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Abstract

Sickle cell disease (SCD) is one of the most common genetic disorders worldwide. It
is caused by a point mutation that changes glutamic acid (Glu6) to valine (Val6) in the
β chain of hemoglobin. Vaso-occlusion is the most well-known problem associated
with SCD. Despite recent advances in understanding the disease at the molecular
level, few therapeutic strategies are available. Hydroxyurea is the only drug currently
approved by the U.S. Food and Drug Administration for the disease, and it has serious
adverse effects and lack of efficacy in some patients. However, new therapeutic
approaches are under investigation in the hope of discovering new drugs to treat SCD.
These include agents that: a) increase nitric oxide bioavailability; b) modify the
rheological properties of the blood; c) bind covalently to hemoglobin; d) prevent
hemoglobin dehydration; e) reduce iron overload; and f) induce the expression of
gamma globin and fetal hemoglobin. In this chapter, we discuss the current treatment
of SCD and the advances made in medicinal chemistry to find new drugs to treat this
neglected hematological disease.

Keywords: Sickle cell disease, hemoglobinopathy, gamma globin, fetal hemoglobin, drug
discovery
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1. Introduction

1.1. General background

Sickle cell disease (SCD) is one of the most prevalent hemoglobinopathies worldwide. It has
been hypothesized that this disease originated millions of years ago, in the sub-Saharan
countries in mid-western Africa, eastern Asia, and some regions of India [1]. The distribution
of the disease correlates with the malaria-endemic regions because it confers a protective effect
against infection by the plasmodium [1-3].

Many biochemical and immunological mechanisms have been investigated to explain the
protection conferred by hemoglobin S (HbS) against malaria. Infected sickle erythrocytes are
known to be phagocytized faster than normal erythrocytes, thereby reducing parasitemia [4];
however, despite the many studies of the complex mechanisms involved, their relevance in
vivo remains unclear [5].

According to the World Health Organization, about 5% of the world population carried a gene
mutation for a hemoglobinopathy in 2011, particularly those mutations causing SCD and
thalassemia. Today, SCD is not restricted to Africa and parts of India, but is found in the
America and Europe, mainly as a result of migration and racial intermingling. In the United
States, the disease afflicts approximately 1:500 Afro-American and 1:4000 Hispanic-American
neonates [6].

The Brazilian National Program of Neonatal Screening estimates that around 2 million
individuals carry the HbS trait in that country and 25,000–50,000 individuals are homozygous
for HbS. About 3,500 children are thought to be born with SCD every year and 200,000 are
heterozygous for the HbS gene [7-8].

1.2. Pathophysiology

Sickle cell disease is characterized by a point mutation in the sixth codon of the β-globin gene.
The replacement of a thymine residue with an adenine (GTG to GAG) results in the substitution
of glutamic acid for valine in the β-chain of hemoglobin, thus producing an anomalous
hemoglobin (βs-globin). After several cycles of deoxygenation and oxygenation, the HbS
molecule polymerizes. This process is facilitated during the deoxygenation state of hemoglobin
S (HbS) by hydrophobic interactions between the β subunits of the hemoglobin tetramer. The
polymers thus formed can damage the erythrocyte structure, leading to sickle-shaped
erythrocytes [9].

The polymerization of HbS represents the primary event in the molecular pathogenesis of the
disease, and this process is dependent on several factors, including the concentrations of HbS
and oxygen, the presence of high levels of normal hemoglobin, pH, temperature, and ionic
strength [10]. HbS polymerization is responsible for: a) altering the structure and flexibility of
the erythrocytes; b) promoting erythrocyte dehydration; and c) physical and oxidative stress
[11, 12]. All of these events contribute to the hemolysis of the erythrocytes. The heme group
present in the hemoglobin is then released into the circulation and can capture the nitric oxide
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(NO) molecules present in the vascular endothelium, generating a “vasoconstriction effect” in
the patient [13]. Low levels of NO contribute to the vasculopathy and hypercoagulability
characteristic of the disease, and have been related to its clinical manifestations, including
pulmonary hypertension, leg ulcers, priapism, and cerebrovascular disease [14, 15].

NO is an important mediator of cell functions, with various effects, including vasodilatation,
the inhibition of platelet aggregation, and the reduced expression of adhesive molecules
(Figure 1). This mediator also stimulates the expression of the gamma globin gene and
consequently increases the production of fetal hemoglobin (HbF). This mechanism seems to
involve soluble guanylyl cyclase (sGC), which increases the expression of γ-globin in eryth‐
roleukemic cells and primary erythroblasts [16, 17].

