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1. Introduction

The relationship between food and health has been investigated for many years, and therefore,
the development of foods that promote health and well-being is a key research priority of the
food industry [1]. Fruits and vegetables are an essential part of human nutrition. Unfortu-
nately, the daily intake of fruits and vegetables is estimated to be lower than the recommen-
dation of the World Health Organization (WHO) [2], who suggest a dietary intake of 450 and
500 g of fruits and vegetables, respectively. Vegetables are strongly recommended in the
human diet because they are rich in antioxidants, vitamins, dietary fibres and minerals. The
majority of vegetables consumed in the human diet are fresh, minimally processed, pasteurised
or cooked by boiling in water or microwaving, and vegetables can be canned, dried, or juiced
or made into pastes, salads, sauces, or soups. Fresh vegetables or those that have been
minimally processed have a particularly short shelf-life because they are subjected to rapid
microbial spoilage. In addition, the above cooking processes can cause a number of potentially
undesirable changes in physical characteristics and chemical composition [3,4].

Therefore, these drawbacks could be reduced by novel technologies, such as new packaging
systems, high-hydrostatic pressure processing, ionisation radiation and pulsed electric fields
[5-7]. The use of natural antimicrobial preservatives is considered to be the simplest and most
valuable biological technique to keep and/or enhance the safety, nutrition, palatability and
shelf-life of fruits and vegetables [5]. Lactic acid fermentation of vegetables, currently used as
the bio-preservation method for the manufacture of finished and half-finished foods, is an
important biotechnology for maintaining and/or improving safety, nutritional, sensory and
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shelf-life properties of vegetables. Three technology options are usually considered for lactic
acid fermentation of vegetable: spontaneous fermentation by autochthonous lactic acid
bacteria, fermentation by starter cultures that are added into raw vegetables, and fermentation
of mild heat-treated vegetables by starter cultures [18]. For thousands of years, microorganisms
have been used to produce and preserve foods through the process of fermentation. Fermented
foods have been adopted in various ways depending on the properties of the available raw
materials and the desired features of the final products [8-10]. Food produced by traditional
methods has become popular among consumers who know that their food is manufactured
from high quality raw materials, without preservatives and other synthetic additives that are
characterised by unique flavour values [11].

2. Fermentation from a biochemical point of view

Bourdichon et al. [12] describe the fermentation process as “a metabolic process of deriving
energy from organic compounds without the involvement of an exogenous oxidising agent”.
Fermented foods are subjected to the actions of microorganisms or enzymes. Fermentation
plays different roles in food processing, such that desirable biochemical changes have occurred
[13]. The fermentation process is very important in the improvement of technological proper-
ties of preservation, such as a relative cost-effectiveness and low energy requirements, which
are essential for ensuring the shelf-life and microbiological safety of the product [8]. The major
roles of fermentation are considered to be the following:

1. preservation of food: the formation of inhibitory metabolites, such as organic acid (lactic
acid, acetic acid, formic acid, propionic acid), ethanol, bacteriocins, etc., often in combi-
nation with a decrease in water activity (by drying or the use of salt) [14-15].

2. improving food safety through the inhibition of pathogens [16,17] or the removal of toxic
compounds [18].

3. improving nutritional value: biological enrichment of food substrates with proteins,
essential amino acids, essential fatty acids and vitamins [19,20].

4. organoleptic food quality: enrichment of the diet through the development of a diversity
of flavours, aromas, and textures in food substrates [21-24].

5. decrease in cooking times and fuel requirements [25].

Interest in the biopreservation of food has created a demand for more natural and minimally
processed food, with particular interest in naturally produced antimicrobial agents [26].

3. Lactic acid bacteria (LAB) in food fermentation and new natural
antimicrobial compounds

LAB have traditionally been associated with food fermentation. LAB are generally considered
beneficial microorganisms, with some strains even considered to promote good health



The Use of Lactic Acid Bacteria in the Fermentation of Fruits and Vegetables...
http://dx.doi.org/10.5772/59938

(probiotic), and their extensive historical use contributes to their acceptance as being GRAS
(generally recognised as safe) for human consumption [27]. LAB are used as natural or selected
starters in food fermentation and exert health benefits through the antimicrobial effect
produced from different metabolic processes (lactose metabolism, proteolytic enzymes, citrate
uptake, bacteriophage resistance, bacteriocin production, polysaccharide biosynthesis, metal-
ion resistance and antibiotic resistance) [28,29,9]. Spontaneous fermentation typically results
from the competitive activity of a variety of autochthonous and contaminating microorgan-
isms, which may lead to a high risk for failure. Both from a hygiene and safety perspective,
the use of starter cultures is recommended, as it leads to rapid inhibition of spoilage and
pathogenic bacteria while yielding processed fruit with consistent sensory and nutritional
quality [30].

Interest in the biopreservation of food has prompted the quest for novel antimicrobial
compounds from different natural origins. The LAB of genera such as lactobacilli and lactococ-
cus are amongst the most important known members that have probiotic activity [31]; these
bacteria produce antimicrobial peptides most frequently referred to as bacteriocins [32,33].
Bacteriocins ensure the stability of fermented plant products, reduce microbial contamination
during fermentation, inhibit the growth of moulds and delay microbiological spoilage of baked
goods [34].

LAB have strong inhibitory effects on the growth and toxin production of other bacteria. This
activity can occur due to the following factors: competition for available nutrients; decrease in
redox potential; production of lactic acid and acetic acid and the resulting decrease in pH;
production of other inhibitory primary metabolites, such as hydrogen peroxide, carbon
dioxide or diacetyl; and production of special antimicrobial compounds, such as bacteriocins
and antibiotics [35].

Each of these properties, particularly when combined, can be used to extend the shelf-life and
safety of food products [36].

Amongst the various technologies, lactic acid fermentation may be thought of as a simple and
valuable biotechnology for maintaining and/or improving the safety, nutritional, sensory and
shelf-life properties of fruits and vegetables [37,38]. Overall, LAB are a small part (24 log,
CFU g™) of the autochthonous microbiota of raw vegetables, and their cell density is mainly
influenced by the vegetable species, temperature and harvesting conditions [37].

Interest in the use of LAB fermentation of vegetable products stems largely from the nutri-
tional, physiological and hygienic aspects of the process and their corresponding implemen-
tation and production costs [39].

