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1. Introduction

The etiology of osteoarthritis (OA) is not known with certainty. Undoubtedly, many factors
contribute to articular cartilage failure but consistently abnormal biomechanics appear central
to the condition. Indeed it is recognized that mechanical loading that is either below or in excess
of the physiology range leads cartilage degeneration. There are currently no cures for OA and
no effective pharmacological treatments that slow or halt disease progression. Physical activity
is one of the most widely prescribed non-pharmacological therapies for OA management,
based on its ability to limit pain and improve physical function. The detailed mechanisms
underlying these beneficial effects of exercise and physical therapy are largely unknown.
Structural integrity is important for joint function and can be lost as a consequence of a range
of physical, biomechanical and inflammatory factors. This chapter will overview how joint
loading influences cartilage structure and how mechanical loading is perceived by chondro‐
cytes resulting in cellular responses that are either chondroprotective or promoting inflam‐
matory and catabolic responses initiating and progressing OA.

2. Mechanical integrity of joint structure

The synovial or diarthrodial joint allows movement between bones and permits transmission
of mechanical loads. The mechanical integrity of the joint elements including articular
cartilage, synovium, subchondral bone, joint capsule, ligaments and periarticular connective
tissues cooperates to provide optimal function. Loss of mechanical integrity results in a range
of pathological changes within the joint recognized as osteoarthritis.

In a synovial joint the articulating bone ends are covered by a thin, highly hydrated specialized
connective tissue, articular cartilage. A high interstitial fluid content distinguishes cartilage
from most other connective tissues and contributes to the mechanical properties of the tissue
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[1,2]. The major components of articular cartilage are type II collagen, proteoglycans, noncol‐
lagenous proteins and glycoproteins. Type II collagen forms the fibrillar meshwork which
provides tensile strength [3-6] and entraps aggregating hydrophilic proteoglycans which help
maintain the high tissue hydration [7-9]. Disruption of the fibrillar meshwork or loss of
proteoglycan results in an in-ability of cartilage to distribute loads and its contribution to near
frictionless joint movement leading, in time, to progressive structural damage and pathological
features of OA.

3. Articular cartilage responses to mechanical loading in vivo

Mechanical loading within a physiological range is necessary to maintain joints in a healthy
state. During normal daily activity articular cartilage is exposed to a range of mechanical forces
during joint movement. Peak forces across the human hip and knee joints have been shown
to reach 4 and 7 times body weight, respectively, during normal walking [10,11]. In vivo,
mechanical loading is applied cyclically and the cells within cartilage, chondrocytes, are
exposed to a composite of radial, tangential and shear stresses [12]. The effects of mechanical
load bearing on the development and microscopic structure of the articular cartilage have been
studied in some detail [13]. Elevated loading increases cartilage thickness, causes hypertrophy
of the superficial zone chondrocytes, and increases the amount of intercellular matrix [14-17].
In normal human joints, load-bearing areas of the cartilage are thicker with a higher proteo‐
glycan concentration and are mechanically stronger than non-load-bearing regions of the same
joint [18-20]. Increasing weight-bearing of joints, in a variety of animal models, leads to
elevation of proteoglycan content within articular cartilage [15,16,21-23]. In contrast, removal
of load bearing leads to a reduction in proteoglycan content [13]. In a dog model, immobili‐
zation of a joint by placing a leg in a cast leads to cartilage atrophy, loss of Safranin O staining,
and a decrease in its uronic acid content [21]. These changes are reversible on remobilization.
Mechanical regulation is also an important factor for chondrogenesis and has been involved
in the development of cell-based therapies for cartilage degeneration and disease [24].

3.1. Mechanical stress within articular cartilage

Articular cartilage is exposed to surprisingly large mechanical loads during joint movement.
Using an instrumented hip prosthesis mechanical stresses have been measured in a 74-year-
old female [25]. Rising from a chair, pressures in the hip joint cartilage can reach nearly 20 MPa
and during walking, pressures cycle between atmospheric and 3-4 MPa at a frequency of
around 1 Hz. With walking or running forces at the joint surface may vary from near zero to
several times the whole body weight within a period of 1 second [10,11]. Loading of articular
cartilage generates a combination of tensile, compressive and shear stress in the material. The
tensile modulus of healthy human articular cartilage varies from 5-25 MPa, depending on the
site of movement on the joint surface (i.e., high or low weight bearing regions), and the depth
and orientation of the test specimen relative to the joint surface [4,26]. The compressive
modulus varies from 0.4-2.0 MPa [27,28]. Articular cartilage responds to shearing forces by
both stretching and deformation of the solid matrix. The dynamic shear modulus is within the
range of 0.2-2.0 MPa for healthy bovine or canine cartilage [29-31]. These physiological stresses
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are important regulators of cartilage metabolism and integrity as mechanical loading serves
to maintain fluid flow and ion phase function within the tissue and act to stimulate chondrocyte
metabolism [32].