Figure 1. Effects of nitric oxide on the vascular endothelium, inflammatory cells, and platelets.

Another manifestation of SCD is vaso-occlusion (Figure 2), which is the major cause of
morbidity in patients with SCD, causing tissue infarct, painful crises, acute thoracic syndrome,
and nephropathy. The interactions of the sickle erythrocytes, leucocytes, neutrophils, and
platelets with the vascular endothelium increase, leading to the formation of heterocellular
aggregates, which are responsible for vaso-occlusion [18]. Mechanistically, the interaction
between the erythrocytes and the endothelium involves α4β1 integrin, expressed on the
erythrocyte surface, and fibronectin, vascular cell adhesion protein 1 (VCAM-1), intracellular
adhesion molecule 1 (ICAM-1), and E-selectin, expressed on the endothelial cell surface [19].
Other ligands, including thrombospondin, von Willebrand factor, immunoglobulins, and
fibrinogen, also seem to contribute to this adherence [20].

This vaso-occlusion is aggravated by ischemic cycles, which cause oxidative and inflammatory
stress and increase the production of proinflammatory cytokines [21, 22].
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Figure 2. Pathophysiology of sickle cell disease.

Inflammation is another central feature of the vasculopathy of SCD (Figure 2). The adhesion
and activation of leucocytes increase the production of proinflammatory cytokines, such as
tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-8, which contribute to chronic
inflammation and vaso-occlusive crises [23, 24]. SCD patients show increased levels of
proinflammatory cytokines, including TNF-α [25], and high levels of TNF-α can increase the
chemotactic proprieties of cells and amplify inflammation. This cytokine is also responsible
for: a) increasing neutrophil adherence to the vascular endothelium; b) stimulating the
production of free radicals; c) stimulating the synthesis of other inflammatory mediators, such
as IL-1β and prostaglandin E2 (PGE2); and d) modulating coagulation and anticoagulation
functions [26, 27]. Therefore, the increased plasma levels of TNF-α in SCD patients contribute
to their vaso-occlusive crises and inflammatory episodes [25, 28-29].

1.3. Treatment

Despite current advances in medical technology, there is still no specific treatment for SCD.
The drugs available can only reduce the symptoms and increase the patient’s quality of life.
The complexity of SCD is an obstacle to the scientific development of new selective and
effective therapies. This is coupled with the lack of interest within the pharmaceutical industry

Inherited Hemoglobin Disorders164



in searching for new drugs for this disease, another major impediment to the discovery of new
treatments [30, 31]. Here, we discuss the main strategies and current advances in the search
for new drugs with which to treat SCD.

Several strategies and therapies can be explored for the treatment of SCD. Among these, we
include: a) the induction of HbF synthesis; b) the inhibition of erythrocyte dehydration; c) the
inhibition of cellular adhesion; d) vasodilators; e) adenosine agonists; f) hemoglobin modifiers;
g) Rho-kinase inhibition; and h) chelating agents (Figure 3). All of these strategies are discussed
below.

Figure 3. Therapeutic strategies for the treatment of SCD.

Induction of HbF synthesis

The induction of HbF synthesis is a promising strategy for the treatment of SCD [32, 33]. The
elevated levels of HbS and low levels of HbF in patients with SCD are related to the clinical
severity of the disease and the early mortality of the patients. This effect is related to high levels
of HbS polymerization and its increased adherence to the vascular endothelium, which
aggravate the vaso-occlusive process [34, 35]. Agents that increase HbF levels include hydrox‐
yurea (HU), decitabine, azacitidine, NO donors, butyric acid and its derivatives, erythropoie‐
tin, and thalidomide and its derivatives.
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• Hydroxyurea

Hydroxyurea (Figure 4) is a chemotherapeutic agent and selective inhibitor of ribonucleoside
diphosphate reductase, an enzyme that converts ribonucleoside diphosphates to deoxyribo‐
nucleoside diphosphates. Therefore, HU inhibits the G1/S phase transition of the cell cycle [36].
Currently, it is the only drug approved by the U.S. Food and Drug Administration (FDA) for
the treatment of SCD.

Figure 4. Chemical structure of hydroxyurea.

