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1. Introduction

Efficient intracellular DNA repair mechanisms are essential for preventing the accumulation
of genetic mutations and protecting against genomic instability, which can lead to cancer
development. This is reflected in the increased risk of breast and ovarian cancer conferred by
mutations in the breast and ovarian cancer susceptibility genes 1 & 2 (BRCA1 and BRCA2),
both of which have important roles in promoting the accurate repair of DNA damage and
maintaining genomic integrity. BRCA1 was first identified in 1994 and mapped to chromosome
17q12 through linkage analysis in families with a strong family history of breast and/or ovarian
cancer [1, 2]. BRCA2 was discovered a short time later when a second breast cancer suscepti‐
bility locus was mapped to chromosome 13q12, again by linkage analysis in similar families
[3, 4]. BRCA1/2 mutations may be present in approximately 1/400-1/800 of the general
population although a higher incidence of BRCA1 mutations have been observed in certain
populations such as in Ashkenazi Jews. Studies estimate that inherited mutations in BRCA1
can increase the cumulative risk of developing breast cancer by age 70 to 80% and ovarian
cancer risk to 30-40%, whereas BRCA2 mutation carriers have up to a 50% risk of breast cancer
and 10-15% ovarian cancer risk by age 70. Additionally, mutations in BRCA2 also increase
susceptibility to male breast cancer, prostate and pancreatic cancer [5, 6]. According to the
Breast Cancer Information Core (BIC), over 1,700 distinct mutations have been identified in
the BRCA1 gene to date, comprising inactivating truncations and deletions to missense
mutations. While approximately 850 of BRCA1 mutations identified have been confirmed to
increase cancer risk, the clinical relevance of the remaining mutations is unknown [7].
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While BRCA1/2 mutations account for a relatively small proportion of all breast cancers
(2.5-5%), mutations in these genes are responsible for approximately 20-25% of inherited breast
cancer cases [8-10]. In addition, BRCA1 mutation carriers typically develop cancer before the
age of 50 meaning that the number of years affected can be substantially greater than in most
subtypes of sporadic breast cancer. This is likely due to the fact that both the BRCA1 and
BRCA2 genes adhere to the Knudson “two-hit” hypothesis in which both alleles of a tumour
suppressor gene must be mutated for the pathogenic phenotype to become apparent. Hence
one inherited copy of mutant BRCA1/2 is the “first hit” and the “second hit” comes from
acquiring a somatic mutation.

BRCA1 mutant breast tumours often fall into the basal-like breast cancer subtype, which
typically exhibit low or absent expression of the oestrogen receptor α (ERα), progesterone
receptor (PR) and the human epidermal growth factor receptor 2 (HER2) and are therefore
commonly referred to as triple negative breast tumours. Due to the lack of expression of these
receptors, there are no targeted treatments currently available for this type of cancer and as a
result these patients tend to have a poor prognosis. Interestingly, in sporadic basal-like breast
cancer patients with wildtype BRCA1, BRCA1 expression is often down-regulated possibly as
a result of promoter methylation or over-expression of ID4, a negative regulator of BRCA1
expression. A term has been coined, known as “BRCAness”, to describe sporadic basal-like
tumours with low BRCA1 expression and/or a similar phenotype to BRCA1 mutant tumours.
Both BRCA1 mutant and BRCA1-low tumour types are sensitive to DNA damaging agents
suggesting a possible common pathogenesis involving dysfunction of BRCA1 or BRCA1-
regulated pathways, such as DNA repair [11, 12].

Accordingly, the tumour suppressor function of BRCA1 and BRCA2 is mainly attributed to
the role of these proteins in the regulation of conservative DNA repair pathways, thus
maintaining genomic integrity. While the main function of BRCA2 identified to date is in
promoting the error-free homologous recombination pathway, BRCA1 is a multi-functional
protein with roles in many important cellular processes such as transcriptional regulation,
ubiquitination, oestrogen metabolism, chromatin remodelling and mRNA splicing [13]. These
additional functions of BRCA1 and how they relate to DNA repair will also be discussed,
followed by an overview of BRCA2 function in the repair of damaged DNA and how the DNA
repair defects in BRCA1/2 mutant related cancers can be exploited for treatment.