LAB fermentation represents the easiest and most suitable way to increase the daily consump-
tion of nearly fresh fruits and vegetables.
4. Unique features of fermented fruits and vegetables

Buckenhuskes and colleagues [40] generally agreed that fermented plant products are the
“food of the future”. The following factors support this idea: products can be marked as
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“natural” or “biological”; desirable flavour compounds are enhanced while negative flavour
compounds (for example, glucosinolates) are destroyed; handling and storage (without
cooling) is simple; easy methods exist for the pre-handling of raw material before further
processing; desired metabolites (lactic acid, amino acids) are enriched; and the process results
in the detoxification of pathogens [41]. Fruits and vegetables preserved using LAB with
antimicrobial properties are perceived as suitable products for the human diet [42].

Dieticians and physicians recommend fermented fruits and vegetables due to the health-
promoting properties of these foods. Fermented fruits and vegetables are low-calories foods
because they contain considerably lower quantities of sugars compared to their raw counter-
parts. Fermented vegetables are a source of dietary fibre, which impedes the assimilation of
fats and regulates peristalsis in the intestines; they are also a valuable source of vitamin C, B-
group vitamins, phenolics and many other nutrients present in the raw material. Lactic acid
may also lower gut pH, thereby inhibiting the development of putrefactive bacteria [42].

Many types of fermented fruit and vegetable products exist in the world: sauerkraut,
cucumber pickles, and olives in the Western world; Egyptian pickled vegetables in the
Middle East; and Indian pickled vegetables, Korean kim-chi, Thai pak-sian-don, Chinese
hum-choy, Malaysian pickled vegetables and Malaysian tempoyak. Lactic acid-fermented
cereals and tubers (cassava) include Mexican pozol, Ghanaian kenkey, Nigerian gari; boiled
rice/raw shrimp/raw fish mixtures such as Philippine balao-balao and burong dalag; lactic-
fermented/leavened breads such as sourdough breads in the Western world; Indian idlj,
dhokla, khaman and Sri Lankan hoppers; Ethiopian enjera, Sudanese kisra and Philippine
puto; and Chinese sufu/tofu-ru [9,43].

Commercial distribution of these fermented products lags far behind that of fermented meat
and dairy products due to a lack of standardised manufacturing protocols; in addition, their
ingredients are subject to limiting and unpredictable weather and geographic conditions [44].
The lactic acid fermentation of vegetables currently has industrial significance only for
cucumbers, cabbages and olives [45]. Several other varieties of vegetables cultivated mainly
in Southern Italy or, more generally, in the Mediterranean area, such as carrots, French beans,
marrows, artichokes, capers and eggplants, may benefit from increased safety, nutritional,
sensory and shelf-life properties through standardised industrial lactic acid fermentation [46].

5. The use of microorganisms in our diet opens new opportunities

Either as traditional fermented foods or as novel approaches, the rationalised use of microor-
ganisms in our diet could reveal new opportunities. Low dietary quality is an important factor
that limits adequate nutrition in many resource-poor settings. Bioavailability is a key aspect
of dietary quality with respect to the adequacy of micronutrient intake [47]. Prebiotic food
ingredients encourage the growth of probiotic bacteria. The appropriate combination of
prebiotics and probiotics manifest in a higher potential for synergistic effects 48]. Probiotic
foods are fermented products that contain a sufficient number of a certain live microorganism
to favourably modify the intestinal microbiota of the host [49]. Recently developed probiotics
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tend to be milk-based, although in recent years other substrates have been explored for new
probiotic formulations. Amongst these substrates, cereals are becoming one of the most
promising alternatives to milk due to their ability to support the growth of probiotic bacteria
and their protection against bile resistance [50].

According to Kim et al. [51], cabbage (including the Chinese cabbage), pH-adjusted tomato
(pH 7.2), carrot and spinach media give relatively higher fermentability than other vegetables
because they have more fermentable saccharides. The tomato (Lycopersicon esculentum L.) is
one of the most popular and extensively consumed vegetable crops worldwide. The nutritional
significance of lycopene, a carotenoid with potent antioxidant activity, has been reported, and
accumulating evidence has shown an inverse correlation between the consumption of tomato
products rich in lycopene and the risk of several types of cancer and cardiovascular disease
[52-54]. Approximately 90 % of the lycopene in dietary sources is found in the linear, all-trans
conformation, while human tissues mainly contain cis-isomers. It has been suggested that the
cis-isomers of lycopene are better absorbed than the all-trans form because they are shorter,
have greater solubility in mixed micelles, and have a lower tendency to aggregate [55]. Studies
have shown that lycopene levels in plasma increase only after the consumption of red tomato
paste and purified lycopene [54]. It has also been revealed that the absorption of lycopene is
greater from processed tomatoes than from fresh tomatoes because processing breaks down
the tomato cell matrix and makes the lycopene more available [56,57].

The red colour of tomatoes is a result of the degradation of chlorophylls and the increased
biosynthesis of carotenoids [58]; thus, a tomato’s colour is related to its maturity and post-
harvest treatment. Colour is therefore an important attribute indicating the quality of tomato
fruit, and itis used in the food industry to predict the colour of finished products. Additionally,
the application of instrumental colour measurement to objectively define the colour of
tomatoes is an important research topic [59,60]. It was reported that the colour coordinates of
a product could relate to its concentration of lycopene and other carotenoids [61,62].

There is an increasing consumer demand for high quality meat products that taste good and
are both nutritious and easy to prepare. The diverse nutrient composition of meat makes it an
ideal environment for the growth and propagation of meat spoilage microorganisms and
common food-borne pathogens. It is therefore essential to apply adequate preservation
techniques to maintain its safety and quality [63]. The processes used in meat preservation are
principally concerned with inhibiting microbial spoilage, although other methods of preser-
vation seek to minimise additional deteriorative changes in colour and oxidation [64]. The
most investigated new preservation technologies for fresh meat involve non-thermal inacti-
vation, such as high hydrostatic pressure (HHP), novel packaging systems, including modified
atmosphere packaging (MAP) and active packaging (AP), natural antimicrobial compounds
and biopreservation. Storage life is extended and safety is increased by using natural or
controlled microflora, including the extensively studied LAB and their antimicrobial products,
such as lactic acid and bacteriocins. Bacteriocins are a heterogeneous group of antibacterial
proteins that vary in their spectrum of activity, mode of action, molecular weight, genetic origin
and biochemical properties [65].

