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1. Introduction

The recent discovery of superconductivity (SC) with rather high critical temperature in the
family of doped iron pnictide compounds [1, 2], has motivated a great interest to these
materials (see the reviews [3, 4]). Unlike the extensively studied cuprate family [5], that present
insulating properties in their initial undoped state, the undoped LaOFeAs compound is a
semimetal. As was established by the previous physical and chemical studies (see, e.g., [6, 7]),
this material has a layered structure, where the SC state is supported by the FeAs layer with
a 2D square lattice of Fe atoms and with As atoms located out of plane, above or below the
centers of square cells (Fig. 1). Its electronic structure, relevant for constructing microscopic
SC models, have been explored with high-resolution angle-resolved photoemission spectro‐
scopy (ARPES) techniques [8, 9]. Their results indicate the multiple connected structure of
Fermi surface, consisting of electron and hole pockets and absence of nodes in both electron
and whole spectrum gaps [8], suggesting these systems to display the so-called extended s-
wave (also called s±-wave) SC order, changing the order parameter sign between electron and
whole segments [10].

To study the band structure, the first principles numeric calculations are commonly used,
outlining the importance of Fe atomic d-orbitals. The calculations show that SC in these
materials is associated with Fe atoms in the layer plane, represented in Fig. 1 by their orbitals
and the related hopping amplitudes. The dominance of Fe atomic 3d orbitals in the density of
states of LaOFeAs compound near its Fermi surface was demonstrated by the local density
approximation (LDA) calculations [10-15]. It was then concluded that the multi-orbital effects
are important for electronic excitation spectrum in the SC state, causing formation of two
spectrum gaps: by electron and hole pockets at the Fermi surface. To explain the observed SC
properties, an unconventional pairing mechanism, beyond the common electron-phonon
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scheme, was suggested for these materials [16-19]. In general, the total of 5 atomic orbitals for
each iron in the LaOFeAs compound can be involved, however the ways to reduce this basis
are sought, in order to simplify analytical and computational work. Some authors [20, 21] have
suggested that it is sufficient to consider only the dxz and dyz orbitals. Building such minimal
coupling model based on two orbitals, one is able to adjust the model parameters (energy
hopping and chemical potential) to obtain the Fermi surface with the same topology that in
the first principles calculations of band structure. Even though it fails to reproduce some finer
features of the electronic spectrum [22, 23], this minimal coupling scheme is favored by its
technical simplicity to be chosen as a basis for study of impurity effects in LaOFeAs which
could be hardly tractable in more involved frameworks.

Having established the SC state parameters, important effects of disorder, in particular by
impurities, on the system electronic properties, have been studied for doped iron pnictides.
Alike the situation in doped perovskite cuprates, impurity centers can result here either from
dopants, necessary to form the very SC state, or from foreign atoms and other local defects.
Within the minimal coupling model, an interesting possibility for localized impurity levels
within SC gaps in doped LaOFeAs was indicated, even for the simplest, so-called isotopic (or
non-magnetic) type of impurity perturbation [24, 25]. This finding marks an essential differ‐
ence from the traditional SC systems with \emph{s}-wave gap on a single-connected Fermi
surface, were such perturbations are known not to produce localized impurity states and thus
to have no sizeable effect on SC order, accordingly to the Anderson theorem [26].

In presence of localized quasiparticle states by isolated impurity centers, the next impor‐
tant issue is the possibility for collective behavior of such states at finite (but low enough)
impurity concentration. They are expected to give rise to some resonance effects like those
well  studied  in  semiconductors  at  low doping  concentrations  [27].  This  possibility  was
studied long ago for electronic quasiparticles in doped semiconducting systems [28] and
also for other types of quasiparticles in pnononic, magnonic, excitonic, etc. spectra under
impurities  [29],  establishing  conditions  for  collective  (including  coherent)  behavior  of
impurity excitations. Thus, indirect interactions between impurity centers of certain type
(the so-called deep levels at high enough concentrations) in doped semiconductors can lead
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Figure 1. Schematics of a FeAs layer in the LaoFeAs compound with dxz (dark) and dyz (white) Fe orbitals and the Fe-Fe
hopping parameters in the minimal coupling model. Note that the hoppings between next near neighbors (t3, 4) are
mediated by the As orbitals (out of Fe plane)

Superconductors – New Developments222



to  formation  of  collective  band-like  states  [28,  30].  This  corresponds  to  the  Anderson
transition in a general disordered system [31], and the emerging new band of quasiparti‐
cles in the spectrum can essentially change thermodynamics and transport in the doped
material  [32].  In  this  course,  the fundamental  distinction between two possible  types  of
states is done on the basis of general Ioffe-Regel-Mott (IRM) criterion that a given excita‐
tion has a long enough lifetime compared to its oscillation period [32, 33].

Analogous effects in superconductors were theoretically predicted and experimentally
discovered for magnetic impurities, both in BCS systems [34-36] and in the two-band MgB2

system [37, 38]. In all those cases, the breakdown of the Anderson's theorem is only due to the
breakdown of the spin-singlet symmetry of an s-wave Cooper pair by a spin-polarized
impurity. This limitation does not apply to the high-Tc doped cuprates, however their d-wave
symmetry of SC order only permits impurity resonances in the spectrum of quasiparticles [39,
40], not their true localization, and hinders notable collective effects on their observable
properties.

Therefore the main physical interest in SC iron pnictides from the point of view of disorder in
general is the possibility for pair-breaking even on non-magnetic impurity [41-43] and for
related localized in-gap states [21, 44-46]. This theoretical prediction was confirmed by the
observations of various effects from localized impurity states, for instance, in the superfluid
density (observed through the London penetration length) [47, 48], transition critical temper‐
ature [49, 50] and electronic specific heat [51], all mainly due to an emerging spike of electronic
density of states against its zero value in the initial band gap. An intriguing possibility for
banding of impurity levels within the SC gap [38, 52], similar to that in the above mentioned
normal systems, was recently discussed for doped iron pnictides [53]. Here a more detailed
analysis of the band-like impurity states is also focused on their observable effects that cannot
be produced by localized impurity states.