2. Structure of BRCA1

The BRCA1 gene encodes 24 exons translating into a 1863 amino acid protein which contains
two main functional domains; a really interesting new gene (RING) finger domain and two
BRCA1 C-terminal (BRCT) domains (Figure 1). The RING finger domain, located at the N-
terminus of BRCA1, is a zinc binding region with a conserved histidine and cysteine motif
which is required for binding to the structurally similar BRCA1 Associated RING Domain
protein 1 (BARD1) which also has a RING finger domain and 2 BRCT domains. The BRCA1-
BARD1 interaction is necessary for stability of both the BRCA1 and BARD1 proteins thus
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BRCA1 generally exists in a heterodimeric complex with BARD1 in vivo [14]. Furthermore,
binding of BARD1 to the RING finger domain of BRCA1 forms an E3 ubiquitin ligase complex,
the function of which will be discussed later. A number of tumour associated mutations have
been identified within the RING finger of BRCA1 such as C61G and C64G which abolish the
ubiquitin ligase activity and confer sensitivity to ionising radiation, suggesting the RING
domain of BRCA1 is important for regulating DNA repair [14, 15].

Figure 1. Structure and Binding Partners of BRCA1. Schematic diagram of BRCA1 and it’s functional domains illustrat‐
ing the position of; the RING finger responsible for BARD1 binding and E3 ligase activity, exon 11 which binds impor‐
tant HR proteins including Rad50 and Rad51, and the BRCT domains which mediate binding of RAP80, BACH-1 and
CtIP. Phosphorylation sites important for DNA damage signalling are also shown, as well as the kinases responsible
for their modification.

At its C-terminus, BRCA1 contains two conserved BRCT domains, each approximately 100
amino acids long. BRCT domains recognise and bind to phospho-peptides containing the pSer-
X-X-Phe motif [16]. Phosphorylation is a major mechanism of signalling within the DNA
damage response pathway and BRCA1 has been shown to bind to several phosphorylated
DNA repair-related proteins through its BRCT domains such as BACH1 and CtIP [17]. As with
mutations in the RING finger domain, mutations in the BRCT repeats of BRCA1 have been
identified in cases of familial breast cancer. Furthermore, mouse embryonic fibroblast cells
harbouring a BRCT mutation that disrupts BACH1 binding exhibit defective homologous
recombination, increased sensitivity to genotoxic stress and develop tumours at a similar rate
to those lacking BRCA1 [18].

The region of BRCA1 encoded by exons 11 – 13 comprises 65% of the BRCA1 peptide sequence
and is also commonly mutated in breast cancer. It contains two nuclear localisation signals
(NLS), a less structured central domain and an SQ cluster domain (SQCD) [7]. Mutations in
NLS1 in particular, disrupt interactions between BRCA1 and importin-α, resulting in impaired
nuclear localisation of BRCA1, which is detrimental to DNA repair [19]. BRCA1 also contains
a nuclear export signal (NES) in its N-terminus, which contributes to subcellular shuttling of
BRCA1. Numerous proteins with functions in different cellular processes bind the exon 11 –
13 region of BRCA1 including the important DNA repair proteins Rad50 and Rad51 as well as
the transcription factor c-Myc and cell cycle regulator, Retinoblastoma (Rb) (reviewed in [7]).
The SQCD is also relevant to the function of BRCA1 in DNA repair as it contains numerous
serine-glutamine (SQ) or threonine-glutamine (TQ) residues which are targets for phosphor‐
ylation via the DNA damage-induced phosphatidylinositol 3-kinase-related kinases (PIKKs);
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ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) and are responsible
for activating numerous functions of BRCA1 depending on the residue(s) phosphorylated [20].