The destruction of the total BLIS (bacteriocin-like inhibitory substances) activity after treat-
ment with proteinase K, trypsin, pepsin and chymotrypsin indicates that antimicrobial
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substances produced by the tested LAB possess a proteinaceous nature. They might be
bacteriocins because protease sensitivity is a key criterion in the classification of antimicrobial
substances as BLIS [66]. In our previous studies, BLIS produced by Lactobacillus sakei KTU05-6
and P. pentosaceus KTU05-9 were designated as sakacin 05-6 and pediocin 05-9 [67]. We
proposed that due to their broad inhibition spectrum, the presence of BLIS and organic acids
in tested LAB is an indication that these bacteria can be used widely in the food industry as
bio-preservatives.

Consumer interest for diverse fermented foods has increased in recent years because of the
positive perception of their beneficial impact on health. Hence, there is an evident need to find
novel methods and new food preservation agents from natural origins. Biopreservation refers
to extending the shelf-life and enhancing the safety of foods using microorganisms or their
metabolites [68]. In this aspect, LAB are very good candidates [69].

The food matrices in vegetables offer promising potential as sources and carriers of probiotic
strains [70]. Vegetables are fundamental sources of water-soluble vitamins (vitamin C and
group B vitamins), provitamin A, phytosterols, dietary fibres, minerals and phytochemicals
[71] in the human diet. LAB are a small part (2.0-4.0 log,, CFU g™) of the autochthonous
microbiota of raw vegetables [37]. Under favourable conditions of anaerobiosis, water activity,
salt concentration and temperature, raw fruits and vegetables may be subject to spontaneous
lactic acid fermentation. In some cases, alcoholic fermentation takes place concomitantly [72].

Tomatoes are a rich source of a variety of nutritional compounds, especially key antioxidant
components, such as the carotenoid lycopene, vitamin C, and a range of polyphenols. The
possible protective characteristics of these antioxidants are of great interest, and consumers
have already become aware of their potential importance. A survey of the literature revealed
that a great deal of research has been conducted on the biochemical composition of tomatoes
and their products [73]. Lycopene, a natural carotenoid found in tomatoes, has been reported
to possess various health benefits, such as preventive properties against cardiovascular disease
and cancer [74].

6. Lactic acid fermentation of tomatoes: effects on cis/trans lycopene
isomers, B-carotene concentration and the formation of L(+) and D(-)-lactic
acid

The production of L-lactic acid and D-lactic acid isomers during the fermentation of different
tomato varieties (var. Ronaldo and var. Cunero) by the bacteriocin-producing LAB Lactobacil-
lus and Pediococcus spp. have been investigated. The influence of lacto fermentation on the
lycopene and [-carotene contents and their relation to the colour characteristics of fermented
tomato products were also investigated [75]. Tomato var. Cunero and Ronaldo, the LAB strains
were used in this investigation. Tomato var. Cunero and Ronaldo were obtained from the
Lithuanian Institute of Horticulture (Babtai, Lithuania) harvested in 2011. Pure cultures of
Lactobaccilus sakei KTUO05-6, Pediococcus acidilactici KTU05-7 and Pediococcus pentosaceus
KTUO05-8, characterized as a bacteriocin producing strains [76] are from collection of Kaunas
University of Technology (Kaunas, Lithuania) [75].
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The LAB strains were propagated in nutrition media (moisture content 72 %), prepared by
mixing extruded rice flour (100 g) and tap water. After addition of pure LAB cell suspension
(5 g 10.2 log,, colony-forming units (CFU) g"') the mixture was incubated at optimal temper-
atures (30 °C for L. sakei, 32 °C for P. acidilactici and 35 °C for P. pentosaceus) for 24 h. For
comparison purpose control product was prepared using spontaneous fermentation of rice
flour without bacterial inoculum at 30 °C for 48 h. Enumeration of LAB was carried out by
plating the diluted samples onto MRS agar at 30 °C for 48 hours. Products obtained after
propagation of individual LAB in rice media were used for fermentation of tomato pulp [75].

A rapid and specific Megazyme assay kit for simultaneous determination of L- and D-lactic
acid (Megazyme Int., Bray, Ireland) in foods was used as reported by De Lima et al. [77] in this
investigation. Extraction of carotenoids and carotenoid analysis by Reverse Phase Liquid
Chromatography (RP-HPLC) were used [75] and the colour characteristics of fermented and
untreated tomato pulp were evaluated of the surface using CIEL*a*b* [78].

6.1. The effect of selected fermentation media on LAB viability

Asreported in the literature, the behaviour of different LAB depends on substrate composition,
where bacteria in different substrates are able to produce different metabolites or increased
biomass [79]. For maximum health benefits, it is important to have a significant number of
viable LAB present in the probiotic product [80].

Extruded rice flour, a current product of the cereal processing industry, was found to show
good fermentability. Counts of viable bacteria cells were measured between 6.62 and 8.50
log,, CFU g™ after 48 h of analysed LAB cultivation in selected media (Table 1) [75]. The lowest
biomass of bacteria was found in the spontaneously fermented rice media (5.57 log,, CFU g™).
According to the obtained results, rice flour is a suitable medium for LAB cultivation to
produce a functional food while most likely maintaining the other functional properties of rice.
These results are in agreement with Trachoo et al. [81], who showed a biomass increase of
lactobacilli over 2.5 log;, CFU mL" during 24 h in a germinated rice broth [75].

Extruded rice Tomato products
Samples
LAB count pH TTA LAB count pH TTA
P.p. 8.51+0.05d 3.37+0.01a 8.2+0.2b 6.61+0.03c 3.50+0.01a 6.4+0.3b
P.a. 6.62+0.03b 3.40+0.01a 8.2+0.2b 4.54+0.04b 3.71+0.01b 6.8+0.2¢
L.s. 7.75+0.03¢ 3.42+0.01a 8.3+0.2b 4.83+0.03b 3.70+0.01b 7.1+0.2d
SF 5.57+0.02a 3.73+0.01b 7.240.2a 2.83+0.02a 3.92+0.01c 5.6+0.2a

The numbers are means followed by standard deviations (n = 3).
Means within a column with different superscript letters are significantly different (p <0.05).