We apply the Green function (GF) techniques, similar to those for doped cuprate SC systems
[54], using the minimal coupling model by two orbitals for host electronic structure and the
simplest isotopic type for impurity perturbation. The energy spectrum near in-gap impurity
levels at finite impurity concentrations, emergence of specific branches of collective excitations
in this range, and expected observable effects of such spectrum restructuring are discussed.
Then specific GFs for SC quasiparticles are used in the general Kubo-Greenwood formalism
[55, 56] to obtain the temperature and frequency dependences of optical conductivity. These
results are compared with available experimental data and some suggestions are done on
possible practical applications.

2. Model Hamiltonian and Green functions

For the minimal coupling model of Fig. 1, the hopping Hamiltonian Ht is written in the local
orbital basis as:
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where xn, σ and yn, σ are the Fermi operators for dxz and dyz Fe orbitals with spin σ on n lattice site
and the vectors δx, y point to its nearest neighbors in the square lattice. Passing to the operators
of orbital plane waves xk ,σ = N −1/2∑n eik ⋅nxn,σ (N is the number of lattice cells) and analogous
yk, σ and defining an "orbital" 2-spinor ψk, σ = (xk, σ, yk, σ), one expands the spinor Hamiltonian in
quasimomentum:

( )s s
s

y y=å †
, ,

,

ˆ .t tH hk k
k

k (2)

Here the 2×2 matrix

( ) e s e s e s+ -= + +, 0 , 3 , 1
ˆ ˆ ˆ ˆt xyh k k kk (3)

includes the Pauli matrices σ̂ i acting on the orbital indices and the energy functions
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(a is the distance between nearest neighbor Fe). An optimum fit for the calculated band
structure in the minimum coupling model is with the hopping parameters (in |t1| units): t1 =
–1.0, t2 = 1.3, t3 = t4 = –0.85, and with the Fermi energy εF = 1.45 [15]. A unitary transformation
brings ĥ t(k ) from orbital to diagonal subband basis:

( ) ( ) ( ) ( ) s qe s e s -
+ -= = + = 2ˆ / 2†

, ,
ˆ ˆˆ ˆ ˆˆ ˆ ,              e .i

b t e hh U h U U k
k k kk k k k (5)

Here θk = arctan (εxy, k/ ε–, k), σ± = (σ0 ±σ3)/2, and the energy eigenvalues:
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( )e e e e+ -= ± +2 2
, , , , ,h e xyk k kk (6)

correspond to the two subbands in the normal state spectrum that respectively define electron
and hole pockets of the Fermi surface. There are two segments of each type, defined by the
equations εe, h(k) = μ, as shown in Fig. 2. We note that both functions cosθk and sinθk change
their sign around each of these segments, corresponding to their "azimuthal dependencies"
around the characteristic points of the 2D Brillouin zone (Fig. 2), so that integrals of these
functions with some azimuthal-independent factors over the relevant vicinity of Fermi surface
practically vanish and are neglected beside the integrals of fully azimuthal-independent
functions in the analysis below.

  



 
   

 








  


 



          



 











   

   

 



Y

X

M



a a

k
y

 

 

k
x

Figure 2. Electron (pink) and hole (blue) segments of the Fermi surface in the normal state of model system with elec‐
tronic spectrum by Eq. 5. The dashed line around the Γ point marks a circular approximation (see after Eq. 11).

The adequate basis for constructing the SC state is generated by the operators of electron and
hole subbands:

s s s

s s s

a q q
b q q

= -

= +
, , ,

, , ,

cos / 2 sin / 2,
cos / 2 sin / 2,

x y
y x

k k k k k
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(7)

giving rise to the "multiband-Nambu" 4-spinors Ψk
√ = (αk, ↑

 √, α–k, ↓, βk, ↑
 √, β–k, ↓) and to a 4×4

extension of the Hamiltonian Eq. (2) in the form:

( )
s

= Y Yå †

,

ˆ ,s sH hk k
k

k (8)

where the 4×4 matrix
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( ) ( ) t s t= Ä + D Ä3 0 1
ˆ ˆ ˆ ˆ ˆ ,s bh h kk k

includes the Pauli matrices τ̂ i acting on the Nambu (particle-antiparticle) indices in Ψ-spinors
and ĥ b(k ) is defined by Eq. (5). The simplified form for the extended s-wave SC order is realized
with the definition of the gap function by constant values, ∆k = ∆ on the electron segments and
∆k = –∆ on the hole segments.

The electronic dynamics of this system is determined by the (Fourier transformed) GF 4×4
matrices [58, 29, 54]:

( ) ( )e

-¥

= Y Y = Y Yò h
0

†† /
, ' ' '

ˆ e , 0 ,i tG i dt tk k k k k k (9)

whose energy argument ε is understood as ε – i0 and <A(t), B(0> is the quantum statistical
average with Hamiltonian H of the anticommutator of Heisenberg operators. From the
equation of motion:

e d s t é ù= Ä + Y Yë ûh †
, ' , ' 0 0 '

ˆ ˆ ˆ , | ,G Hk k k k k k (10)

the explicit GF for the unperturbed SC system with the Hamiltonian Hs, Eq. (8), is diagonal in
quasimomentum, Ĝk ,k ' =δk ,k 'Ĝk

0 , with the diagonal term:

et e t t et e t t
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where the denominators Di, k = ε2 – εi
2(k) – ∆2 for i = e, h. Below we refer energy to the Fermi

level εF, approximate the segments of Fermi surface by circles of radius ki around the charac‐
teristic points Ki in the Brillouin zone, and linearize the dispersion laws near the Fermi level
as εj(k) = εF + ξj, k with ξj, k ≈ ℏvj(|k – Kj| – kj). Though the Fermi wavenumbers kj and related
Fermi velocities vj for j = e, h can somewhat differ at given hopping parameters and chemical
potential, we shall neglect this difference and consider single values kj = kF and vj = vF.