4. Articular cartilage explant and chondrocyte responses to mechanical
loading in vitro

Rodan et al. [33] studied the effects of application of compressive forces (80 g/cm2) to chick
tibial epiphyses (16-day-old embryos) in culture and found that glucose consumption reduced
to half of controls. Twenty four hours after the release of pressure, glucose utilization again
increased, approaching control levels. The same pressure also stimulated thymidine incorpo‐
ration into DNA. Exposing chick tibial epiphyses to continuous compressive forces (60 g/cm2,
equal to 5.865 kPa) caused a reduction of both cAMP and cGMP [34]. An equivalent hydrostatic
pressure applied directly to cells isolated from chick tibial epiphyses also affects cyclic
nucleotide accumulation [34]. Veldhuijzen et al. developed a model system that exposed
cultured monolayer chondrocytes on the walls of tissue culture tubes to intermittent com‐
pressive forces of 12.8 kPa for 6 hours at a frequency of 0.3 Hz [35]. Contrary to the effect of
continuous compressive forces, intermittent compressive forces caused a rise in levels of cAMP
and a reduction in DNA synthesis. Palmoski and Brandt [36] studied the effects of both static
and intermittent mechanical stress on full-thickness plugs of canine articular cartilage. When
the plugs were exposed to compressive force using a regime of 60 sec on/60 sec off, glycosa‐
minoglycan synthesis was reduced to 30-60% of controls. However, when a regime of 4 sec on/
11 sec off was employed, the glycosaminoglycan synthesis increased by 34%, although protein
synthesis and DNA, uronic acid, and water content remained unaltered indicating that
different frequencies of cyclical strain produce differences in metabolic activity within
chondrocytes.

Some models designed to test the effects of mechanical force on chondrocytes in vitro have
focused on the effects of cell stretching. In these models there is usually deformation of a cell-
laden, flexible membrane which can be regulated according to (1) the method of deformation
of the membrane - by control of either the displacement or the force, and (2) the shape and
mounting of the deformable membrane - either a circular membrane held at its periphery or
a rectangular strip held at the two ends [37]. The devices utilized in the production of the
displacement include (a) a vacuum driven diaphragm (silicone elastomer membrane, 2.5 mm
in thickness) [38,39], (b) pin shaped displacement (silicone elastomer membrane, 0.254 mm in
thickness) [40], (c) glass dome displacement (polytetrafluoroethylene membrane, 0.025 mm in
thickness) [41,42], (d) air or fluid displacement (polyurethane membrane, 0.094 mm in
thickness) [43-45], and (e) a circular groove displacement (silicone elastomer membrane, 0.076
mm in thickness; polyurethane membrane, 0.094 mm in thickness) [46,47]. The FlexercellTM

strain unit [38] consists of a computer-controlled vacuum unit and a baseplate on which are
held the culture dishes. These dishes have a flexible base. A vacuum is applied to the dishes
via the baseplate. When a precise vacuum level is applied to the system, the bases of the culture
plates are deformed by known percentage elongation that is maximal at the edge of the culture
dish, but decreases towards the center. Using the system, straining the base of a culture dish
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leads to strain of the attached cultured cells. When the vacuum is released, the bases of the
dishes return to their original conformation.

By stretching a supportive flexible membrane on which chondrocytes were cultured, Lee et al.
[48] found that a cyclic 10% mechanical stretch for 8 hours increased glycosaminoglycan
synthesis and decreased protein and collagen synthesis. DeWitt et al. [49] showed increased
radiosulphate and 14C-glucosamine incorporation into glycosaminoglycans by chick epiphy‐
seal chondrocytes in high density cultures subjected to a 5.5% strain at a frequency of 0.2 Hz.
Protein synthesis after 24 hours mechanical strain remained unchanged. Using the Flexer‐
cellTM strain system, Fujisawa et al. [50] investigated the influence of cyclic tension force on the
metabolism of cultured chondrocytes. Two levels of force (5 kPa or 15 kPa) and three frequen‐
cies 30 cycles/min (1 sec on/1 sec off), 0.5 cycles/min (1 sec on/119 sec off) and 0.25 cycles/min
(1 sec on/239 sec off) were used. Both 5 and 15 kPa of high frequency cyclic mechanical stress
for 48 hours significantly inhibited the syntheses of DNA, proteoglycan, collagen, and protein.
The expression of interleukin-1, matrix metalloproteinase (MMP)-2 and MMP–9 mRNA were
induced by 15 kPa of high frequency force. The production of pro- and active-MMP-9 which
would lead to cartilage breakdown in vivo was also increased at this pressure and frequency
of stimulation. Reducing the applied frequency decreased the inhibition of proteoglycan
synthesis. Mechanical stretch producing 25% maximal elongation at a frequency of 0.05 Hz for
48 hours also induces the expression of high molecular weight heat shock protein (HSP) 105
kDa in the human chondrocytic cell line CS-OKB [51]. These findings suggest that the fre‐
quency of cyclic tension force is one of the key determinants of chondrocyte metabolism.