3. BRCA1 in DNA repair

As previously mentioned, BRCA1 mutation or dysfunction has consistently been associated
with genomic instability and it is proposed that this is mainly due to defective DNA damage
repair pathways [6, 21]. DNA damage occurs frequently within cells due to by-products of
normal metabolism such as reactive oxygen species (ROS) but can also occur following
exposure to exogenous sources such as ionising radiation (IR), ultraviolet (UV) radiation or
chemotherapy. In order to respond to different types of DNA damage, cells have several DNA
damage repair pathways including base excision repair (BER) and nucleotide excision repair
(NER) for repairing damaged bases and single strand breaks (SSBs) respectively, and non-
homologous end joining (NHEJ) or homology-directed repair (HDR) for the repair of double
strand breaks (DSBs). NHEJ is the most common form of DSB repair and can occur throughout
all phases of the cell cycle. It involves binding of Ku70/Ku80 to the broken DNA ends followed
by recruitment of the catalytic subunit of DNA-PK, which phosphorylates numerous sub‐
strates at and surrounding the break site thereby promoting the removal of single strand
overhangs and subsequent re-ligation of the DNA ends by XRCC4/DNA ligase IV. Although
this is the most commonly utilised DSB repair pathway, as it has no regard for sequence
homology, it is a relatively error prone repair pathway and utilisation of this pathway is
potentially mutagenic.

There are two types of homology-directed repair; single strand annealing (SSA) and homolo‐
gous recombination (HR). SSA can repair DSBs at short repetitive sequences by annealing the
complementary repeats in a Rad52-dependent manner. This always results in loss of genetic
material and therefore SSA is the most mutagenic of the DSB repair pathways [22]. In com‐
parison to both NHEJ and SSA, HR is relatively error-free since it uses a sister chromatid as a
template to copy and replace damaged DNA. However, HR can only occur in the S and G2
phases of the cell cycle when a homologous sister chromatid is present and in close proximity
[23]. Although the most extensively studied role of BRCA1 is its regulation of HR, BRCA1 has
also been implicated in NHEJ, SSA and the repair of interstrand crosslinks (ICLs) and how
BRCA1 is involved in each of these pathways will be discussed below.

4. Homologous recombination

The process of HR includes several different stages. The MRE11-Rad50-Nbs1 (MRN) complex,
in combination with the human single strand binding protein (hSSB1) is responsible for the
initial sensing of DNA DSBs within the cell. MRN then binds to the break site leading to the
recruitment and activation of ATM which in turn phosphorylates many substrates involved
in DNA damage signalling. The histone H2AX is one such substrate of ATM which is phos‐
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phorylated at serine 139 (Ser139) forming γH2AX. ATM rapidly phosphorylates H2AX within
the chromatin at, and flanking, the DSB site, thereby amplifying and propagating the DNA
damage response. Additionally, γH2AX forms a docking site for numerous other proteins
involved in DNA damage signalling and repair such as mediator of DNA damage checkpoint
protein 1 (MDC1) which binds to γH2AX through its BRCT domain. MDC1 itself is able to
recruit and anchor more MRN complexes to γH2AX surrounding the break site through
interaction with Nbs1. MRN binding then amplifies ATM activation leading to a positive
feedback loop which further amplifies the DNA damage response signalling cascade [24]. Once
the necessary proteins have been recruited, DNA end resection must occur for HR to proceed
and this involves the generation of 3´ single stranded DNA (ssDNA) overhangs at the DSB
ends. MRN has a major role in end resection through the endonuclease and exonuclease
activities of Mre11. The 3´ ssDNA overhang is then coated by replication protein A (RPA)
which protects the single stranded DNA from degradation and prevents the formation of
secondary structures. Next, partner and localiser of BRCA2 (PALB2) recruits BRCA2 which
facilitates the displacement of RPA and subsequent loading of the recombinase Rad51 onto
ssDNA forming a nucleoprotein filament which is responsible for homology searching and
invasion of the homologous sister chromatid. This leads to formation of a transient displace‐
ment loop (D-loop) since once strand invasion has taken place, the second strand of the sister
chromatid becomes displaced. Elongation by the DNA replication machinery and resolution
of the D-loop then completes error-free repair of DNA [24].

BRCA1 was first implicated in DSB repair following the observation that murine embryos
harbouring homozygous BRCA1 exon 11 deletions were hypersensitive to ionising radiation
and exhibited both structural and numerical chromosomal aberrations in comparison to their
heterozygous and wildtype counterparts [21]. Moynahan et al extended these findings by
demonstrating that BRCA1-deficient embryonic stem cells were also highly sensitised to the
DNA cross-linking agent mitomycin C (MMC) and importantly, correction of the BRCA1 exon
11 deletion restored normal levels of mitomycin C resistance [25] confirming that BRCA1 has
a role in mediating resistance to DNA damaging agents. In 1999, the importance of BRCA1
specifically in homologous recombination was demonstrated in BRCA1-/- mouse embryonic
stem cells which had 5 to 6 fold lower levels of homologous repair activity compared to
BRCA1+/- cells while little effect was observed on non-homologous repair [26]. Over the past
couple of decades, multiple roles for BRCA1 in HR have emerged, and BRCA1 appears to have
distinct functions depending on its binding partners. Each of these functions will be considered
below.