HU reduces the number of vaso-occlusive crises, episodes of acute thoracic syndrome, and
urgent requirement for blood transfusion [37]. One nine-year clinical study demonstrated a
reduction of 40% in the number of fatalities among patients treated with this drug [38].

The beneficial effects of HU in SCD are related to the increase of HbF levels. Some data suggest
that the mechanism whereby HU increases the levels of HbF involves its biotransformation of
NO, which activates the soluble guanylate cyclase (sGC) on erythroid cells [17, 39]. The
activation of sGC increases the expression of γ-globin in erythroleukemic cells and primary
human erythroblasts [16]. Other effects of HU include the reduction of leukocytes, reticulo‐
cytes, and platelets, and a reduction in the adhesiveness of erythrocytes and leukocytes to the
vascular endothelium [40]. However, HU has several adverse effects, such as myelotoxicity,
cutaneous hyperpigmentation, and ulcerative lesions on lower limbs [41].

Despite these adverse effects, the benefits of HU use are supported by evidence of its efficacy
in reducing morbidity and mortality. However, importantly, about one third of patients do
not respond to HU treatment [42]. In this context it is important to introduce new drugs that
recapitulate the beneficial effects of HU without its potential toxicity.

• NO donors

Nitric oxide is a gas, synthetized from L-arginine by a family of enzymes called nitric oxide
synthases [43], which have multiple regulatory functions in organisms, as transcription factor
activators, in glycolysis and mitochondrial electron transport, hormone release, penile
erection, and platelet and neutrophil adhesion, among others [44].

NO is the main endothelium-derived relaxant, with a central role in homeostasis and the
inhibition of platelet aggregation [45]. It is also considered an epigenetic molecule because it
bonds with the sulfhydryl groups of cysteine residues, generating S-nitrosyl groups, which
can modify gene expression [46, 47]. The most important example of the modification of gene
expression by NO involves the activity of histone deacetylase (HDAC2), in which cysteine
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residues 262 and 274 are S-nitrosylated, causing the enzyme to dissociate from the chromatin,
resulting in acetylation of the H3 and H4 histones [48].

Figure 5. Representation of the NO effect on HDAC2 S-nitrosylation.

• Decitabine and azacitidine

Decitabine (5-aza-2′-deoxycytidine) (Figure 6) is a potent inducer of HbF synthesis, acting
through the hypomethylation of the promoter of the γ-globin gene [49]. One clinical study
conducted with a small group of patients showed that decitabine increases HbF production,
even in patients unresponsive to HU [50]. In animal models, decitabine does not induce
carcinogenesis and, curiously, has shown protective activity against cancer [51].

Azacitidine (5-azacytidine) (Figure 6) has also been shown to act as an inducer of HbF.
However, serious adverse effects in humans and animals have restricted its use in the treatment
of SCD, including carcinogenicity, neutropenia, thrombocytopenia, and leukopenia [52, 53].

Figure 6. Chemical structure of decitabine and its analogue, azacitidine.

• Butyric acid and its derivatives
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The butyrates (Figure 7) are short-chain fatty acids that inhibit the histone deacetylases,
resulting in the induction of γ-globin gene expression and the synthesis of HbF [54]. The
butyrates have been shown to produce a sustained increase in the HbF concentrations of SCD
patients, but their short half-lives and low bioavailability have limited their use clinically.
Therefore, new derivatives of butyric acid, with superior bioavailability and increased half-
lives, are under investigation in animal models [33, 55].

Figure 7. Chemical structures of some butyric acid derivatives.

• Erythropoietin

Recombinant human erythropoietin also increases HbF levels in vivo and in vivo with few
adverse effects. This combination has shown good results, with a better tolerance profile than
either agent alone, mainly in patients who are only weakly responsive to HU [56].

• Thalidomide and its derivatives

Thalidomide (Figure 8), originally used as a hypnotic/sedative and antiemetic agent, was
withdrawn from the market in the 1960s because of its teratogenic effects [57]. However, it has
proven useful in the treatment of other diseases, such as leprosy and multiple myeloma, based
on its anti-inflammatory and immunomodulatory effects [58].

Thalidomide increases the production of reactive oxygen species (ROS) and induces γ-globin
mRNA expression in a dose-dependent manner, via p38 MAPK signaling and histone H4
acetylation [59]. High levels of ROS act as signals that mediate the phosphorylation of tyrosine
kinases, such as p38 MAPK, thereby regulating the expression of γ-globin [60].