Samples: tomato products fermented with: P.p. — P. pentosaceus, P.a. — P. acidilactici, L. s. — L. sakei; SF — spontaneous
fermented.

Table 1. The influence of fermentation media on LAB cell counts (log,, CFU g*), pH and TTA values.
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L. sakei, P. acidilactici and P. pentosaceus were found to be capable of sufficient rapid utilisation
of tomato pulp for cell synthesis and organic acid production. They reduced the pH to 3.5-3.7
and increased the TTA to as high as 6.4. The viable cell counts reached 6.61 log;, CFU g after
48 h of fermentation. In either case, tomato products treated with spontaneous fermentation
had pH values that were higher by 7.2% and TTA values that were lower by 17.3 % than
products treated with lactofermentation (Table 1) [75].

Acid production depends on the concentration of viable bacteria able to utilise the available
carbohydrate sources in the substrate [82]. The viable LAB cells in the fermented tomato
products were found to be lower on average by 30% (lactofermentation) or 49.2% (spontaneous
fermentation) compared to the rice media (Table 1); however, three LAB counts measured after
48 h of fermentation varied between 4.54 and 6.61 log,, CFU g'. To achieve health benefits,
probiotic bacteria must be viable and available at a high concentration, typically approximately
6 log,, CFU g™ of product [80]. According to Sindhu and Khetarpaul [83], probiotic fermenta-
tion of indigenous food mixtures containing tomato pulp increases the acidity and improves
the digestibility of starch and protein. Our results support the hypothesis that rice media
contain the essential nutrients to support the growth of lactobacilli and can be directly used
as a fermentation substrate of LAB. The obtained biomass levels are above the minimum
required for a probiotic formulation.

Classic lactic acid vegetable fermentation is a microbial process that involves heterofermen-
tative and homofermentative LAB, generally Lactobacillus and Pediococcus [82]. At a pH
between 3.5 and 3.8, vegetables will be preserved for a long period of time [83]. Tomatoes
treated by lactofermentation could be recommended as useful and safe products for human
nutrition. Furthermore, fermented tomatoes could serve as a healthy product for vegetarians
and consumers who are allergic to dairy products [75].

6.2. The production of L- and D-lactic acid during lactofermentation of tomato pulp

Our results showed that all the analysed LAB produced a mixture of L- and D-lactic acid
(Figure 1), and the highest amounts of each form were determined in tomato products treated
by spontaneous fermentation (7.18+0.03 and 7.67+0.11 mg/100 g, respectively). As reported by
Hartman [85] and Li and Cui [86], Lactobacilli amylophilus, L. bavaricus L. casei, L. maltaromicus,
and L. salivarius predominantly yield the L-isomer. Strains such as L. delbrueckii, L. jensenii, and
L. acidophilus yield D-lactic acid or mixtures of both forms. LAB such as L. pentosus, L. brevis
and L. lactis can ferment glucose into lactic acid through homolactic fermentation. The
fermentation of rice with two strains of L. delbrueckii yielded 3.23 and 5.04 mg/100 g of D-lactic
acid [87].

The concentration of D-lactic acid in fermented tomato products was measured between
4.05+0.05 and 6.34+0.04 mg/100 g, and the concentration of L-lactic acid ranged from 4.26+0.04
to 7.19+0.08 mg/100 g (Figure 1). The results of our study indicate that compared to spontane-
ous fermentation, the use of P. pentosaceus allowed a reduction in the content of D-lactic acid
in tomato products by 11.8% (Figure 1). Fermentation with P. acidilactici and L. sakei reduced
the content of the latter isomer at a higher level (on average by 40.6%).



The Use of Lactic Acid Bacteria in the Fermentation of Fruits and Vegetables...
http://dx.doi.org/10.5772/59938

D-lactic acid m L-lactic acid

N

5 4

4 -

3

2

1

0 .
P.p.

Figure 1. Concentrations of L- and D-lactic acid in fermented tomato products. Samples: fermented with LAB: P.p. - P.
pentosaceus, P.a. — P. acidilactici, L.s. — L. sakei; SF — spontaneous fermented
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In summary, P. pentosaceus can produce D-rich lactic acid (L/D ratio 0.64), while the other strain,
L. sakei, produces L-rich lactic acid (L/D ratio 1.61). Fermentation with P. acidilactici and
spontaneous fermentation gave almost equal amounts of both lactic acid isomers (L/D ratio
1.17 and 1.07, respectively).

By evaluating our knowledge of the potential toxicity of D-lactic acid in terms of nutrition, we
can report that tomato products prepared using a pure culture of LAB were found in all cases
to be safer than those treated with spontaneous fermentation. The level of D-lactic acid in pure
LAB-fermented tomato products was significantly lower (p<0.05) than that in those spontane-
ously fermented (Figure 1). Based on these results, L. sakei KTUO05-6 could be selected as the L-
lactic acid bacteria and is recommended for the fermentation of tomatoes [75].

6.3. Trans/cis lycopene and f-carotene contents in fermented tomato products

The results from our analysis of lycopene and (3-carotene contents in fermented tomato
products are presented in Figure 2. The highest concentration of total carotenoids (on average
6.83 mg/100 g) were measured in a var. Cunero sample fermented with P. pentosaceus and in
a var. Ronaldo sample fermented with L. sakei. However, fermentation with the latter bacteria
increased the total level of carotenoids by 41.1 and 33.6%, respectively, compared to untreated
samples. Compared to untreated tomatoes, fermentation with P. acidilactici reduced the
concentration of total carotenoids by 3.6% in the samples of var. Cunero and var. Ronaldo (3.96
and 4.61 mg/100 g, respectively), which was accompanied by a reduction in 3-carotene content
(Figure 2) [75].

On average, the fermented tomato samples of var. Cunero had 24.7 % lower {3-carotene and
11.5% higher lycopene content compared to untreated tomatoes. In contrast, the 3-carotene
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Figure 2. Carotenoid contents in untreated and fermented with different LAB tomato products. Samples: Control — un-
treated tomato pulp; tomato pulp fermented with: P.p. — P. pentosaceus; P.a. — P. acidilactici MI807; L.s. — L. sakei, SF —
spontaneous fermented.

concentrations in all the fermented tomato products of var. Ronaldo were generally higher,
with an average increase of 69.4% compared to untreated tomatoes (Figure 2) [75].