5. BRCA1 in DNA end resection

Processing of DSBs by DNA end resection is necessary to initiate the repair of DSBs by HR. A
role for BRCA1 in promoting end resection was first observed when depletion of BRCA1
expression was shown to decrease the generation of ssDNA [27]. Chen et al showed that the
interaction between BRCA1-CtIP-MRN (known as the BRCA1-C complex) facilitates end
resection in S and G2 phases of the cell cycle and that this interaction is dependent on CDK
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phosphorylating CtIP at serine 327. In agreement with this, when the CtIP S327A mutant
(which cannot bind to BRCA1) is expressed in U2OS cells it leads to increased radiosensitivity
in comparison to U2OS cells transfected with wildtype CtIP. Furthermore, the BRCA1-CtIP
interaction was shown to be required for binding of MRN to BRCA1, which is essential for the
synthesis of ssDNA overhangs [28, 29].

In direct contrast, a number of recent studies have demonstrated that BRCA1 is in fact
dispensable for CtIP-mediated end resection. Reczek et al showed mouse embryonic fibro‐
blasts (MEFs) expressing the CtIP S326A mutation (equivalent to S327A in humans) displayed
similar levels of Rad51 and RPA IRIF as CtIP wildtype cells. Accordingly, loss of the CtIP-
BRCA1 interaction did not affect HR or tumour development in mice [30]. Polato and collea‐
gues reported similar findings showing that in contrast to the CtIP S327A mutant, mice
harbouring the CtIP T847A mutation (which is essential for end resection but does not affect
the BRCA1 interaction) had elevated levels of spontaneous chromosomal aberrations as well
as decreased levels of IR-induced Rad51 indicating that CtIP functions independently of
BRCA1 to promote end resection [31]. Further investigation of the role of the BRCA1-CtIP
interaction in end resection was performed using a high resolution technique known as single
molecule analysis of resection tracks (SMARTs) which allows visualisation of the length of the
resected DNA in a single molecule. This revealed that although BRCA1-CtIP is expendable for
the initiation of end resection, disruption of this interaction actually decreases the length and
speed of resected DNA generated following IR or etoposide treatment [32]. Therefore,
although BRCA1 is not essential for CtIP-mediated end resection it may facilitate the efficiency
of the process.

In contrast to the role of BRCA1-CtIP in facilitating end resection, recent evidence suggests
that BRCA1 in complex with receptor-associated protein 80 (RAP80) may actually prevent end
resection with chromatin immunoprecipitation (ChIP) assays showing an increased abun‐
dance of HR proteins RPA and Rad51 on chromatin following RAP80 depletion. The BRCA1-
RAP80 complex also contains ABRAXAS, BRCC36, BRCC45, MERIT40 and BARD1 and is
known as the BRCA1-A complex, however it appears the BRCA1-RAP80 interaction is most
important in the regulation of end resection. Decreased RAP80 has also been shown to increase
the BRCA1-CtIP interaction, which may further enhance end resection [33, 34]. Although HR
is a relatively error-free method of repair, poorly regulated HR can lead to recombination of
inappropriate homologous sequences, which can produce genomic rearrangements and
indeed depletion of RAP80 despite increasing HR leads to an increase in multiradial chromo‐
somes, as a result of improper recombination [34]. Thus the BRCA1-RAP80 complex, despite
inhibiting end-resection required for HR, may also preserve genomic integrity by preventing
excessive end resection, which can lead to chromosomal aberrations [33, 34].