Using confocal microscopy and fluorescent techniques it is possible to monitor and measure
intracellular calcium ion concentration in isolated articular chondrocytes subjected to control‐
led deformation with the edge of a glass micropipette [52]. Intracellular calcium ion concen‐
tration reaches a peak within 5 sec following 25% deformation of the cells and returns to
baseline levels in 3-5 minutes. The immediate and transient increase of intracellular calcium
waves is abolished by removing Ca2+ from the culture medium and is significantly reduced by
the presence of gadolinium and amiloride, agents known to block mechanosensitive ion
channels [53-56]. Inhibitors of intracellular Ca2+ release or agents known to cause cytoskeletal
disruption including cytochalasin D and colchicine had no significant effect on the Ca2+ waves.
The results indicate that mechanosensitive ion channels are upstream in the mechanotrans‐
duction signaling pathway, consistent with results obtained using electrophysiological
parameters in the assessment of the cell response to cyclical mechanical strain [56].

The effects of fluid-induced shear stress on articular chondrocyte morphology and metabolism
in vitro have also been investigated [57]. Fluid-induced shear stress (1.6 Pa = 16 dynes/cm2)
was applied by cone viscometer to both normal human and bovine articular chondrocytes.
Shear stress for 48 and 72 hours caused individual chondrocytes to elongate and align
tangential to the direction of cone rotation. Glycosaminoglycan synthesis was increased 2-fold.
After 48 hours of shear stress, the release of prostaglandin E2 (PGE2) was increased 10 to 20-
fold. In human articular chondrocytes, mRNA levels for tissue inhibitor of metalloproteinase
(TIMP) increased 9-fold in response to shear stress compared to controls. In contrast, mRNA
levels for the neutral metalloproteinases, collagenase, stromelysin, and gelatinase, did not
show significant changes [57].
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5. Chondrocyte mechanoreceptors

The mechanisms by which chondrocytes recognize and respond to the various mechanical
stresses encountered in mechanically loaded cartilage continue to be elaborated. A number of
potential mechanoreceptors, sensory receptors that respond to vibration, stretching, pressure,
or other mechanical stimuli have been identified in chondrocytes. In cartilage the extracellular
matrix (ECM) transmits mechanical signals to the cell interior through changes in tension on
the cell membrane. Integrins, stretch-activated ion channels, connexins, and primary cilia have
each been identified as candidate mechanoreceptors [58-61].

5.1. Integrins

Integrins were first isolated, characterized, and sequenced from chick embryo fibroblast cDNA
clones which encoded one subunit of the complex of membrane glycoproteins [62]. The name
‘integrin’ was proposed as the consequence of its role as an integral membrane complex
involved in the transmembrane association between the ECM and the cytoskeleton. Integrins
are a large family of α/β heterodimeric cell surface adhesion receptors that can bind a wide
variety of ECM and cell surface ligands [63-69]. Most integrins bind ligands that are compo‐
nents of ECM, e.g. fibronectin, collagen, and vitronectin [70]; certain integrins can bind to
soluble ligands (such as fibrinogen) or to counter receptors (such as intercellular adhesion
molecules) on adjacent cells, leading to homo- or heterotypic aggregation [71,72]. Some of the
integrin recognition sites in the ligands and counter receptors have been defined [73,74]. The
first binding site to be defined was the Arg-Gly-Asp (RGD) containing sequence present in
fibronectin, vitronectin, and a variety of other adhesive proteins [75,76].