3. Impurity perturbation and self-energy

We pass to the impurity problem where local perturbation terms due to non-magnetic
impurities [24] on random sites p in Fe square lattice with an on-site energy shift V:

( )s s s s
s

= +å † †
, , , ,

,
,impH V x x y yp p p p

p
(12)

are added to the Hamiltonian Hs. Without loss of generality, the parameter V can be taken
positive, and this perturbation is suitably expressed in the multiband-Nambu basis:
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( )- ×= Y Yå ' †
, ' '

, , '
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k k p

k k k k
p k k

(13)

through the 4×4 scattering matrix V̂ k ,k ' =V Û k †Û k '⊗ τ̂3. From Eq. (5) for Û k , this matrix involves
either "intraband" and "interband" elements [41]. The latter scattering could lead to a transition
from s± to a competing s++ SC order (with the same sign of order parameter on both Fermi
pockets) under impurity effect [43]. However, as shown below, such a possibility is effectively
eliminated for the chosen local perturbation type, due to the specific quasimomentum k-
dependence of the scattering elements, unlike their constancy postulated in Ref. [43].

Following Refs. [29, 53], the solution for Eq. (10) with the perturbed Hamiltonian Hs + Hi can
be obtained in different forms, suitable for different types of states, band-like (extended) or
localized. All these forms result from the basic equation of motion:

( )d - ×= + å ''0 0
, ' , ' , '' '', '

, ''

1ˆ ˆ ˆ ˆˆe ,iG G G V G
N

k k p
k k k k k k k k k k

p k
(14)

by specific routines of its iterating for the "scattered" GF's Ĝk '',k '. Thus, the algorithm, where
the next iteration step never applies to the scattered GF's already present after previous steps,
e.g., to that with k'' = k in Eq. (14), leads to the so-called fully renormalized form (RF), suitable
for band-like states. Its result for the most relevant diagonal GF Ĝk ≡ Ĝk ,k  reads:

( )
--é ù= - Sê úë û

110ˆ ˆ ˆ ,G Gk k k (15)

where the self-energy matrix Σ̂k  is expressed by the related group expansion (GE):

( )S = + +Kˆ ˆˆ 1 .cT cBk k k (16)

Here c = ∑p N–1 is the impurity concentration (per Fe site) and the T-matrix results from all the
multiple scatterings by a single impurity:
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The next term to the unity in the brackets in Eq. (16):

( )( )-- ×
- -= + +å

1ˆ ˆ ˆ ˆ ˆ ˆe 1 ,iB A A A A Ak n
k n n n n n

n
(18)
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describes the effects of indirect interactions in pairs of impurities, separated by vector n, in
terms of interaction matrices Ân = T̂ k∑k '≠k eik '⋅nĜk '. Besides this restriction on summation,
multiple sums in the products like ÂnÂ−n never contain coincident quasimomenta. Eq. (18)
presents the first non-trivial GE term and its other terms omitted in Eq. (16) relate to the groups
of three and more impurities [29].

An alternative iteration routine applies Eq. (14) to all the scattered GF's, leading to the so-called
non-renormalized form (NRF), suitable for localized states:

= + S0 0 0 0ˆ ˆ ˆ ˆˆ ,G G G Gk k k k k (19)

The NRF self-energy admits a GE: Σ̂k
0 =cT̂ k

0 (1 + cB̂k
0 + … ), that differs from the RF one by no

restrictions in k-sums for T-matrix, interaction matrices Ân
0 = T̂ k

0∑k ' eik '⋅nĜk '
0  and their products.

At the first step, we restrict GE to the common T-matrix level to find the possibilities for
localized quasiparticle states and related in-gap energy levels by single impurities [21]. Next,
at finite impurity concentrations, formation of (narrow) energy bands of specific collective
states near these levels is studied. Finally, the criteria for such collective states to really exist
in the disordered SC system follow from the analysis of non-trivial GE terms. We notice that
RF for GF's Ĝk ' in the above interaction matrices is just necessary for adequate treatment of
interaction effects within the in-gap bands. To simplify the T-matrix, Eq. (17), note that
V̂ k ,k =V σ̂0⊗ τ̂3 and use the integrated GF matrix:

( ) ( )e e s e s t+ -
é ù= = + Äë ûå 0 †

0 0
1ˆ ˆˆ ˆ ˆ ˆ ˆ .e hG U G U g g
N k k k

k

This diagonal form (restricted only to the "intraband" matrix elements) follows from the
aforementioned cancellation of integrals with cosθk and sinθk in the "interband" matrix
elements of Û kĜk

0 Û k
† . This permits to consider below the SC order unchanged under the

impurity effects.