A 24.8% increase in lycopene content was reached in the var. Ronaldo samples after fermen-
tation with L. sakei. Spontaneous fermentation or treatment by P. pentosaceus reduced the
concentration of lycopene by 11.0 and 4.4%, respectively, compared to the control sample
(Figure 2).

According to these results, lactic acid fermentation generally had a positive effect on the
lycopene and total carotenoid contents of the fermented tomato products. The [-carotene
contents were influenced not only by which LAB was used but also by the variety of tomato.
As reported in the literature, compositional variation of lycopene in tomatoes occurs as a
consequence of varietal differences, climate conditions, agricultural variables, stage of
maturity, harvesting and post-harvest handling and conditions during storage [75]. Other
researchers reported lycopene values within the range of 3.1-7.7 mg/100 g for different tomato
cultivars [88]. However, Camara et al. [89] reported a lycopene concentration of 6-15 mg/100
g for whole fresh tomato fruit [89], which is higher than the results of this investigation.
Lycopene content may be directly affected by the pH of the fruit, as the low pH of red tomatoes
accumulates more lycopene [90].

Our analysis of all-trans and cis-lycopene showed that the amounts of both isomers depended
significantly on the tomato variety and were slightly affected by the LAB strain used for
fermentation (Figure 3). The fermented tomato products of var. Ronaldo had all-trans- and cis-
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lycopene contents that were higher on average by 25.9 and 62.6%, respectively, compared to

the tomato products of var. Cunero [75].
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Figure 3. Content of all-trans- and cis-lycopene in fermented tomato of var. Cunero (a) and var. Ronaldo (b) products.
Samples: Control — untreated tomato pulp; tomato products fermented with: P.p. — P. pentosaceus, P.a. — P. acidilactici, L.

s. — L. sakei; SF — spontaneous fermented.
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The control samples of var. Ronaldo had 3.3-fold higher cis-lycopene (3.4 mg/kg) compared to
var. Cunero (11.3 mg/kg) (Fig. 3). Fermentation by P. pentosaceus or L. sakei increased the cis-
lycopene contents on average by 30.6 and 8.5%, respectively in the products of var. Cunero
and var. Ronaldo. A lower increase in cis-lycopene was noticed during fermentation of the var.
Cunero tomatoes with P. acidilactici as well as during spontaneous fermentation (an average
increase of 9%). Similarly, lactofermentation using P. acidilactici and L. sakei increased the cis-
lycopene contents by 5.8% on average in the tomato products [75].

The fermentation of var. Cunero and var. Ronaldo tomatoes by P. pentosaceus and L. sakei
produced an average of 22.2% more all-trans-lycopene compared to the controls (204.6 and
296.0 mg/kg, respectively) (Figure 3) [75].

The cis/trans ratio of var. Cunero and var. Ronaldo tomatoes were 1.67 and 3.81, respectively.
The highest cis/trans ratio was found in the var. Cunero samples fermented by L. sakei (2.08),
following that of var. Ronaldo samples fermented by P. acidilactici (4.90) and spontaneous
fermentation (4.09) [75].

It is known from the literature that in human subjects, lycopene from cis-isomer-rich tomato
sauce is more bioavailable than that from all-trans-rich tomato sauce [91]. Because of the
positive effect of lactofermentation on the cis/trans lycopene ratio, fermented products of the
var. Ronaldo tomato, fermented with P. acidilactici or L. sakei, could be recommended as more
biologically accessible products with greater functional value.

6.4. Colour characteristics of fermented tomato products

The results from our analysis of the red (a*) and yellow (b*) colour coordinates of fermented
tomato products are presented in Table 2. No relation was found in the var. Cunero samples
between the yellow colour coordinate (b*) and total carotenoid, lycopene or (-carotene
contents (p > 0.05) (Table 2). However, the red colour coordinate (a*) slightly correlated (R? =
0.672) with B-carotene content.

In contrast, a weak relation was noticed between colour coordinate b* of var. Ronaldo and total
carotenoid or -carotene contents (R*=0.581 or R? = 0.596, respectively) (Table 2). In addition,
samples of this variety showed a strong relation between colour coordinate b* and lycopene
content (R?=0.825, p=0.03). No significant relations were observed between a* and 3-carotene
or lycopene contents (p > 0.05) (Table 2) or between total carotenoids and the colour tone (h°)
or colour purity (C) values of the var. Cunero and var. Ronaldo samples (Table 3) [75].

The best estimation for 3-carotene content was obtained using the b* chromaticity value from
the whole fruit measurements or the transformed a*? value from the pure measurements [91].
Neither model, however, could explain more than 55% of the variation in [3-carotene levels,
suggesting that chromaticity values may not be appropriate for estimating tomato 3-carotene
content. It has been stated that the inspection of different chromaticity values and regression
models suggest that colorimeter readings may not be highly useful for estimating [3-carotene
content in the tomato fruit [92].
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var. Cunero

var. Ronaldo

Samples
a* b* a*/b* a* b* a*/b*
K 13.97+1.3¢ 15.47+0.8a 0.903 13.84+0.9¢ 16.71+1.1b 0.828
P.p. 14.57+1.1d 16.46+1.3b 0.885 15.15+0.8e 18.28+0.9¢ 0.829
P.a. 11.41+0.9a 17.29+1.3bc 0.660 13.38+1.1b 19.37+1.3d 0.691
L.s. 13.03+1.1b 15.09+1.3a 0.864 13.85+0.5¢ 15.54+0.7a 0.891
SP 13.44+1.3b 19.13+1.4d 0.703 14.26+1.2d 19.54+1.3d 0.730
a; b and a/b correlation with total carotenoid content
R 0.3905 0.04763 0.2673 0.001697 0.5808 0.5985
14 0.2597 0.7243 0.3723 0.9476 0.1342 0.1248
a; b and a/b correlation with lycopene content
R? 0.3186 0.02779 0.1973 0.004398 0.8248 0.7373
p 0.3215 0.7887 0.4537 0.9156 0.0329 0.0624
a; b and a/b correlation with p-carotene content
R 0.6718 0.1955 0.6326 0.001697 0.5808 0.5985
4 0.0894 0.4560 0.1077 0.9476 0.1342 0.1248

The numbers are means followed by standard deviations (n = 3). Means within a column with different superscript

letters are significantly different (p <0.05).