Integrin expression by human chondrocytes has been investigated utilizing several techniques
including immunohistochemistry, flow cytometry, immunoprecipitation, and northern
blotting [77-79]. Normal adult human articular chondrocytes express α1β1, α3β1, α5β1, αVβ5,
αVβ3, α6β1, α10β1, and α2β1, in which the α1β1 (receptor for collagen), α5β1 (receptor for
fibronectin) and the αVβ5 (receptor for vitronectin) heterodimers are consistently expressed.
In cartilage, integrin-ECM interactions are thought to be important in many aspects, physio‐
logical and pathological, of chondrocyte function, including adhesion, spreading, prolifera‐
tion, signal transduction, biomechanical regulation, chondrogenesis, and gene expression [80].
Chondrocyte β1 integrin-ECM interactions are required for chondrocyte survival, matrix
deposition and differentiation in models of chondrocyte development [81]. Integrins mediate
chondrocyte adhesion to many ECM proteins including type II collagen, type VI collagen,
fibronectin, laminin, and osteopontin [82-85]. Chondrocyte spreading and migration on type
II collagen, type VI collagen, or fibronectin substrates in vitro is mediated by interactions with
β1 integrins [86,87]. The interaction of the α5β1 integrin with fibronectin is necessary for
adhesion, spreading, and proliferation of both chicken and rabbit chondrocytes [88,89]. In
vitro chondrogenesis (the differentiation of blastemal cells to chondroblasts and the formation
of cartilage matrix) is inhibited by the function blocking anti-β1 integrin antibodies [90].
Laminin-α3β1/α6β1 interactions are regulated by the ligand trend (depletion/reconstitution
or competition experiments) during early chondrocyte differentiation [89]. Other integrin-
mediated chondrocyte-matrix interactions include β1-matrix Gla protein, β3-bone sialoprotein
II, β3-osteopontin, and α2β1-chondroadherin associations [84,86].
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Integrins are involved in regulation of both cartilage matrix synthesis and integrity. Loss of
integrin function inhibits type II collagen synthesis by chondrocytes in culture [91]. However,
integrins are also involved in cartilage breakdown processes. Fibronectin fragments stimulate
chondrolysis and decrease proteoglycan synthesis in cartilage explants through fibronectin-
integrin dependent interactions [92]. Ligation of α5β1 integrin with fibronectin in cultured
chondrocytes results in the formation of focal adhesion complexes comprising actin, focal
adhesion kinase (FAK) and the G protein Rho [93]. Nitric oxide (NO), a potential mediator of
events occurring in osteoarthritis, can inhibit the assembly of the intracellular activation
complex and the subsequent upregulation of proteoglycan synthesis that occurs following
ligation of α5β1 integrin to fibronectin [93].

Integrins also act as mechanoreceptors and transmit mechanical signals from the extracellular
environment to the cytoskeleton [94-96]. Integrins can provide a gating function for signal
transduction, by either supporting or prohibiting force transmission between ECM and the
cytoskeleton [94]. Wang et al. [97], using a magnetic twisting device applied mechanical forces
directly to cell surface receptors. They showed that the integrin subunit β1 induced focal
adhesion formation and supported a force-dependent stiffening response, whereas nonadhe‐
sion receptors did not [97]. Maniotis et al. [98] reported that living cells and nuclei are hard-
wired. When integrins were stimulated by micromanipulating bound microbeads or
micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed
along the axis of the applied tension field. These effects were specific for integrins, independent
of cortical membrane distortion, and were mediated by direct linkages between the cytoske‐
leton and nucleus [98]. Using a similar magnetic drag force device, intracellular Ca2+ concen‐
tration was shown to increase when the α2 or the β1 integrin subunits were stressed, whereas
mechanical loading of the transferrin receptor produced a significantly reduced effect [99]. An
increase in tyrosine phosphorylation was observed as a reaction to mechanical stress on the
β1-subunits of the integrin family, whilst stress to the transferrin or low density lipoprotein
receptors which have no connection to the cytoskeleton did not produce this reaction [100,101].

Integrins are also modulated by mechanical stress [102]. When chondrosarcoma cells were
exposed to mechanical stimulation, mRNA expression of the α5 integrin subunit was found
to increase whilst expression of the β1, α2, and αV did not increase significantly [102]. The
effect of mechanical stress on integrin subunit expression has also been investigated in cells
cultured on type II collagen-coated dishes with a flexible base. Mechanical stress increased
mRNA expression of the α2 integrin subunit whilst the levels of mRNA for integrin subunits
β1, α1, α5, and αV showed no or only small changes [102]. It is likely that mechanical induced
regulation of integrins is closely regulated and may be dependent on the nature of the
mechanical force acting on the cell and specific mechanoreceptor stimulated.