The functions gj(ε) = N–1∑k Dj, k
–1 for j = e, h are approximated near εF, |ε – εF| δ ∆, as:

( )
pr

e
e

» -
D -2 2

.j
jg (20)

Here ρj = mja2/(2πℏ2) are the Fermi densities of states for respective subbands (in parabolic
approximation for their dispersion laws), and by the assumed identity of the Fermi segments

they can be also considered identical ρj = ρF, so that gj(ε) = g(ε) = –πρF/ Δ 2−ε 2. Omitted terms
in Eq. (20) are of higher orders in the small parameter ε/εF ≪ 1. Then the momentum inde‐
pendent T-matrix is explicitly written as:

Superconductors – New Developments228



( ) e e e t
e

e e
- D + D -

=
+ -

2 2 2 2
3
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ˆˆ ,
1

vVT
v

(21)

it presents two symmetric poles within the gap, at ε = ± ε0 = ± Δ / 1 + v 2 [21], with the dimen‐
sionless impurity perturbation parameter v = πρFV. Near these poles, Eq. (21) can be approxi‐
mated as:

( ) e e t
e g

e e
-

»
-

2 0 3
2 2

0

ˆˆ ,T (22)

where γ2 = V∆v2/(1 + v2)3/2 is the effective constant of coupling between localized and band
quasiparticles. At finite c, this T-matrix can be used in Eqs. (16) and (15) and then in the formal
dispersion equation: RedetĜk −1 =0 [57], to obtain the dispersion laws of perturbed SC system
in terms of the normal quasiparticles dispersion ξk = εk – εF ≡ ξ. They follow from the general

expression: Re(ε̃2−Δ 2− ξ̃2)=0, with ε̃ =ε(1−cVv 1−ε 2 / Δ 2 / (ε 2 / ε02−1)) and
ξ̃ =ξ + cV (ε 2 / Δ 2−1) / (ε 2 / ε02−1), and display a peculiar multiband structure shown in Fig. 3.
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Figure 3. Dispersion laws for band-like quasiparticles in the T-matrix approximation, neglecting their finite lifetime, at
a specific choice of impurity parameters v = 1, c = 0.1∆2/γ 2. The argument ξ composes all specific ξj = ℏvF(|k – Kj| - kF)
for k near each j-th characteristic point in the Brillouin zone (see in the text), blue lines are for impurity bands near
electron-like Fermi segments and red lines do for those near hole-like segments. The single-impurity localized levels
are shown with dashed lines. The narrow rectangle around the top of εi-band (shown by the arrow) delimits the region
in Fig. 5.
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First of all, there are modified initial bands

( ) ( ) ( )e x e x x» + G ,b i (23)

whose main difference from the unperturbed SC bands with dispersion ε(ξ)= Δ 2 + ξ 2 is a finite
linewidth Γ(ξ) ∼ cVvξ∆/[(1 + v2)(ξ2 + ξ0

2)], ξ02 =Δ 2−ε02, defined by the T-matrix term of the self-
energy, Eq. (16). It should be noted that these subbands for opposite signs of their argument
ξ in fact refer to excitations around different Fermi segments (by electron and holes), but for
clarity all four εb bands are set in Fig. 3 in the same ξ-reference. Then from the IRM criterion
of band-like states:

( ) ( )x e x x
x «

¶
G

¶
,b (24)

the position of mobility edge εc for these bands is estimated as: εc – ∆ ~ (c/c1)2∆, with c1 = πρF∆
≪ 1. Besides the εb bands, there appear also four (narrow) in-gap εi bands, generated close to
ε0 at finite concentration of impurities, accordingly to:

( ) x e
e x e g

x x
-

» +
+

2 0
0 2 2

0

,i c (25)

As follows from Eq. (25), the εi band has its extrema εmax = ε0 + cγ2 /(∆ + ε0) at ξ+ = ∆ + ε0 and εmin

= ε0 – cγ2/(∆ – ε0) at ξ– = ∆ – ε0. The energy and momentum shifts of these extremal points seen
in Fig. 3 specify the impurity effect on a multiband initial spectrum, compared to a simpler
situation for an impurity level near the edge of a single quasiparticle band [29].

All these spectrum bands would contribute to the overall density of states (DOS) by the related
quasiparticles: ρ(ε) = (4πN)–1 Im Tr ∑k Ĝk . More common contributions there come from the
εb bands and they can be expressed through the Bardeen-Cooper-Schrieffer (BCS) DOS in pure

crystal [57]: ρBCS(ε, ∆) = ρFε/ ε 2−Δ 2, as follows:

( ) ( ) ( )( )
e er e r e

pe e e
- D

» D -
+ -

2 2 2

BCS 2 2 2
F 0

2, ,
1b
cv

v
(26)

at ε2 ↔ εc
2. The second term in the r.h.s. of Eq. (26) describes a certain reduction of the BCS DOS

at energies farther from the gap limits.

More peculiar contributions to DOS come from the εi bands, written as:
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2, and presented in Fig. 4.
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Figure 5. Parabolic approximation (dashed line) for the dispersion law near the top of impurity band (solid line), with‐
in the region indicated by a small rectangle in Fig. 3.

Formation of the εi bands can have important repercussions in the physical behavior of a
disordered SC system and they will be considered below. But before this, we need to analyze
the criteria for the considered quasiparticles to really exist, especially in closeness to the limits
of corresponding bands and this requires a more involved analysis of non-trivial GE terms for
self-energy.
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4. Group expansion and Ioffe-Regel-Mott criteria

Let us now study the crossover from band-like to localized states near the limits of εi bands,
say for definiteness, near its upper limit εmax. Supposing the actual energy ε < εmax to be within
the range of band-like states, we use the RF self-energy matrix, Eq. (16), up to the GE pair term,
c 2T̂ B̂k , that will add a certain finite imaginary part Γi(ε) to the dispersion law ε = εi(ξ), Eq.
(25). Then the IRM criterion for a state at this energy be really band-like (also called extended)
is written as:

( )maxe e e- G? .i (28)