Lenalidomide and pomalidomide (Figure 8) are thalidomide analogues with immunomodu‐
latory effects related, in part, to the inhibition of TNF-α [61]. Moutouh-de Parseval et al. (2008)
have shown that pomalidomide and lenalidomide induce HbF synthesis and modulate
erythrocyte differentiation, and these effects were improved when the authors combined the
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treatment with HU. The combination of HU with pomalidomide was more effective that its
combination with lenalidomide [62]. In vivo studies of these two agents in transgenic animals
have shown increased HbF expression, without any myelosuppressive effect, at levels similar
to those in the HU-treated controls [63].

Figure 8. Chemical structures of thalidomide, pomalidomide and lenalidomide.

Inhibition of erythrocyte dehydration

HbS polymerization is dependent on the intracellular concentration of HbS, which is directly
related to the hydration state of the cell. Therefore, strategies that prevent cellular dehydration
should be explored for the treatment of SCD. The inhibition of potassium–chloride cotransport,
in which potassium causes the movement of chloride ions and water, produces an osmotic
imbalance and causes dehydration, with further polymerization of HbS [64]. The calcium-
activated potassium channel known as the Gardos channel is also present on sickle erythro‐
cytes and could be inhibited to promote an adequate osmotic balance [65]. Examples of
compounds that inhibit this channel include magnesium, clotrimazole, and senicapoc.

• Magnesium

It has been reported that increased levels of intracellular Mg2+ inhibit the efflux of potassi‐
um from the erythrocyte, preventing its dehydration [66]. Preliminary studies in transgen‐
ic animals with SCD have shown that magnesium supplementation can substantially reduce
the  cotransport  of  KCl,  and  therefore  reduce  the  mean  corpuscular  volume  and  the
reticulocytes  number  [67].  Magnesium  pidolate  combined  with  HU  was  tested  for  six
months in a clinical study (phase I) involving children. The results showed that magnesi‐
um pidolate reduces KCl cotransport activity. However, the authors found no changes in
other hematological parameters [68].

• Clotrimazole

The antifungal drug clotrimazole (Figure 9) inhibits the Gardos channel in erythrocytes, but
this drug is known for its adverse effects during long-term therapy [67].Despite its toxicity,
clotrimazole  was  used  as  a  prototype  molecule  for  molecular  modification,  which  has
generated compounds  such as  NS3623  and xlink652,  which  inhibit  the  Gardos  channel.
These compounds prevented hemolysis and sickle cell  formation in vivo,  in a transgenic
mouse model [69, 70].
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• ICA-17043 (Senicapoc)

Preclinical studies using the compound ICA-17043 (Figure 9) have shown that it reduces the
activity of the Gardos channel, thus reducing the hemoglobin concentration and hemolysis.
However, despite these beneficial effects, no reduction in the frequency of vaso-occlusion
episodes was observed [71].

Figure 9. Chemical structures of erythrocyte dehydration inhibitors.

Inhibition of cellular adhesion

The adhesion of sickle cells to the vascular endothelium involves various mediators, including
integrin α4β1, CD36, and ICAM-4, which are responsible for the cellular interaction with the
endothelium directly through E-selectin, P-selectin, integrins, and VCAM-1, or indirectly
through molecules such as thrombospondin and von Willebrand factor [72, 73]. Several
compounds have demonstrated a capacity to inhibit cellular adhesion, including rivipansel,
heparin, eptifibatide, prasugrel, and propranolol.

Rivipansel (Figure 10), a synthetic glycomimetic molecule, is a pan-selectin inhibitor that
acts  on  E-,  P-,  and  L-selectin.  It  has  been  shown  to  restore  blood  flow  during  vaso-
occlusion, increasing the survival rates in treated animals. An in vivo study indicated that
this  drug  is  a  potent  inhibitor  of  neutrophil  adhesion  through  its  interaction  with  E-
selectin and ICAM-1 [74].

Heparin potentially interferes with the adhesion of sickle cells to the vascular endothelium
through P-selectin. Clinical trials of low-molecular-weight heparin reported a reduction in the
duration and severity of acute vaso-occlusive episodes [55, 73].

Another drug under investigation for the treatment of SCD is eptifibatide. Phase I clinical trials
of eptifibatide, a synthetic cyclic peptide antagonist of glycoprotein IIb/IIIa (or integrin αIIbβ3),
have reported reductions in platelet activation and inflammatory markers [75].

