

PTSD 47 (0.36) 66 (0.5) 19 (0.14) 160 (0.6) 104 (0.4) 85 (0.64)
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Gene (SNP) Genotypes Alleles Carriage

Controls 36 (0.34) 43 (0.41) 26 (0.25) 115 (0.55) 95 (0.45) 69 (0.66)

p 0.2a 0.8b

OR 0.79 1.06

95% CI: 0.55 – 1.14 0.62 - 1.82

NGF rs6330 CC CT TT C T T

PTSD 66 (0.33) 106 (0.53) 28 (0.14) 238 (0.6) 162 (0.4) 134 (0.67)

Controls 130 (0.65) 58 (0.29) 12 (0.06) 318 (0.8) 82 (0.2) 70 (0.35)

p 2.04E-09a 4.20E-10b

OR 2.64 3.77

95% CI: 1.9 - 3.6 2.5 - 5.7

NGF rs4839435 GG GA AA G A A

PTSD 130 (0.65) 66 (0.33) 4 (0.02) 326 (0.8) 74 (0.2) 70 (0.35)

Controls 85 (0.425) 97 (0.485) 18 (0.09) 267 (0.67) 133 (0.33) 115 (0.58)

p 4.00E-06a 1.20E-05b

OR 0.46 0.4

95% CI: 0.33 - 0.63 0.27 - 0.6

NGFR rs11466155 CC CT TT C T T

PTSD 109 (0.545) 82 (0.41) 9 (0.045) 300 (0.75) 100 (0.25) 91 (0.46)

Controls 110 (0.55) 75 (0.375) 15 (0.075) 295 (0.74) 105 (0.26) 90 (0.45)

p 1.37a 2b

OR 0.94 0.98

95% CI: 0.68 - 1.29 0.66 - 1.45

NGFR rs734194 CC CT TT C T T

PTSD 164 (0.82) 34 (0.17) 2 (0.01) 362 (0.9) 38 (0.1) 36 (0.18)

Controls 109 (0.545) 74 (0.37) 17 (0.085) 292 (0.73) 108 (0.27) 91 (0.46)

p 2.74E-10a 8.82E-09b

OR 0.284 0.263

95% CI: 0.19 - 0.42 0.17 - 0.42

CHN1 rs14228 CC CT TT C T T

PTSD 79 (0.395) 86 (0.43) 35 (0.175) 244 (0.61) 156 (0.39) 121 (0.6)

Controls 82 (0.41) 62 (0.31) 56 (0.28) 226 (0.565) 174 (0.435) 118 (0.59)

p 0.39a 1.52b

OR 0.83 0.94

95% CI: 0.63 - 1.1 0.63 - 1.4
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Gene (SNP) Genotypes Alleles Carriage

CHN1 rs2646153 AA AG GG A G G

PTSD 50 (0.25) 86 (0.43) 64 (0.32) 186 (0.465) 214 (0.535) 150 (0.75)

Controls 57 (0.285) 90 (0.45) 53 (0.265) 204 (0.51) 196 (0.49) 143 (0.72)

p 0.4a 0.86b

OR 1.2 0.84

95% CI: 0.9 - 1.6 0.54 – 1.3

FOS rs7101 CC CT TT C T T

PTSD 12 (0.06) 71 (0.355) 117 (0.585) 95 (0.24) 305 (0.76) 188 (0.94)

Controls 94 (0.47) 85 (0.43) 21 (0.1) 273 (0.68) 127 (0.31) 106 (0.53)

p 4.04E-37a 1.31E-21b

OR 6.9 13.9

95% CI: 5.1 - 9.4 7.3 - 26.5

FOS rs1063169 GG GT TT G T T

PTSD 161 (0.8) 36 (0.18) 3 (0.02) 358 (0.9) 42 (0.1) 39 (0.2)

Controls 92 (0.46) 80 (0.4) 28 (0.14) 264 (0.66) 136 (0.34) 108 (0.54)

p 1.50E-15a 1.70E-12b

OR 0.23 0.21

95% CI: 0.16 - 0.33 0.13 - 0.32

JUN rs11688 GG GA AA G A A

PTSD 34 (0.17) 113 (0.565) 53 (0.265) 181 (0.45) 219 (0.55) 166 (0.83)

Controls 47 (0.24) 111 (0.56) 42 (0.2) 205 (0.51) 195 (0.49) 153 (0.77)

p 0.09a 0.11b

OR 1.27 0.67

95% CI: 0.96 - 1.68 0.4 - 1.1

IER5 rs6425663 GG GT TT G T T

PTSD 29 (0.145) 78 (0.39) 93 (0.465) 136 (0.34) 264 (0.66) 171 (0.86)

Controls 20 (0.1) 74 (0.37) 106 (0.53) 114 (0.285) 286 (0.715) 180 (0.9)

p 0.09a 0.17b

OR 0.77 1.53

95% CI: 0.57 - 1.04 0.83 - 2.8

apcorrected values for comparison of mutant allele frequency between PTSD patients and controls.

bpcorrected values for comparison of mutant allele carriage between PTSD patients and controls.