To simplify calculation of the scalar function Γi(ε), we fix the energy argument in the numer‐
ators of T-matrix and interaction matrices at ε = ε0, obtaining their forms:
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(29)

both proportional to the matrix m̂+ = σ̂0⊗ (τ̂0 + τ̂3) with important multiplicative property:
m̂+2 =2m̂+. The k-summation (integration) in Eq. (29) is suitably done in polar coordinates over
the circular segments of Fermi surface. Here the azimuthal integration only refers to the phase

of numerator, resulting in zeroth order Bessel function: ∫
0

2π

eixcosθdθ =2πJ0(x). Since x = n(kF + ξ/

ℏvF) is typically big, x ≫ 1, the asymptotical formula applies: J0(x) ≈ 2 / πx cos(x – π/4). Then,
for radial integration in ξ around the extremum point ξ+, it is convenient to decompose this
function into fast and slow oscillating factors: J0(x) ≈ 2 / (πk+n) cos(k+n – π/4)cos[(ξ – ξ+)n/ℏvF]
with the fast wavenumber k+ = kF + ξ+ /ℏvF ≈ kF, and to write the denominator in the parabolic
approximation: Dξ(ε) ≈ (ξ – ξ+)2 – δ2(ε), with δ2(ε) = 4∆(∆ + ε0)2 (εmax – ε)/(2cγ2) (see Fig. 5). Thus,
the interaction matrix Ân(ε)= An(ε)m̂+ only depends on the distance n between impurities, and,
for ε close to εmax, this dependence can be expressed as:

( ) e
ee » Fsin cos ,r

rA k r k r
r

(30)

where the length scales both for the monotonous decay:
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and for the sine factor: kε
–1 = ℏvF/δ(ε), are much longer than kF

–1 for the fast cosine. The latter
fast oscillation is specific for the interactions mediated by Fermi quasiparticles (like the known
RKKY mechanism), unlike the monotonous or slowly oscillating interactions between
impurities in semiconductors or in bosonic systems [29].

Now calculation of Γi(ε) = c2T(ε) Im B(ε) mainly concerns the dominant scalar part of the GE
pair term:

( ) ( )
epe

e
»

-ò2 2
2 ,

1 4

r

a r

rdrB
a A

(31)

(since the k-dependent term in Eq. (18) turns to be negligible beside this). The upper integration
imit in Eq. (31) refers to the fact that its integrand only has poles for r < rε. With respect to the
slow and fast modes in the function, Eq. (30), the integration is naturally divided in two stages.
At the first stage, integration over each m-th period of fast cosine, around rm = 2πm/kF, is done
setting the slow factors, $r ≈ rm and sinkεr ≈ sinkεrm constant, and using the explicit formula:

p
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At next stage, summation of these results in m is approximated by integration in slow variable:
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Numerical calculation of the latter integral results in:

( )e
e e=

2

2Im ,
rB f k r
a

(33)

where the function f(z) is zero for z < z0 ≈ 1.3585, and monotonously grows for z > z0, rapidly
reaching the asymptotic constant value: fas ≈ 1.1478, for z ≫ z0. Then the IRM criterion, Eq.
(28), at ε so close to εmax that kε rε ≫ z0, is expressed as:

max
max

ege e
e e
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2
0

,
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(34)

giving an (c-independent) estimate for the range of extended states within the impurity band:
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Its comparison with the full extension of this band, εmax – εmin = cγ2(1 + v2)/(v2∆), would suggest
a possibility for such extended states to really exist if the impurity concentration surpasses the
characteristic (small) value:
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(36)

For typical values of ρF
–1 ~ 2 eV, akF ~ 1, and ∆ ~ 10 meV in LaOFeAs system [8, 13, 58], and

supposing a plausible impurity perturbation v ~ 1, we estimate c0 ≈ 8 10–4, manifesting impor‐
tant impurity effects already at their very low content.

However, the r. h. s. of Eq. (33) vanishes at kεrε < z0, which occurs beyond the vicinity of the
band top:
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è ø
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0
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c
c

(37)

Under the condition of Eq. (36), this vicinity is yet narrower than Γ0 by Eq. (35), defining the
true, even wider, range of extended states within the impurity band.

Otherwise, for c ≪ c0, the impurity band does not exist at all, then we analyze the energy range
near the impurity level with the NRF GE and write an approximate criterion for its convergence
as c|B0| ≪ 1. This calculation is done in a similar way to as before but replacing the interaction
function, Eq. (29), by its NRF version:

( ) ee -» 0/0
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r
RA k r
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(38)

with kFRε = 2π(ε0 /|ε – ε0|)2 and kFr0 = 2εF/ξ0. Then the above GE convergence criterion is assured
beyond the following vicinity of impurity level:
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defining its broadening due to inter-impurity interactions. Within this range, the DOS function
for localized states can be only estimated by the order of magnitude, but outside it is given by:
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Notably, the total number of states near the impurity level is

( )r e eò : ,loc d c

alike that of extended states in the impurity band by Eq. (26). The summary of evolution of
this area of quasiparticle spectrum in function of impurity concentration is shown in Fig. 7.
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Figure 6. Interaction function A2
r(ε) by Eq. 29 at the choice of parameters εmax – ε = 0.1 and ∆/εF = 5 10–2 displays slower

sine oscillations (solid line) and the monotonous envelope function (dashed line). The shadowed intervals are those
contributing to Im B, accordingly to the condition (rε/r)sin2kεr > 1. Inset: the expansion of the rectangle in the main pan‐
el shows also faster oscillations by the cosine.
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5. Impurity effects on superconducting characteristics

The above results on the quasiparticle spectrum in the disordered SC system can be immedi‐
ately used for calculation of impurity effects on its observable characteristics. Thus the
fundamental SC order parameter ∆ is estimated from the modified gap equation:
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where Ĝ(ε)= N −1∑k Ĝk (ε), λ = ρFVSC is the (small) dimensionless SC pairing constant, and the
Debye energy εD restricts the energy range of its action. In absence of impurities, c = 0, using
of Eq. (11) leads straightforwardly to the known result for the non-perturbed ∆0 value: λ–1 =
arccosh (εD/∆0) and thus ∆0 ≈ 2εD e–1/λ.