6. BRCA1 in HR/NHEJ pathway choice

End resection is clearly a pivotal step in promoting HR, and the regulation of end resection
has recently become an intense area of research in determining the choice between HR and
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NHEJ in S and G2 phases of the cell cycle when both repair pathways are operational. In
contrast to the role of BRCA1-CtIP in facilitating end resection in S and G2 phases thus allowing
HR to proceed [35], 53BP1 has been shown to prevent end resection therefore inhibiting HR
and promoting NHEJ. Several studies have shown that 53BP1 loss at least partially restores
HR in BRCA1 deficient cells with Bunting et al observing increased IR-induced RPA phos‐
phorylation in the absence of 53BP1 in BRCA1 mutant cells. Thus it has since been postulated
that the antagonistic relationship between BRCA1 and 53BP1 may be responsible for mediating
HR/NHEJ pathway choice [36, 37] (Figure 2). Bunting et al have also demonstrated that mice
harbouring homozygous deletion of 53BP1 in combination with breast-specific homozygous
deletion of BRCA1 exon 11 (BRCA1Δ11/Δ11) display a greatly reduced breast tumour burden in
comparison to BRCA1Δ11/Δ11 mice with wildtype 53BP1 [36]. The authors therefore suggest that
BRCA1 mutation carriers may benefit from inhibition of 53BP1 to alleviate the repair defect
and thus genomic instability. Interestingly, when CtIP was depleted in BRCA1-/- 53BP1-/- MEFs,
IR-induced ssDNA formation was decreased suggesting CtIP is necessary for the rescue of end
resection observed in the absence of both BRCA1 and 53BP1. Furthermore, expression of CtIP
in BRCA1 mutant cells decreases levels of genomic instability supporting a model whereby
CtIP may partially overcome 53BP1-mediated inhibition of resection following loss of BRCA1
[31]. Despite the inhibitory role of 53BP1 in S phase, Kakarougkas et al propose that 53BP1
actually promotes HR in G2, specifically in DSBs occurring in heterochromatin regions due to
53BP1-dependent formation of phosphorylated KAP1 foci causing relaxation of the hetero‐
chromatin and allowing RPA loading in G2, thus 53BP1 can both promote and inhibit HR at
different stages of the cell cycle [38].

The mechanism of the antagonism between BRCA1 and 53BP1 was investigated by super-
resolution microscopy of IR-induced foci (IRIF), which enabled observations of the precise
distribution of 53BP1 and BRCA1 following IR and showed enrichment of 53BP1 within IRIF
in G0/G1 cells concomitant with the use of NHEJ mediated DSB repair in these stages of the
cell cycle. However, in S phase 53BP1 was redistributed to the periphery of these foci while
BRCA1 accumulated in the core of the IRIF. 53BP1 was not repositioned to IRIF margins
following siRNA knockdown of BRCA1 showing BRCA1 is necessary for this process. This led
the authors of this study to propose a process whereby BRCA1 may inhibit 53BP1 in S phase
by preventing its interaction with chromatin at DSB sites allowing end resection and thus HR
to proceed [39]. Following on from this, the deubiquitinating enzyme POH1 is also thought to
be necessary for formation of the 53BP1 devoid IRIF core in a BRCA1-dependent manner. The
suggested model involves BRCA1-mediated redistribution of 53BP1 from the core of the IRIF
and this allows access to POH1 which removes RAP80 from the core allowing degradation of
ubiquitin chains and complete clearance of 53BP1 from the DNA ends situated within the core
of the IRIF thereby facilitating DSB end resection [40].

On the contrary, 53BP1 can also inhibit BRCA1 recruitment to DSBs in G1 phase of the cell
cycle and if the 53BP1 effector protein RIF1 is reduced, BRCA1 IRIF form in G1. RIF1 accu‐
mulates at DSBs in a 53BP1-dependent manner and has been shown to bind to 53BP1 following
activation of ATM. RIF1 IRIF are normally only formed in G1 but down-regulation of BRCA1
leads to a significant increase in RIF1 foci in S/G2. Moreover, this inhibitory effect of BRCA1

The BRCA1 and BRCA2 Breast and Ovarian Cancer Susceptibility Genes — Implications for DNA Damage…
http://dx.doi.org/10.5772/59996

223



on RIF1 IRIF is dependent on the BRCA1-CtIP interaction. Depletion of RIF1 rescues both the
end resection and Rad51 loading defect caused by BRCA1 deficiency to a similar degree as loss
of 53BP1. Therefore, in G1 RIF1 is recruited to DSBs by 53BP1 following ATM activation and