Table 4. Distribution of genotypes, alleles and carriage of minor alleles of BDNF, CPLX2, NTNG1, NGF, NGFR, CHN1,
FOS, JUNand IER5 polymorphisms in patients with PTSD and controls.
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According to the data obtained, the rs6265*A allele of theBDNF gene was more frequent in
controls than in patients (0.19 vs. 0.13, pnominal = 0.03, OR = 0.65, 95% CI: 0.44–0.95). Also, the
carriers of rs6265*A minor allele were overrepresented in the group of controls compared to
patients (0.36 vs. 0.25, pnominal = 0.02, OR = 1.65, 95% CI: 1.07–2.54). In contrast, the rs1366116*T
minor allele of the CPLX2 gene was more frequent among patients compared to controls (0.4
vs. 0.24, pnominal = 0.002, OR = 2.2, 95% CI: 1.4–3.6). Also, the carriers of this allele were more in
the group of patients compared to controls (0.61 vs. 0.4, pnominal = 0.008, OR = 0.43, 95% CI: 0.2–
0.8). Further, we found that the rs6330*T allele of the NGF gene was overrepresented in patients
with PTSD compared to healthy subjects (0.4 vs. 0.2, pnominal = 1.02E-9, OR = 2.64, 95% CI: 1.93–
3.61). Also, the carriers of the rs6330*T minor allele (CT + TT) were more frequent in patients
than in controls (0.67 vs. 0.35, pnominal = 2.1E-10, OR = 3.77, 95% CI: 2.49–5.70). On the contrary,
the frequency (0.33 vs. 0.2, pnominal = 2.0E-6, OR = 0.46, 95% CI: 0.33–0.63) and carriers (0.58 vs.
0.35, pnominal = 6.0E-6, OR = 0.40, 95% CI: 0.27–0.60) of the rs4839435*A minor allele of the NGF
gene were higher in controls than in PTSD patients. The NGFR rs734194*T minor allele
frequency again was higher in controls than in patients (0.27 vs. 0.1, pnominal = 1.37E-10, OR =
0.28, 95% CI: 0.19–0.42). The same applies to the carriers of the NGFR rs734194*T allele (0.46
vs. 0.18, pnominal = 4.41E-9, OR = 0.26, 95% CI: 0.17–0.42). Also, rs7101*T allele of the FOS gene
was more frequent in patients than in controls (0.76 vs. 0.31, pnominal = 2.02E-37, OR = 6.90, 95%
CI: 5.05–9.43). The carriers of rs7101*T minor allele were overrepresented in the group of
patients compared to controls (0.94 vs. 0.53, pnominal = 6.57E-22, OR = 13.89, 95% CI: 7.28–26.51).
In contrast, the rs1063169*T minor allele of the FOS gene was more frequent among controls
compared to patients (0.34 vs. 0.1, pnominal = 7.48E-16, OR = 0.23, 95% CI: 0.16–0.33). Also, the
carriers of this allele were more in the group of controls compared to patients (0.54 vs. 0.2,
pnominal = 8.51E-13, OR = 0.21, 95% CI: 0.13–0.32). After Bonferroni correction, difference in allele
frequency between the patient and the control groups for these minor alleles remained
significant.

3. Conclusion

As found in several mental disorders, the risk for PTSD following traumatic event has limited
genetic heritability. The genetic understanding of PTSD through candidate gene studies is
premature at this point, although several genes hold promise as potential biomarkers.
Identifying and understanding the genetics of PTSD will enrich our ability of diagnosis of
PTSD. In Figure 1, we summarized the candidate genes responsible for generation and
development of PTSD.

Several studies indicated the association between PTSD and polymorphisms of number of
genes of dopaminergic, serotonergic, and GABAergic systems, HPA axis, and other genes
related to neurotransmission, neuromodulation, etc. We also compiled a list of genes that have
been reported in the literature to be significantly associated with PTSD, also adding our own
results on variations in genes encoding neuro-, immune and apoptotic mediators and regula‐
tors, and related transcription factors. Profound understanding of risks in PTSD is possible
through classic and convergent genomic approaches and this will lead to development of
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targeted treatment and prevention approaches. Overall, such researches highlight the potential
usefulness of the assessment of target genes’ alteration in diagnosis of PTSD.
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