For finite c, contributions to Eq. (41) come both from the main band, Eq. (25), and from the
impurity band (or level), Eqs. (26) (or (40)). The latter contribution is ~ c, accordingly to the
previous discussion, defining a small correction beside λ–1 ≫ 1. But a much stronger c-
dependent correction comes from the modified main band (limited to its range of extended
states):
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For εc – ∆ ∼ (c/c1)2∆ (see after Eq. (24)) and c ` c1, the last term is well approximated by:
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and leads to the modified gap equation as:
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Its approximate solution for c ≪ c1 describes the initial decay of SC order parameter with
impurity concentration as:
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and for the values of ρF and ∆0 used above, the estimate of characteristic concentration c1 is
quite low: c1 ~ 10–2 (though higher than c0 by Eq. (36)), suggesting a very strong impurity effect.
With further growing c up to c ≺ c1, the value of ∆ from Eq. (43) would formally tend to zero
as ≈ ∆0(c1/c)2/2. However, concentrations c ~ c1 would already correspond to the impurity band
as wide as the gap itself; this goes beyond the validity of the present approach and needs a
special treatment.
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To study another important dependence, that of the SC transition temperature Tc on concen‐
tration c, one has, strictly speaking, to extend the above GF techniques for finite temperatures,
but a very simple estimate can be done, supposing that the BCS relation ∆/Tc ≈ 1.76 still holds
in the presence of impurities. Then the r.h.s. of Eq. (44) would also describe the decay of Tc/Tc0.

It is of interest to compare the present results with the known Abrikosov-Gor'kov solution for
BCS SC with paramagnetic impurities in the Born approximation [59, 60]. In that approxima‐
tion, the only perturbation parameter is the (constant) quasiparticle lifetime τ. In our frame‐
work, τ–1 can be related to Im Σ(ε) at a proper choice of energy, ε ~ |∆ – ε| ~ ∆. Then, in the
self-consistent T-matrix approximation \cite{psl}, we estimate τ–1 ~ c∆/c1 which leads to the
relation τTc ~ c1/(1.76c), reaching at c ~ c1 a good agreement with the Abrikosov-Gor'kov
universal criterion for complete SC suppression τTc < 0.567.

Also, a notable impurity effect is expected on the London penetration depth λL ~ ns
1/2, as follows

from the temperature dependence of superfluid density:

( ) ( ) ( )e e

r e e
e p

¥
-DD

= » - +
D++ +ò B

B 0 B

2
/0 B

/ 2 /
0 F

e .
1e 1 e 1

k T
s sk T k T

d k Tcv cn T n T
v

(44)

When compared to its unperturbed value in the pure SC system
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the effect by the last term in Eq. (45) produces a considerable slowing down of the low-
temperature decay of the difference λ(T)/λ(0) – 1 (Fig. 8), in a reasonable agreement with recent
experimental observations for SC iron pnictides under doping [47].
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Figure 8. Low-temperature decay of the London penetration depth difference for a SC with impurities (solid line) is
slower than that in absence of impurities (dashed line).
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Finally, a similar analysis can be applied for the impurity effect on the electronic specific heat
in the SC state, whose dependence on inverse temperature β = 1/(kBT) is represented as:

( ) ( )
be

er e e
b

b

¥¶
=
¶ +ò

0

,
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d
C (45)

and naturally divided in two characteristic contributions, C = Ci + Cb, from ρi and ρ b states:
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The resulting function C(β) deviates from the known low temperature behavior C0(β) ~ exp(–
β∆) for non-perturbed SC system at β > ln(c1/c – 1)/(∆ – ε0), where the characteristic exponent
is changed to a slower ~ exp(–βε0) as seen in Fig. 9.
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Figure 9. Temperature behavior of specific heat for a SC with impurities presents a crossover from β∆ exponent (dash‐
ed line) to βε0 at low enough temperature (high enough β = 1/(kBT)).

The same approach can be then used for other observable characteristics for SC under impurity
effect, such as, e.g., heat conductivity, differential conductivity for scanning tunneling
spectroscopy or absorption coefficient for far infrared radiation that is done in the next section.

6. Kubo-Greenwood formalism for multiband superconductor

The relevant kinetic coefficients for electronic processes in the considered disordered super‐
conductor follow from the general Kubo-Greenwood formulation [55, 56], adapted here to the
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specific multiband structure of Green function matrices. Thus, one of the basic transport
characteristics, the (frequency and temperature dependent) electrical conductivity is expressed
in this approach as:

( ) ( ) ( ) ( ) ( ) ( ) ( )e e
s w e e e e e

p w
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é ù= ë ûò ò
2 ' ˆ ˆ, , , '  Tr Im Im ' ,x x

f feT d d v v G Gk kk k k (46)

for ε' = ε – ℏω and the electric field applied along the x-axis. Besides the common Fermi
occupation function f(ε) = (eβε + 1)–1, the above formula involves the generalized velocity
function:
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This function is defined in the whole ξ, ε plane in a way to coincide with the physical quasi‐
particle velocities for each particular band, Eqs. (23, 24), along the corresponding dispersion
laws: v(k, εj(k)) = ℏ–1∇kεj(k) = vj, k, j = b, i. The conductivity resulting from Eq. (48) can be then
used for calculation of optical reflectivity.

Other relevant quantities are the static (but temperature dependent) transport coefficients, as
the heat conductivity:
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and the thermoelectric coefficients associated with the static electrical conductivity σ(T) ≡ σ(0,
T) [62], the Peltier coefficient:
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and the Seebeck coefficient S(T) = Π(T)/T. All these transport characteristics, though being
relatively more complicated from the theoretical point of view than the purely thermodynam‐
ical quantities from the previous section, permit an easier and more reliable experimental
verification and so could be of higher interest for practical applications of the considered
impurity effects in the multiband superconductors.