5.2. Stretch-activated Ion channels

Stretch-activated or stretch-sensitive ion channels (SACs) open as a consequence of mechanical
deformation of the cell membrane [103]. SACs are directly activated by mechanical forces
applied along the plane of the cell membrane that induce membrane tension and distortion of
the lipid bilayer. These result in conformational changes which alter opening or closing rates
of the channels permitting ion flux [104]. Application of mechanical forces perpendicular to
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the cell membrane, as seen with hydrostatic pressure, appears to be less effective in activating
SACs [103]. Activation of calcium permeable SACs leads to local increase in intracellular
calcium levels and stimulation of downstream calcium-dependent intracellular signal cas‐
cades. SACs sensitive to gadolinium are necessary for load and fluid flow related cellular
responses in both chondrocytes and bone cells.

5.3. Connexins

Connexins are widely expressed in connective tissue where networks of cells are seen such as
in bone, tendon and, meniscus. They probably act to allow propagation of a mechanical
stimulus through a tissue. They are a superfamily of twenty-one transmembrane proteins that
form gap junctions and hemichannels [105]. Gap junctions allow continuity between cells
permitting diffusion of ions, metabolites and small signaling molecules such as cyclic nucleo‐
tides and inositol derivatives. Cx43 is the most abundant connexin present in skeletal tissue.
Conditional deletion of Cx43 reduces mineral apposition rate to mechanical loading and Cx43
hemichannels are important for fluid shear induced PGE2 and ATP release in osteocytic cells
[106]. Connexins and gap junctions are present at the tip of osteocyte dendritic processes and
between these processes and osteoblasts indicating their potential importance in permitting
cell–cell communication among the osteocytic network although propagation may be only
directed from osteocytes to osteoblasts [107]. Cx43 hemichannels are activated and mediate
small molecule exchange between cells and matrix under mechanical stimulation in rat
temporomandibular joint (TMJ) chondrocytes [108]. Cx32 and Cx43 are important in tenocyte
mechanotransduction [109]. Cx32 junctions form a communication network arranged along
the line of principal loading and stimulate collagen production in response to strain. Connexin
dependent mechanotransducation may be important in adaptation of subchondral bone to
mechanical loading of joints rather than having a major role in chondrocyte dependent
mechanotransduction. Nevertheless recent studies suggest that primary cilia associated
connexins may be functional in responses of chondrocytes to mechanical loading.

5.4. Primary Cilia

Primary cilia are solitary, immotile cilium present in most cells including chondrocytes and
bone cells. They are microtubule-based organelles, growing from the centrosome to extend
from the cell surface and contain large concentrations of cell membrane receptors, including
integrins [110]. They function both as chemosensors and mechanosensors [111,112]. Bending
of the cilium upon matrix deformation or with fluid flow is thought to cause cilium bending,
pulling on associated matrix receptors and activation of the mechanoreceptors [113]. In
addition to integrins, Cx43 hemichannels are also present on primary cilia and by regulating
ATP release cilia and activation of purine receptors cilia-associated connexins may also be
involved in mechanotransduction.

6. Chondrocyte mechanotransduction

Mechanoresponsiveness is a fundamental feature of all living cells [94,114,115]. Studies with
cultured cells confirm that mechanical stresses can directly alter many cellular processes,
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including signal transduction, gene expression, growth, differentiation, and survival [116].
Wright et al. [117] investigated the effects of applied hydrostatic pressure on the transmem‐
brane potentials of articular chondrocytes. These studies have been pivotal in identifying
potential mechanotransduction pathways in both normal and osteoarthritic human chondro‐
cytes. In this system cells in monolayer culture were exposed to an increase in hydrostatic
pressure by placing culture dishes in a sealed perspex pressure chamber with a gas inlet and
outlet. Nitrogen or helium gas was used to pressurize the cultures. A hyperpolarization of the
chondrocyte plasma membrane was induced by cyclic pressurization (0.33 Hz, 120 mmHg for
20 min) whilst depolarization was induced by continuous pressure (120 mmHg, 20 min). For
the frequencies tested, the maximum values for chondrocyte hyperpolarization occurred at
approximately 0.3-0.4 Hz. The mechanical stimulation regime (0.33 Hz, 120 mmHg, 20 min),
similar to that used by Veldhuijzen et al. [35], allowed identification of a number of integral
components of the electrophysiological response providing insight into molecules and
pathways activated in chondrocyte upon mechanical stimulation. By the use of pharmacolog‐
ical inhibitors, it was shown that the hyperpolarization response in cultured human chondro‐
cytes induced by cyclic pressurization involved Ca2+ activated K+ channels and L-type calcium
channels. Hyperpolarization was also produced by addition of the calcium ionophore A23187
to the culture medium showing that a rise in intracellular Ca2+ concentration within the cell
could induce the response. Plasma membrane histamine H1 and H2 receptors, and β-adre‐
noreceptors did not appear to be involved in the hyperpolarization response. The studies also
showed that the actin cytoskeleton, but not microtubules, was involved in the chondrocyte
hyperpolarization response [117].