Samples: control — untreated tomato pulp; tomato products fermented with: P.p. — P. pentosaceus, P.a. — P. acidilactici L.,

s. — L. sakei; SF — spontaneous fermented; R? - correlation coeficient.

Table 2. Colour coordinates (a*, b*) of tomato var. Cunero and var. Ronaldo samples and their correlations between

total carotenoids, lycopene and {3-carotene contents

var. Cunero

var. Ronaldo

Samples
C he° C he
Control 22.01+2.3b 47.03+3.1a 21.97+2.4b 46.85+2.4a
P.p. 21.93+1.5b 48.34+3.2bc 23.75+1.9¢c 50.11+1.9¢
P.a. 20.77+1.7a 56.60+2.7de 23.44+1.8c 55.30+2.9d
L.s. 20.04+1.3a 49.46+2.4c 20.99+1.6ab 48.52+1.4b
SP 23.24+2.1c 55.20+1.7d 24.35+1.3cd 53.66+2.3d
Correlation with total caratenoid content
R 0.00000565 0.2332 0.4974 0.2043
p 0.9970 0.4099 0.1834 0.4448

The numbers are means followed by standard deviations (n = 3). Means within a column with different superscript

letters are significantly different (p <0.05).

Samples: control — untreated tomato pulp; tomato products fermented with: P.p. — P. pentosaceus, P.a. — P. acidilactici L.,

s. — L. sakei; SF — spontaneous fermented; R? - correlation coeficient.

Table 3. Colour tone (h°) and purity (C) of tomato var. Cunero and var. Ronaldo samples and their correlation with

total carotenoid contents
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The overall results indicate that lycopene content could be measured simply and quite
accurately across a wide range of tomato genotypes using chromaticity values taken from fruit
puree [91]. In contrast, Liu et al. [93] reported that treating tomatoes with a daily light treatment
enhances exocarp lycopene accumulation with minimal effect on the colour. Arias et al. [59]
also observed that the b* characteristic was not appropriate for predicting the lycopene content
of tomatoes.

According to the obtained results, colour tone (h°) and purity (C) are not suitable indicators of
the total carotenoid content in the evaluation of tomato products. We postulate that measuring
the yellow coordinate (b*) could be a simple and non-destructive method for predicting
lycopene concentration in tomato products [94].

7. The use of tomato additives fermented with Pediococcus pentosaceus
KTUO05-9 and Lactobacillus sakei KTUO05-6 to improve the quality of ready-
to-cook minced meat products

The influence of lactic acid fermentation with BLIS-producing lactobacilli (Pediococcus pento-
saceus KTUO5-9, Lactobacillus sakei KTU(05-6) on the parameters of tomato powder and the
impact of fermented tomato products on the acceptability, colour characteristics and carote-
noid content of ready-to-cook minced pork meat products (RCMP) have been investigated [95].
In this experiment used tomato powder was obtained from “Obipectin AG” (Bischofszell,
Switzerland). The lactic acid bacteria (LAB) P. pentosaceus KTUO05-9 and Lactobacillus sakei
KTUO05-6, previously isolated from spontaneous rye sourdoughs [96] revealed antimicrobial
activity against undesirable microorganisms in the food industry by producing organic acids
and BLIS [97,98,67] were used for tomato powder fermentation. The LAB were stored at -70
°C and cultured at temperatures of 35 °C (KTU05-9) or 30 °C (KTU05-6) for 48 h in MRS broth
(CMO0359, Oxoid Ltd, Hampshire, UK) supplemented with 40 mmol L fructose and 20 mmol
L' maltose. Solid state fermentation of tomato powder was used [95].

The cell growth results observed at 48 h of fermentation in tomato media are presented in
Figure 4. We found the highest amount of LAB in samples treated with L. sakei (8.15 log;, CFU
g?). The spontaneously fermented samples yielded 6.69 log,, CFU g* of LAB. The lowest
amount of LAB was found in samples fermented with P. pentosaceus (4.58 log,, CFU g™).

Different substrates may affect microorganism growth and metabolism [99]. High viable
counts are necessary to obtain the desired acid production and pH reduction, which affects
the organoleptic properties and shelf-life of the products while preventing contamination.
However, the success of fermented products does not rely solely on the ability to provide
enough LAB cells; in addition, the consumer must find these organoleptic properties accept-
able, which is related in many cases to the organic acid content. We found the lowest pH after
48 h of fermentation in samples fermented with P. pentosaceus (pH = 4.1) (Figure 5). Samples
fermented with L. sakei or through spontaneous fermentation had a pH of 4.16 [95].
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7.1. Colour parameter relation with carotenoid content in fermented tomato products

By influencing consumer choice and preferences, colour is an important quality attribute in
the food and bioprocessing industries. Food colour is governed by the chemical, biochemical,
microbial and physical changes that occur during growth, maturation, post-harvest handling
and processing. Measuring the colour of food products has been used as an indirect measure
of other quality attributes, such as flavour and pigment contents, because it is simple, fast and
correlates well with other physicochemical properties [100]. We found that fermentation
influenced the colour characteristics and carotenoid content of tomato products (Figure 6) [95].
The highest concentration of carotenoids was found in samples fermented with LAB starters
(P. pentosaceus, L. sakei). Spontaneous fermentation also increased the content of carotenoids
in the tomato samples, but not as effectively (the total carotenoid content in the spontaneously
treated samples was 54.78 mg/100 g). A strong and significant relation was found between
colour tone (ho) and lycopene content and between colour tone (h°) and total carotenoid
content (R?=0.9045; p = 0.0489 and R*=0.9035; p = 0.0495, respectively). We found correlations
ranging from 0.8922 to 0.5091 between others colour characteristics and [3-carotene, lycopene
and total carotenoid content, but they were not significant [101].

The beneficial effects of lycopene on health have been reviewed [102-104]. According to our
results, fermentation with L. sakei and P. pentosaceus increases the carotenoid concentration in
tomato products by two-fold. We did not study the effects on tomato product fermentation
using different LAB starters, and more research is needed to explain the mechanism of
increasing carotenoids in fermented tomato products [95].