It is worth to recall that the above formulae are only contributed by the band-like states, that
is the energy arguments ε, ε' in Eqs. (47, 49, 50) are delimited by the relevant mobility edges.
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This is the main distinction of our approach from the existing treatments of impurity effects
on transport in iron pnictide superconductors using the T-matrix approximation to a solution
like Eq. (15) for the whole energy spectrum [62], even for its ranges where the very concept of
velocity, as Eq. (48), ceases to be valid.

Next, we consider the particular calculation algorithms for the expressions, Eqs. (47, 49, 50),
for the more involved case of dynamical conductivity, Eq. (47), that can be then reduced to
simpler static quantities, Eqs. (49, 50).

7. Optical conductivity

The integral in Eq. (47) is dominated by the contributions from δ-like peaks of the Im Ĝk (ε)
and Im Ĝk (ε ') matrix elements. These peaks arise from the above dispersion laws, Eqs. (23),
(24), thus restricting the energy integration to the band-like ranges: |ε| > εc for the b-bands and
εc, – < |ε| < εc, + for the i-bands. Regarding the occupation numbers f(ε) and f(ε') at reasonably
low temperatures kBT ≪ ∆, ε0, the most effective contributions correspond to positive ε values,
either from b- or i-bands, and to negative ε' values from their negative counterparts, b' or i'.
There are three general kinds of such contributions: i) b-b', due to transitions between the main
bands, similar to those in optical conductivity by the pure crystal (but with a slightly shifted
frequency threshold: ℏω → 2εc), ii) b-i' (or i-b'), due to combined transitions between the
principal and impurity bands within the frequency range ℏω → εc + εc, –, and iii) i-i', due to
transitions between the impurity bands within a narrow frequency range of 2εc, – < ℏω < 2εc, +.
The frequency-momentum relations for these processes and corresponding peaks are dis‐
played in Fig. 10. The resulting optical conductivity reads σ(ω, T) = ∑α σα(ω, T) with α = b-b', i-
i', and i-b'.
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Figure 10. Configuration of the poles ξj of GF’s contributing to different types of optical conductivity processes (over
electronic pocket of the quasiparticle spectrum in Fig. 3).
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For practical calculation of each contribution, the relevant matrix Im Ĝk (ε) (within the band-
like energy ranges) can be presented as Im Ĝk (ε)= N̂ (ε, ξ) Im Dk (ε)−1  where the numerator
matrix:

( ) ( )e x e xt t= + + D%% 3 1
ˆ , Re ,N (50)

is a smooth enough function while the above referred peaks result from zeros of Re Dk(ε). Now,
the quasimomentum integration in Eq. (47) under the above chosen symmetry of Fermi
segments spells as ∫dφ∫dk = 2(hvF)–1∫dφ∫dξ where the factor 2 accounts for identical contributions
from e- and h-segments. The azimuthal φ-integration contributes by the factor of π (from x-
projections of velocities) and the most important radial ξ-integration is readily done after
expanding its integrand in particular pole terms:

( ) ( ) ( ) ( ) ( ) ( )a a
a

x e x e x e x e e e d x xé ù = -ë û åˆ ˆ, , '  Tr  Im , Im , ' , ' ,v v G G A (51)

where v(ξ, ε) = |vk(ε)| and Ĝ(ξ, ε)≡ Ĝk (ε) define the respective residues:

( ) ( )a a a
a b

b a

ee xxe e p
x x

¹

+ + D
=

-Õ
% %% % 2', ' ' .A v v (52)

Here vα ≡ v(ε, ξα), v'α ≡ v(ε', ξα), and the indices α, β run over all the poles of the two Green
functions. As seen from Eqs. (23, 24) and Fig. 10, there can be two such poles of Ĝ(ξ, ε) related
to band-like states with positive ε and respective quasi-momentum values denoted as ξ1,2(ε).
For energies within the b-band, ε > εc, they are symmetrical:

( )x e e» ± - D2 2
1,2 , (53)

but within the i-band, at εc, – < |ε| < εc, +, their positions are asymmetrical:
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Within the i-band, there is a narrow vicinity of ε0 of ~ c0
1/3(c0/c)3ε0 width where only the ξ1 pole

by Eq. (54) is meaningful and the other contradicts the IRM criterion (so that there is no band-
like states with those formal ξ2 values in this energy range). Analogous poles of Ĝ(ξ, ε ') at
negative ε' are referred to as ξ3,4(ε') in what follows. Taking into account a non-zero Im Dk(ε)
(for the i-band, it is due to the non-trivial terms in the group expansion, Eq. (16)), each α-th
pole becomes a δ-like peak with an effective linewidth Γα but this value turns to be essential
only at calculation of static coefficients like Eqs. (49, 50).
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Since four peaks in Eq. (47) are well separated, the ξ-integration is done considering them true
δ-functions, then the particular terms in σ(ω, T) are given by the energy integrals:

( ) ( ) ( )n

n
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ae

e e
s w e
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-
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-
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4
2

1

'
, 2 ,

f f
T e d A (55)

for ν = b-b', i-b', or i-i' and the limits εν, ± should assure both ε and ε' to be within the band-like
ranges. Thus, in the b-b' term, the symmetry of the poles ξ1, 2(ε) and ξ1, 2(ε') by Eq. (55) and the
symmetry of b- and b'-bands themselves defines their equal contributions, then using simplic‐
ity of the function v(ε, ξ) = ξ/ε and non-renormalized energy ε̃ → ε and momentum ξ̃ → ξ,
integration between εb-b', – = εc and εb-b', + = ℏω – εc gives an analytic form σb-b'(ω, T) = σb-b'(ω, 0)
– σb-b', T(ω). Here the zero-temperature limit value is:
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with characteristic scale σ0 = e2/∆2 and simple asymptotics:
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vs the threshold frequency ωc = 2εc/ℏ, reaching the maximum value ≈ 1.19σ0 at ω ≈ 2.12 ωc (Fig.
11). The (small) finite-temperature correction to Eq. (57) is:
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with the Dawson function F(z) = πe−z 2
erf(iz) / (2i) and the error function erf(z) [64].