Subsequent studies identified that the electrophysiological response to cyclical pressurization
was the result of deformation of the base of the culture dishes to which the chondrocytes were
attached and therefore deformation (strain) on the chondrocytes rather than a direct effect of
the increased hydrostatic pressure on chondrocytes [56]. The hyperpolarization response was
proportional to the microstrain to which cells were subjected and did not occur when chon‐
drocytes were subjected to cyclical pressurization in rigid glass culture dishes or when the
plastic dishes were positioned in the pressurization chamber so as to avoid deformation of the
base of the culture dish [56].

Experiments undertaken to identify the source of intracellular calcium that activated the SK
channels leading to hyperpolarization demonstrated a requirement for extracellular calcium
and activity of L-type calcium channels [118-120]. Thapsigargin which raises intracellular
Ca2+ by inhibition of Ca2+-ATPase in endoplasmic reticulum [121-123] caused hyperpolariza‐
tion independent of mechanical strain but further hyperpolarization of the cells occurred after
cyclical pressurization further supporting the idea that mechanically induced chondrocyte
hyperpolarization is dependent on intracellular free Ca2+ levels [56]. In addition, TRPV4-
mediated Ca2+ signaling has been demonstrated to play a central role in the transduction of
mechanical signals to support cartilage extracellular matrix maintenance [124].

6.1. Intracellular signal cascades activated by mechanical stimulation

Stimulation of connective tissue cell mechanoreceptors is followed by generation of the
secondary messenger molecules and activation of a cascade of downstream signaling events
that regulate gene expression and cell function. Many intracellular signaling pathways are

Osteoarthritis - Progress in Basic Research and Treatment48



known to be activated by mechanical forces applied to tissues and cells including heterotri‐
meric guanine nucleotide binding proteins (G-proteins), protein kinases and transcription
factors. These pathways that regulate tissue modelling/remodelling may be activated directly
as a consequence of mechanoreceptor signaling or indirectly following production of auto‐
crine/paracrine acting molecules.

PKB/Akt is a protein family of serine/threonine kinases that have multiple roles including
inhibition of apoptosis by phosphorylation and inactivation of pro-apoptotic factors. Integrin-
dependent activation of phosphoinositide3 kinase (PI3 kinase) by mechanical forces regulates
PKB activity and can inhibit cell death. Inactivation of the PI3-K/PKB pathway may be
important in deleterious effects of mechanical overloading of cartilage and bone loss in
response to withdrawal of loading [125]. The activity of mammalian target of rapamycin
(mTOR) may be an essential mechanotransduction component modulated by SH2-containing
protein tyrosine phosphatase 2 and is required for cartilage development [126].

Mitogen-activated protein kinases (MAPKs) regulate multiple cellular activities, such as gene
expression, mitosis, differentiation, and cell survival/apoptosis. ERK1/2, JNK and p38, of
critical importance in regulation of matrix protein and protease gene expression have each
been shown to be activated in chondrocytes following mechanical stimulation [127]. Mechan‐
ical stimuli may activate different MAPKs and through this mechanism differential cellular
responses may occur. MAPK responses may also be cell type dependent. Mechanical stimu‐
lation induced ERK1/2 activation in bone cells requires calcium-dependent ATP release whilst
in cartilage activation, under certain circumstances, is dependent on FGF-2 rather than through
integrin mechanoreceptors [128]. Tyrosine phosphorylation of focal adhesion kinase
(pp125FAK), beta-catenin, and paxillin following mechanical stimulation is also recognized in
human articular chondrocytes [129].

In bone cells NF-κB, a protein complex that acts as a transcription factor, is directly stimulated
by mechanical stimulation is dependent on intracellular calcium release [130]. In chondrocytes
biomechanical signals within the physiological range block NF-κB activity and proinflamma‐
tory chondrocyte responses [131]. Mechanical stimuli that induce catabolic rather than anabolic
responses in chondrocytes induce rapid nuclear translocation of NF-κB subunits p65 and p50
in a similar manner to IL-1β [132].