Figure 2. The Antagonistic Relationship of BRCA1 and 53BP1 on End Resection. Both the HR and NHEJ repair path‐
ways can function in S and G2 phases of the cell cycle and end resection has an important role in the choice between
HR and NHEJ. In wildtype cells, the BRCA1/CtIP complex promotes HR in S and G2 by stimulating end resection and
by inhibiting 53BP1 (and possibly its effector protein RIF1), which acts as a barrier to end resection and thus HR (a).
HR defects are observed in the absence of BRCA1, due to loss of its stimulatory effect on end resection and also loss of
BRCA1-mediated inhibition of 53BP1 and RIF1. Together this blocks end resection and HR, and DNA is repaired by
the potentially mutagenic process of NHEJ, such is the case in BRCA1 mutant breast cancers (b). In the absence of both
BRCA1 and 53BP1 the barrier to end resection is removed and error-free HR can once more proceed via a CtIP-de‐
pendent mechanism. Therefore the status of 53BP1 in BRCA1 mutant tumours is pivotal for the regulation of HR (c).
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inhibits BRCA1 recruitment, while in G2/S RIF1 accumulation is inhibited by BRCA1-CtIP,
suggesting that RIF1 and BRCA1 form a cell cycle-regulated circuit to favour NHEJ in G1 and
HR in S/G2 [41].

Interestingly, loss of Ring finger Nucleotide Factor 168 (RNF168) which recruits both BRCA1
and 53BP1 to sites of DSBs seems to emulate the effects of 53BP1 loss, with depletion of RNF168
in BRCA1 deficient cells rescuing the homologous recombination defect. This study also
demonstrated that expression of a dominant negative form of 53BP1 is able to restore HR in
control cells but had no effect in RNF168 depleted cells, suggesting that 53BP1 and RNF168
inhibit HR through a similar mechanism [42].

7. BRCA1 in Rad51 loading

Another key role of BRCA1 in HR is in Rad51 loading which as discussed above is responsible
for homologous strand invasion which then allows DNA polymerase to repair DNA using the
sister chromatid as a template. BRCA1 has been reported to colocalise with Rad51 at nuclear
foci within S phase of the cell cycle. Additionally, BRCA1 and Rad51 physically interact
through regions within BRCA1 exon 11 [6, 43, 44]. Furthermore, depletion or mutation of
BRCA1 has been shown to result in loss of Rad51 foci formation following DNA damage
indicating that BRCA1 is required for Rad51 recruitment to DSB sites [27]. Following this, Sy
and colleagues demonstrated that the displacement of RPA and subsequent loading of Rad51
filaments to single stranded DNA was dependent on the interaction between BRCA1, BRCA2
and PALB2 [45]. PALB2 was first identified as a binding partner of BRCA2 and is involved in
the recruitment of BRCA2 to DSB sites but PALB2 was later shown to also interact with BRCA1
and this interaction is required for BRCA2-PALB2 localisation to sites of DNA damage.
Additionally, depletion of PALB2 results in deficient HR and a PALB2 mutant unable to bind
BRCA1 could not restore this repair defect in comparison to wildtype PALB2. This suggests
that PALB2 acts as a scaffold between BRCA1 and BRCA2 [45, 46]. Considering the many and
varied roles of BRCA1 in HR, it is therefore not surprising that defective HR is a characteristic
of BRCA1 deficient cells and as a consequence DNA damage is repaired via error-prone
mechanisms such as NHEJ resulting in a higher rate of genetic mutations which increases
susceptibility to cancer [47].