Calculation of the i-b'-term is more complicated since asymmetry of the i-band poles ξ1, 2(ε) by
Eq. (55) and their non-equivalence to the symmetric poles ξ3, 4(ε') of the b'-band analogous to
Eq. (54). Also the generalized velocity function within the i-band range:
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and the energy integration limits: ε'i-b', – = εc, – and ε'i-b', + = min εc,+, ℏω −εc  are more complicated.
Then σi-b'(ω, T) follows from numerical integration in Eq. (56); as seen in Fig. 11, it has a lower
threshold frequency ωc' = εc + εc,– than the b-b'-term. Above this threshold, it grows linearly as
~ (ω/ωc' – 1)c5/2c0

–5/3σ0 and, for "safe" impurity concentrations c ≪ c1 ~ c0
2/3, becomes fully

dominated by the b-b' term, Eq. (57) above its threshold ωc. Finally, the i-i'-term from a similar
numerical routine on Eq. (56) within integration limits εi-i',– = εc,– and εi-i',+ = min[εc,+, ℏω – εc, –],
using Eq. (55) for the poles ξ1, 2(ε) and ξ3, 4(ε') and Eq. (59) for generalized velocities. The
resulting σi-i'(ω, T) occupies a narrow frequency band from ωi-i' = 2εc,–/ℏ to ωi-i', + = 2εc,+/ℏ (Fig.
11) with asymptotics near these thresholds in the zero-temperature limit:
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at 0 < ω – ω– ≪ ω–, and alike for 0 < ω+ – ω ≪ ω+ with only changes: : ξ– → ξ+, ω– → ω+.

Extrapolation of these asymptotics to the center of impurity band gives an estimate for the
maximum of i-i' term: σi-i', max ~ c5c0

–10/3(ξ+/ξ–)7/2σ0. It shows that the narrow i-i' peak of optical
conductivity around ω ≈ 2ε0/ℏ, unlike the "combined" i-b' term, can become as intense as the
"main" b-b' intensity, Eq. (58), if the small factor ~ (c/c1)5 be overweighted by the next factor (ξ
+/ξ–)7/2. It is only possible for weak enough impurity perturbation: v ≪ 1. Then the ratio ξ+/ξ–

≈ (2/v)2 ≺ 1 can really overweight the concentration factor if c reaches ~ c1(v/2)7/5 ≪ c1, that is
quite realistic within the "safety" range c ≪ 1. The overall picture of optical conductivity for
an example of weakly coupled, v = 0.25, impurities at high enough c = 4c0 is shown in Fig. 11.
The effect of "giant" optical conductivity by the in-gap impurity excitations could be compared
with the known Rashba enhancement of optical luminescence by impurity levels near the edge
of excitonic band [64] or with huge impurity spin resonances in magnetic crystals [29], but here
it appears in a two-particle process instead of the above mentioned single-particle ones.

To emphasize, the considered impurity features in optical conductivity cannot be simply
treated as optical transitions between localized impurity states (or between these and main
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bands) since localized states can not contribute to currents. Such effects only appear at high
enough impurity concentrations, c ↔ c0, when the impurity banding takes place.

8. Concluding remarks

Resuming, the GF analysis of quasiparticle spectra in SC iron pnictides with impurities of
simplest (local and non-magnetic) perturbation type permits to describe formation of impurity
localized levels within SC gap and, with growing impurity concentration, their evolution to
specific bands of extended quasiparticle states, approximately described by quasimomentum
but mainly supported by the impurity centers. Explicit dispersion laws and densities of states
are obtained for the modified main bands and impurity bands. Further specification of the
nature of all the states in different energy ranges within the SC gap is obtained through analysis
of different types of GEs for self-energy matrix, revealing a complex oscillatory structure of
indirect interactions between impurity centers and, after their proper summation, resulting in
criteria for crossovers between localized and extended states. The found spectral characteris‐
tics are applied for prediction of several observable impurity effects.

Besides the thermodynamical effects, expected to appear at all impurity concentrations, that
is either due to localized or band-like impurity states, a special interest is seen in the impurity
effects on electronic transport in such systems, only affected by the impurity band-like states.
It is shown that the latter effects can be very strongly pronounced, either for high-frequency
transport and for static transport processes. In the first case, the strongest impurity effect is
expected in a narrow peak of optical conductance near the edge of conductance band in non-
perturbed crystal, resembling the known resonance enhancement of impurity absorption (or
emission) near the edge of quasiparticle band in normal systems. The static transport coeffi‐
cients at overcritical impurity concentrations are also expected to be strongly enhanced
compared to those in a non-perturbed system, including the thermoelectric Peltier and Seebeck
coefficients.
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Figure 11. General picture of the optical conductivity showing three types of contributions.
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The proposed treatment can be adapted for more involved impurity perturbations in SC iron
pnictides, including magnetic and non-local perturbations, and for more realistic multiorbital
structures of the initial iron pnictide system. Despite some quantitative modifications of the
results, their main qualitative features as possibility for new narrow in-gap quasiparticle bands
and related sharp resonant peaks in transport coefficients should be still present. The experi‐
mental verifications of such predictions would be of evident interest, also for important
practical applications, e.g., in narrow-band microwave devices or advanced low-temperature
sensors, though this would impose rather hard requirements on quality and composition of
the samples, to be extremely pure aside the extremely low (by common standards) and well
controlled contents of specially chosen and uniformly distributed impurity centers. This can
be compared to the requirements on doped semiconductor devices and hopefully should not
be a real problem for modern lab technologies.
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