Vasodilators

Vasodilation is a desirable effect in the prevention of vaso-occlusive processes. NO is a
vasodilator synthesized from L-arginine by endothelial cells and is responsible for maintaining
vascular tonus [13]. It has been demonstrated that therapies that increase the bioavailability
of NO may be beneficial to SCD patients, because 50% of patients showed endothelial
dysfunction attributable to low endothelial levels of NO [76].
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NO is a soluble gas with a short half-life, used for pulmonary hypertension in newborn
children. Its first use in SCD was reported by Atz and Wessel (1997), for the treatment of acute
thoracic syndrome. NO inhalation reduces vascular pressure and resistance, and improves
oxygenation in SCD patients [77]..

NO donors containing the organic nitrate ester subunit and furoxan derivatives have been
evaluated as potential compounds with which to treat SCD. Santos et al (2011 and 2012)
synthetized new hybrid compounds containing the thalidomide subunit, an organic nitrate
ester, and furoxan derivatives, as NO donors (Figure 11). All the molecules have shown NO-
donor ability, with anti-inflammatory and analgesic effects. The compounds also induced
gamma globin expression and HbF synthesis in vivo [78, 79].

Arginine supplementation can also increase NO levels, especially in patients suffering vaso-
occlusive events [80]. Arginine also reduces the pulmonary arterial pressure in patients with
pulmonary hypertension [81].

Sildenafil is a phosphodiesterase-5 inhibitor used to treat erectile dysfunction and pulmonary
arterial hypertension [82]. Several studies have demonstrated that this drug reduces the
activation of platelet-dependent glycoprotein IIb/IIIa in patients with SCD and pulmonary
hypertension [83]. Sildenafil also increases the signalization of cGMP signaling which could
be useful in the treatment of SCD patients with pulmonary hypertension [84, 85].

Statins efficiently prevent blood vessel damage via many mechanisms, including by increasing
endothelial NO. These drugs also reduce vascular inflammation and restore endothelial
relaxation in coronary diseases and stroke. Some studies have reported that lovastatin reduces
the expression of platelet activation factor on the vascular endothelium [86].

Adenosine agonists

Adenosine is an endogenous purine nucleoside, whose signaling is responsible for promoting
vasodilation, reducing inflammation, and protecting tissues during periods of hypoxia and

Figure 10. Chemical structure of rivipansel (GMI-1070).

Sickle Cell Disease – Current Treatment and New Therapeutical Approaches
http://dx.doi.org/10.5772/60515

171



cellular stress [87]. In SCD patients, the tissue damage generated by ischemia–reperfusion may
reduce the plasma levels of adenosine [88].

Some studies have suggested that receptors A2A and A2B are related to the pathogenesis of SCD.
ATL146e is an A2A adenosine agonist that reduces the activation of leukocytes, platelets, and
invariant natural killer T cells (iNKT cells), inflammation, and pulmonary injury in transgenic
animals with SCD [89]. Regadenoson (Figure 12) is a selective agonist of the A2a adenosine
receptor. During clinical trials (phase I), this compound reduced the activation of iNKT cells,
with no toxic effects [90].

Figure 11. Furoxan derivatives with NO-donor ability.

Figure 12. Chemical structure of regadenoson.
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It has been reported that the activation of the adenosine A2B receptor may increase the
deleterious effects of SCD, promoting priapism and the sickling of erythrocytes [91]. Antago‐
nists such as MS-1706 can reverse priapism [92]. Therefore, the adenosine signaling pathway
is a promising target for the treatment of SCD. A double therapy with an A2A agonist and an
A2B antagonist could have beneficial effects in patients, reducing inflammation, sickling, and
priapism. However, more studies are required to understand the beneficial effects of these
compounds in the treatment of SCD.

Hemoglobin modifiers

The hemoglobin modifiers are classified as either covalent or noncovalent. Although nonco‐
valent modifiers have shown interesting activities, their use is still limited [93]. The modifica‐
tion of hemoglobin by covalent modifiers reduces erythrocyte sickling by two possible
mechanisms: by increasing HbS solubility and/or by increasing its affinity for oxygen [94].

Isothiocyanates have been described as potential modifiers of HbS solubility, delaying its
polymerization, specifically because they bind to the β subunit of HbS, which is responsible
for the hydrophobic interactions that result in its polymerization [95].