&8 L. i
40 - L. sakei

P. pentos aceus
35 1 & Spontaneous

O Untreated

30

25

20 -

15

Colour charasteristics

Figure 6. Colour characteristics and carotenoids content (mg/100 g) of fermented and untreated tomato products (Sam-
ples: Untreated — untreated tomato powder; Spontaneous — tomato powder fermented spontaneous; P. pentosaceus -
tomato powder fermented with P. pentosaceus; L. sakei — tomato powder fermented with L. sakei; p< 0.05).
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7.2. The influence of fermented tomato additives on the acceptability of Ready-to-cook
Minced Meat Products (RCMP)

We found significant differences in the acceptability of RCMP with and without 10 or 30
% tomato powder treated with different LAB (L. sakei KTU05-06, P. pentosaceus KTU05-09)
or spontaneous fermentation (Figure 7) [95]. The highest RCMP acceptability was found
with 10 % L. sakei fermented tomato powder (an average score of 9.38). Control samples
(without additives) were found to be less acceptable (an average score of 5.86) compared
to samples with 10 % fermented tomato additives. Ready-to-cook minced pork meat
products with 30 % additive were found to be less acceptable than samples with 10 %
additive. Compared to samples with 30 % additive, the most acceptable samples were those
without fermented tomato products (an average score of 7.72) [95].

7.3. The influence of fermented tomato additives on the colour characteristics of Ready-to-
cook Minced Meat Products (RCMP), and the influence of carotenoid content on thermal-
treated and untreated RCMP

The Joint FAO/WHO Expert Committee on Food Additives (JECFA) previously endorsed the
use of lycopene (both natural and synthetic) as a food colour at its eighth, eighteenth, and
twenty-first meetings [106-108] but was not able to establish an Acceptable Daily Intake (ADI)
due to the limited information available. At its sixty-seventh meeting, JECFA agreed that both
synthetic lycopene and lycopene extracted from Blakeslea trispora are acceptable as food colours
and established a group ADI of 0-0.5 mg/kg bw/day for both preparations [109]. Adding
tomato, tomato products or lycopene to meat could lead to products with health benefits. Few
studies have been reported regarding the use of tomato products or lycopene in meat products.
Candogan [110] reported on the use of tomato paste in beef patties, while Deda, Bloukas, and
Fista [111] investigated its use in frankfurters. Calvo et al. [112] reported on the use of lycopene
from tomato peel in dry fermented sausages. However, we could not find data on tomato
product fermentation with different LAB starters or how fermented tomato products influence
RCMP quality parameters [95].

We found that the addition of tomato products significantly affected (p < 0.05) all colour
parameters (Table 4) of the final product (thermal-treated and untreated). The controls had the
highest (p < 0.05) lightness and the lowest (p <0.05) redness and yellowness as a consequence
of lower hue angle and saturation index. These tendencies were found for both thermal-treated
and untreated products [95].

High variation in the colour parameters of fermented meat products has been reported
[113-115]. These variations could be due to the calibration plate used in the determinations,
the composition of the meat products, the size of the meat particles and the ripening time.

Furthermore, the addition of tomato products affects the carotenoid content of RCMP (Table
5) [95]. We found that thermal treatment decreases the carotenoid concentration in RCMP.
After thermal treatment, we found 23.71 and 52.03 % less {3-carotene (in samples with 10 %
spontaneously treated products and in samples with 30 % L. sakei-fermented tomato products,
respectively). Additionally, 10.78 and 50.00 % less lycopene was found in samples with 30 %
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Figure 7. Acceptability of ready-to- cook minced meat products (RCMP) (Samples: CO % - RCMP without tomato prod-
ucts; P.p. 10 % - RCMP with 10 % with P. pentosaceus fermented tomato products; P.p. 30 % - RCMP with 30 % with P.
pentosaceus fermented tomato products; L.s. 10 % - RCMP with 10 % with L. sakei fermented tomato products; L.s. 30
% - RCMP with 30 % with L. sakei fermented tomato products; Sp. 10 % - RCMP with 10 % spontaneous fermented
tomato products; Sp. 30 % - RCMP with 30 % spontaneous fermented tomato products; Untr. 10 % - RCMP with 10 %

P.p.10 % P.p.30 % L.s.10 % L.s.30 % Sp.10 %

Sp-30 %

untreated tomato powder; Untr. 30 % - RCMP with 30 % untreated tomato powder; p> 0.05)

spontaneously treated products and in samples with 30 % untreated tomato products,

respectively, and as a consequence, the highest loss of total carotenoid content was found in

samples with 30 % untreated tomato product (49.25 %) [95].

%o

Untr.10  Untr. 30

%

RCMP

samples v a* b ¢ e
Thermal treated
P.p.30 % 45.64+0.11° 19.09+0.212 28.16+0.69* 34.02+0.712 55.87+0.96*
P.p.10 % 52.76+0.18¢ 12.8+0.81° 23.05+0.52° 29.02+0.32° 63.83+0.78°
L.s.30 % 47.9620.20¢ 19.27+0.93° 29.93+0.712 35.60+0.23° 57.22+0.63°
L.s. 10 % 48.45+0.19°¢ 9.31+0.74¢ 21.89+0.64° 23.79+0.18¢ 66.96+0.88°
Sp. 30 % 44.54+0.23° 12.01+0.63° 20.33+0.55° 19.02+0.13¢ 54.32+0.49°
Sp. 10 % 43.51+0.112 8.21+0.32° 17.75+0.39¢ 16.57+0.424 52.65+0.55
Untr. 30 % 42.10+0.25° 7.56+0.41¢ 14.24+0.44¢ 14.99+0.54¢ 53.66+0.86°
Untr. 10 % 42.14+0.17° 4.32+0.37¢ 12.32+0.60¢ 15.01+0.30¢ 52.75+0.97°
C0% 60.07+0.43 ¢ 2.41+0.304 11.84+0.22¢ 12.99+0.21¢ 82.71+0.604
Thermal untreated