6.2. Growth factors and autocrine/paracrine signaling in mechanotransduction

As part of the cellular response to mechanical stimulation mechanosensitive connective tissue
cells release a range of soluble mediators. These may be present in the cell and available for
immediate release, or secretion may depend de novo synthesis by enzymatic activity or
transcriptional activation and protein production. These mediators, including prostaglandins,
nitric oxide, cytokines, growth factors, and neuropeptides are involved in downstream tissue
modelling and remodelling responses initiated by the mechanosensitive cells or other effector
cells. Production of soluble mediators by connective tissue cells in response to mechanical
stimulation however may also be intrinsic to mechanotransduction pathways. Autocrine and
paracrine activity allows increased regulation of the cellular response to mechanical stimuli
by permitting cross talk between different components of a mechanotransduction cascade. As
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the cellular responses to mechanical stimuli and soluble mediators activate similar signal
cascades inducing either anabolic or catabolic responses, it would be expected that they may
be antagonistic, additive or synergistic. Anabolic cytokines and growth factors enhance
production of matrix under mechanical loading conditions whilst anabolic mechanical stimuli
antagonize the effects of catabolic cytokines such as IL-1β [133].

Prostaglandins,  predominantly  PGE2,  NO and ATP are  produced  when  bone  cells  and
chondrocytes are mechanically stimulated. Prostaglandin production is integrin dependent
requiring an intact cytoskeleton and activation of SACs, PKC, and PLA2. In cartilage PGE2
induced by mechanical loads is catabolic. Mechanical loading of chondrocytes by physiologi‐
cal stimuli inhibits production of PGE2 and NO whereas damaging loading induces PGE2
release [134]. Following mechanical stimulation bone cells and chondrocytes release ATP which
can bind and activate purinergic receptors on these and adjacent cells. Both metabotropic P2Y
receptors and ionotropic P2X receptors, have been shown to be involved in mechanical load
activated signal cascades in chondrocytes and bone cells and may have physiological roles [135].

IL-4 and IL-1β autocrine/paracrine activity is seen in the integrin-dependent mechanotrans‐
duction cascade of chondrocytes (IL-4 and IL-1β) and bone cells (IL-1β) to mechanical
stimulation [136,137]. These molecules are secreted within 20 minutes of the onset of mechan‐
ical stimulation, suggesting release from preformed stores. IL-4 release relies on secretion of
the neuropeptide substance P which binds to its NK1 receptor. Both IL-4 and substance P are
necessary but not sufficient for the increased expression of aggrecan mRNA and decrease in
MMP3 mRNA induced by the mechanical stimulus suggesting cross talk with other mecha‐
nosensitive signaling pathways. IL-1β is involved in the early mechanotransduction pathway
of both osteoarthritic chondrocytes and human trabecular bone derived cells [138]. Mechanical
loading may also induce release or activation of sequestered growth factors in extracellular
matrix which will then act on near-by resident connective tissue cells. Basic fibroblast growth
factor (FGF2) is a possible mediator of mechanical signaling in cartilage through such a
mechanism [128]. Dynamic compression of porcine cartilage induces release of FGF2 with
activation of ERK MAP kinase, synthesis and secretion of TIMP-1. In contrast FGF2 production
by bovine cartilage is inhibited by 1 hour of compressive stress of 20 MPa [139]. This mechanical
induced suppression of FGF2 is blocked by IL-4 indicating further roles for this pleiotropic
cytokine in the regulation of chondrocyte responses to mechanical stimulation.

7. Mechanical loading and osteoarthritis

Abnormal mechanical loading is associated with osteoarthritis [140]. Most animal models of
OA are mechanically induced, for example, by introducing joint instability by anterior cruciate
ligament section [22] or by altering the loading across the joint by menisectomy [141]. These
changes in joint loading affect cartilage structure and chondrocyte activity within days of the
procedure, and may eventually result in complete loss of cartilage [142]. When cartilage matrix
is lost or made deficient as a consequence of direct physical effects or proteolytic digestion the
articular cartilage loses its mechanical function. The tensile modulus has been shown to
decrease by as much as 90%, reflecting damage to the cartilage matrix network [26]. Animal
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studies, for example, have shown that the tensile modulus of canine knee articular cartilage
was reduced after one month of immobilization [143]. In the dog, severe OA lesions in the knee
joint have been produced by treadmill exercise after the limb was immobilized for several
weeks [144]. The compressive modulus also decreases with increasing severity of degeneration
[27]. Other joint tissues (e.g., anterior cruciate ligament) also undergo similar changes of tensile
and compressive modulus in an experimental OA model [145].