Aldehyde compounds have the capacity to form adducts (Schiff bases) with the N-terminal
amines on the amino acids in the HbS chain. Safo et al (2004) demonstrated that heterocyclic
aldehydes, such as furfural, 5-methylfurfural, 5-ethylfurfural, and 5-hydroxymethylfurfural,
increase the affinity of HbS for oxygen, thereby inhibiting sickling [96]. However, the low oral
bioavailability of these drugs, the high doses required for a significant effect, and their dose-
dependent toxicity limit their therapeutic use.

Rho-kinase (ROCK) inhibitors

The Rho-kinase protein (ROCK), identified as a Rho-GTPase effector, is involved in various
cell processes, including contractility, chemotaxis, adhesion, and migration. This protein
facilitates the infiltration of inflammatory cells, both in vitro and in vivo [97].

ROCK inhibition is beneficial in cardiovascular, neurological, and oncological diseases. The
in vivo activities of these inhibitors include: a) the regulation of the arterial blood pressure; b)
increased vascular resistance; c) the regression of atherosclerotic coronary lesions; d) the
prevention of diabetes development; e) neurological repair; f) reduced formation of β-myeloid
aggregates; and g) the inhibition of tumor growth, progression, and metastasis [98-105].

Rho-kinase inhibitors are also potential agents for the treatment of SCD. An in vitro study
showed that Rho-kinase inhibitors, such as Y-27632 (Figure 13), reduced the activation of
human endothelial cells and the adhesion of eosinophils in SCD patients. Fasudil (Figure 13)
is a Rho-kinase inhibitor that is approved in Japan for the treatment and prevention of
intracranial aneurysm and that has shown good results in preventing pulmonary complica‐
tions in animals with SCD. The activities of fasudil include: a) the inhibition of eosinophil and
chemokine recruitment, which promotes the progression of the pulmonary inflammatory
response [106]; b) the reduction of proinflammatory cytokines levels, such as IL-6, IL1-β, and
TNF-α, thus reducing inflammation [107]; and c) the reduction of the expression of adhesive
molecules, such as ICAM-1, and therefore coagulation [108].
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A comparison of HU and hydroxyfasudil demonstrated the superior activity of the ROCK
inhibitor in reducing vaso-occlusion and inflammation. Therefore, this class of drug has been
suggested as an alternative SCD treatment [109].

Figure 13. Chemical structures of Rho-kinase inhibitors.

Chelating agents

Iron-chelation  therapies  have  been  used  to  control  iron  overload  in  patients  who  have
received several blood transfusions to reduce disease complications [110]. Iron overload can
affect organs such as the liver, heart, and endocrine system, leading to tissue damage and
even death [111].

Deferoxamine is a hexadentate chelating agent, introduced into the therapeutic context in 1963.
It is still one of the drugs most frequently used to treat iron overload in hemoglobin disorders,
such as SCD and thalassemia. Deferoxamine has a high molecular weight and a high affinity
for Fe3+, and the ratio between the drug and iron is 1:1. Because this drug has low oral/
gastrointestinal absorption, it is administered via a subcutaneous or intravenous route [112].

Figure 14. Chemical structure of deferasirox.
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Deferasirox was approved by the FDA in November 2005 as an oral chelating agent. It is a
trivalent molecule with great affinity for the iron atom. The chelating ratio is two drug
molecules to each iron atom (Figure 14) [113]. The prolonged chelating effect produces a
progressive reduction in free plasma iron. Its oral route of administration is the great advantage
of this drug, but the treatment is expensive [114].

2. Conclusions

Sickle cell disease is one of the most prevalent hemoglobinopathies worldwide. Despite its
importance, therapeutic resources are scarce and usually only control the main symptoms of
the disease. The lack of interest by pharmaceutical companies in developing new drugs for
SCD and the limited research undertaken in this area ensure that this disease still severely
affects patients. The only drug currently available to treat SCD is HU, but its serious adverse
effects limit its use. Moreover, around 1/3 of patients do not respond to HU treatment.

Therefore, research is urgently required to find new drugs for SCD. In this chapter, we have
discussed the currently available treatments and their limitations, and have presented and
discussed new approaches. Among these, the adenosine agonists/antagonists and ROCK
inhibitors seem the most promising strategies, and therefore warrant further investigation.
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