P.p.30 % 46.03+0.25° 17.27+0.51° 26.90+0.742 31.97+0.65° 57.30+0.40¢
P.p.10 % 50.64+0.19° 12.90+0.722 28.96+0.83° 31.70+0.82° 65.99+0.93¢
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RCMP

samples v o b ¢ e
L.s.30 % 45.63+0.63° 18.08+0.61¢ 27.60+0.52° 32.99+0.74° 56.77+0.68°
L.s. 10 % 50.9+0.79° 12.14+0.21° 28,50+0.48* 30.98+0.65° 66.93+0.88¢
Sp. 30 % 47.23+0.28° 15.23+0.34° 25.36+0.39° 29.59+0.54¢ 62.39+0.45°
Sp. 10 % 45.21+0.41° 14.02+0.19° 21.45+0.41¢ 28.96+0.91¢ 61.33+0.46°
Untr. 30 % 46.27+0.52° 13.25+0.16° 21.55+0.574 28.69+0.58¢ 61.45+0.41°
Untr. 10 % 44.25+0.39° 11.03+0.11¢ 19.56+0.59¢ 26.98+0.62¢ 60.84+0.93°
C0% 58.38+0.48¢ 3.93+0.18¢ 15.33+0.78¢ 25.63+0.61¢ 81.18+0.54°

Samples: C 0 % - RCMP without tomato products; P.p. 10 % - RCMP with 10 % with P. pentosaceus fermented tomato
products; P.p. 30 % - RCMP with 30 % with P. pentosaceus fermented tomato products; L.s. 10 % - RCMP with 10 %
with L. sakei fermented tomato products; L.s. 30 % - RCMP with 30 % with L. sakei fermented tomato products; Sp. 10 %
- RCMP with 10 % spontaneous fermented tomato products; Sp. 30 % - RCMP with 30 % spontaneous fermented toma-
to products; Untr. 10 % - RCMP with 10 % untreated tomato powder; Untr. 30 % - RCMP with 30 % untreated tomato

powder.

Means in column with common letter are not different (p> 0.05).

Table 4. Colour coordinates (a*, b*), L* - lightness, colour tone (h°) and purity (C) of thermal treated (10 min in 100 °C

temperature water) and untreated ready- to-cook minced meat products (RCMP)

B-carotene Lycopene Total carotenoids content
Samples
mg/100 g
Thermal untreated
Untr. 10% 0.19+0.022 0.48+0.06° 0.672
Untr. 30% 0.25+0.01° 1.46+0.10° 1.71°
Sp. 10% 0.69+0.02¢ 1.02+0.09° 1.71°
Sp. 30% 0.97+0.02¢ 2.13+0.15¢ 3.1¢
L.s. 10% 1.23+0.09¢ 3.59+0.21¢ 4.82¢
L.s.30% 1.95+0.08¢ 9.66+0.17¢ 11.61¢
P.p. 10% 1.01+0.07¢ 3.67+0.21¢ 4.68¢
P.p.30% 1.76+0.03¢ 10.32+0.11¢ 12.08¢
Thermal treated

Untr. 10% 0.10+0.022 0.24+0.07° 0.34°
Untr. 30% 0.15+0.04° 0.93+0.05° 1.08°

Sp. 10% 0.49+0.07° 0.91+0.06° 1.40°

Sp. 30% 0.74+0.04¢ 1.75+0.09¢ 2.49¢
L.s. 10% 0.59+0.06° 2.15+0.13¢ 2.74¢
L.s.30% 1.47+0.08¢ 7.32+0.144 8.794
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B-carotene Lycopene Total carotenoids content
Samples
mg/100 g
P. p. 10% 0.76+0.06° 2.62+0.20¢ 3.38¢
P. p.30% 1.17+0.10¢ 6.31+0.26 7.484

Samples: CO % - RCMP without tomato products; P.p. 10 % - RCMP with 10 % with P. pentosaceus fermented tomato
products; P.p. 30 % - RCMP with 30 % with P. pentosaceus fermented tomato products; L.s. 10 % - RCMP with 10 % with
L. sakei fermented tomato products; L.s. 30 % - RCMP with 30 % with L. sakei fermented tomato products; Sp. 10 % - RCMP
with 10 % spontaneous fermented tomato products; Sp. 30 % - RCMP with 30 % spontaneous fermented tomato products;
Untr. 10 % - RCMP with 10 % untreated tomato powder; Untr. 30 % - RCMP with 30 % untreated tomato powder.

Means in column with common letter are not different (p> 0.05).

Table 5. i—carotene, lycopene and total carotenoids content in thermal treated and untreated ready- to-cook minced meat
products (RCMP)

8. Conclusions

Lactic acid fermentation represents the easiest and most suitable way to increase daily
consumption of nearly fresh fruits and vegetables. The health and safety of the products can
be aided by the development of starter cultures. Progress in the field of antimicrobial LAB
strains with multi-functional properties, including the degradation of mycotoxins, can be
engineered to significantly improve the quality, safety and acceptability of plant foods.

Tomato processing resulted in several important changes in carotenoid concentration and
lycopene isomer profile. Treatment with LAB breaks down the tomato cell matrix and makes
carotenoids more available, yielding a higher level of total carotenoids. Moreover, tomatoes
subjected to lactic acid fermentation results in high lycopene bioavailability accompanied by
increased cis-lycopene content. According to our results, P. pentosaceus and L. sakei may be
useful for the preservation of tomatoes. Such products could be recommended as being more
biologically accessible with higher functional value.

The results of our tomato product colour analysis offered the possibility of evaluating the level
of lycopene using the yellow colour characteristic of tomato products; this method was
reproducible and accurate enough to substitute for the chemical extraction determinations and
may be a useful tool for the tomato industry.

The direct use of Pediococcus pentosaceus KTU05-9 and Lactobacillus sakei KTU05-6 for tomato
product fermentation increases the carotenoid content in tomato products, which is a beneficial
additive that improves the colour, functional value and acceptability of ready-to-cook minced
meat products. Ready-to-cook minced meat products that have been enriched with carote-
noids, which lend good sensory quality and are produced to contain a high level of lycopene
and {3-carotene, can increase the intake of carotenoids in the diet. This is the first time that
selected lactobacilli-fermented tomato products have been used as source of lycopene and -
carotene for food, and more research is needed to explain the mechanism of carotenoid increase
in fermented tomato products.
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All the tested LAB produced a mixture of L- and D-lactic acid, with the latter isomer at a lower
level. Because of the potential toxicity of D-lactic acid in food, we report that the tomato
products prepared using pure cultures of tested LAB were found in all cases to be safer than
those treated by spontaneous fermentation.
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