Mechanical loading out with that which joint tissues can normally withstand or are required
to maintain a healthy state is central to the development of OA. OA arises when there is an
imbalance between the mechanical forces within a joint and the ability of the cartilage to
withstand these forces. This arises in two situations. In the first normal articular cartilage is
exposed to abnormal mechanical loads whereas in the other the articular cartilage is funda‐
mentally defective with biomaterial properties that are insufficient to withstand normal load
bearing. Risk factors associated with development of OA may have influences in either one or
both of these scenarios. The accumulation of advanced glycation end products (AGEs) in ECM
with age results in a more brittle collagen network that is less able to withstand normal loads,
again leading to cartilage degeneration.

The mechanisms by which abnormal mechanical loading may influence chondrocyte function
to promote cartilage breakdown are beginning to be understood. Chondrocytes from osteo‐
arthritic cartilage share mechanoreceptors with chondrocytes from normal chondrocytes
[146,147]. Whilst activation of these receptors and downstream signaling cascades such as
FAK, PKC, JAK/STAT and MAP kinases[148,149] result in pro-anabolic activity in normal
chondrocytes activity through release of locally acting mediators that include the anti-
inflammatory cytokine IL-4 and the neuropeptide substance P [136,150]. However the response
of chondrocytes is aberrant with production of proinflammatory cytokines such as IL-1 and
TNF-α which increase production of MMPs and aggrecanases, further accelerating disease
progression and attenuating cartilage repair [151-156].

7.1. Altered responses to mechanical stimulation in osteoarthritic chondrocytes

Chondrocytes from osteoarthritic cartilage show a membrane depolarization response to IL-4
that is inhibited by functional receptor antibodies. It is unclear why chondrocytes from
osteoarthritic cartilage should show differences in their response to 0.33 Hz mechanical
stimulation and recombinant IL-4. This may be result of a general phenotypic change seen in
OA chondrocytes in which the cells are resident in a pro-inflammatory, catabolic environment.
Indeed the observation that mechanical stimulation in osteoarthritis may result in production
of proinflammatory mediators is supported by the findings that α5β1 integrin ligation
increases production of IL-1β by osteoarthritic human chondrocytes with subsequent induc‐
tion of nitric oxide, PGE2, IL-6, and IL-8 [157]. These cytokines will inhibit anabolic responses
and increase cartilage matrix breakdown by MMPs. This may be through direct mechanisms
or by interfering with integrin signaling. Expression and function of molecules such as
members of the SOCS (suppressors of cytokine signaling) which regulate cytokine signaling
pathways [158] may also be implicated. These molecules modulate intracellular signals
stimulated by IL-4 including JAK/STAT activation. SOCS-1 has been shown to bind to and
inhibit kinase activity of JAK family members and inhibit IL-4 induced activation of JAK1 and
STAT6. SOCS-3 has been shown mediate IL-1β inhibition of STAT5 activity. These and other
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regulators of STAT transcription factor signaling may be responsible for modulation of IL-4
dependent responses of chondrocytes in osteoarthritic cartilage to mechanical stimulation.

8. Summary

A healthy synovial joint requires exposure to mechanical loads within a physiological range.
Osteoarthritis develops when joints are subjected to mechanical loads which they are not
biomechanically conditioned to withstand. This may be because the loads are excessive due
to obesity or joint malalignment or a consequence of intrinsic or acquired biomechanical
weakness of joint tissues such as seen when cartilage proteoglycans are depleted secondary to
synovial inflammation. Abnormal mechanical loads may have direct physical effects on joint
tissues including cartilage but increasingly knowledge of the pathological process within the
osteoarthritic joint indicate that chondrocytes regulated catabolic processes are of prime
importance in cartilage degradation. The mechanisms by which chondrocytes recognize
mechanical loads and how these mechanical stimuli are transduced into biochemical responses
which subsequently lead to altered gene expression and cell function is being increasing
understood (Figure 1). Knowledge of how anabolic and catabolic signaling cascades are
differentially regulated in response to physiological and pathological mechanical stimuli will
enable future strategies to be developed to prevent and treat the progression of cartilage
pathology in osteoarthritis.

Figure 1. The major mechanotransduction components in chondrocytes. The integrin, connexin, and stretch-activated
ion channel mechanoreceptors are stimulated by the mechanical forces transduced via the extracellular matrix (ECM).
Downstream transduction pathways involve the cytoskeleton and signaling molecules, including FAK, PKC, PI3K,
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PKB, NF-kB, and MAPK, which act to regulate gene expression, cell function and survival/apoptosis. The release and
paracrine/autocrine activity of the anti-inflammatory cytokine IL-4 has beneficial effects in regulating an anabolic re‐
sponse with enhanced expression of aggrecan and inhibition of MMP expression. In contrast production of IL-1β, as
seen in OA, has a catabolic outcome with activation of pathways resulting in increased expression of COX2 and
MMPs.
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