8. Single Strand Annealing (SSA)

In comparison to the extensively studied functions of BRCA1 in HR, relatively little is known
about the role of BRCA1 in the regulation of the SSA homology-directed repair pathway. Stark
et al demonstrated that mouse embryonic stem (ES) cells harbouring homozygous deletion of
BRCA1 exon 11 have decreased HR and SSA activity and the same effect was observed
following disruption of the BRCA1-binding region of BARD1. Expression of wildtype BRCA1
in the BRCA1 mutant HCC1937 cell line model was also shown to promote SSA, although a
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greater increase was observed in HR activity [48]. Although BRCA1 appears to positively
regulate both HR and SSA, BRCA2 and Rad51 have opposing effects on these two DSB repair
pathways, promoting HR while suppressing SSA. This suggests that BRCA1/BARD1 may
function upstream of the branch point between HR and SSA regulating a step common to both
pathways while BRCA2 and Rad51 act downstream of BRCA1 to inhibit SSA. Since BRCA1 is
known to promote end resection which is required for both HR and SSA this is a possible
mechanism by which BRCA1 augments both pathways. Furthermore, loss of the NHEJ factor
Ku70, which limits resection of DSB sites, was able to rescue the SSA defect caused by
disruption of BARD1, thus overcoming the barrier to resection and allowing SSA to proceed
[49]. In contrast to BRCA1 regulating HR and SSA via the same mechanism, a study which
analysed the effect of 29 different BRCA1 missense mutations on HR and SSA showed that
several mutants with normal HR activity were defective in SSA. Interestingly all of the mutants
showing differential regulation of the two pathways exhibited amino acid substitutions
between residues 90 and 191 [50]. Therefore, BRCA1 may also have an additional function in
the regulation of SSA that has yet to be discovered, possibly regulated by an undefined region
within its N-terminus. This is supported by the fact that loss of Ku70 only partially restores
SSA in BARD1-mutant cells suggesting BRCA1-BARD1 may also mediate SSA further down
the pathway, independent of end resection regulation [49].

9. Non-homologous end joining

As previously mentioned, DNA DSBs can be repaired by homology-directed repair pathways
or by NHEJ. However the significance of BRCA1 in the regulation of NHEJ is controversial
and early studies produced conflicting results. Snouwaert et al showed a decrease in HR and
an increase in NHEJ activity in mouse ES cells with homozygous deletion of BRCA1 between
residues 223 and 763 compared to wildtype cells, providing evidence that BRCA1 suppresses
NHEJ. Furthermore, expression of a BRCA1 transgene decreased NHEJ to normal levels in
these cells [51]. In direct contrast, Zhong et al demonstrated a reduction in NHEJ activity in
BRCA1 null mouse embryonic fibroblasts which could also be corrected by reintroduction of
BRCA1 [52]. Another study showed no difference in NHEJ in BRCA1 deficient human breast
tumour derived cells (HCC1937) compared to cell lines with wildtype BRCA1 [53]. More recent
work suggests that the initial discrepancies observed may reflect different functions of BRCA1
depending on cell cycle phase and also on the subtype of NHEJ examined. There are 2 main
subtypes of NHEJ – Ku80-dependent canonical NHEJ which is relatively precise and the
alternative NHEJ pathway which is Ku80 independent and involves microhomology-mediat‐
ed end joining (MMEJ) which is similar to SSA except MMEJ can anneal smaller homologous
sequences (5-25 bps), but like SSA, MMEJ is extremely mutagenic. In accordance with the role
of BRCA1 in tumour suppression, evidence suggests that ATM and Chk2 mediated phos‐
phorylation of BRCA1 promotes precise or canonical end-joining while suppressing the
mutagenic MMEJ [54, 55]. Additionally, the BRCA1-BACH1 complex is required for impeding
error-prone MMEJ with expression of a BACH1 mutant defective in BRCA1 binding resulting
in increased MMEJ activity [56].
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Another study investigated differences in BRCA1 regulation of NHEJ subtypes throughout
the cell cycle and interestingly BRCA1 was found to promote canonical NHEJ in G1 but not in
G2/S [57]. Furthermore, depletion of BRCA1 increased the number of deletions acquired
during NHEJ, confirming that BRCA1 favours precise NHEJ. BRCA1 was shown to interact
with the canonical NHEJ factor Ku80, specifically in G1 and this interaction may be critical for
stabilising Ku80 to sites of damage as ChIP assays show decreased Ku80 binding at I-Sce-
mediated DSB sites following treatment with BRCA1 siRNA. Thus the authors conclude that
BRCA1 may maintain genomic stability in G1 via promotion of precise end joining in addition
to promotion of error-free HR in S and G2 [57].

10. BRCA1 in interstrand crosslink repair

In addition to the repair of DNA DSBs, BRCA1 has also been implicated in the repair of
interstrand crosslinks (ICLs). DNA ICLs are caused endogenously by the by-products of lipid
peroxidation and exogenously by DNA crosslinking agents such as the platinum-containing
cisplatin and nitrogen mustard compound mitomycin C, commonly used for chemotherapy
in the treatment of cancer. ICLs are extremely deleterious lesions due to the covalent bonding
of DNA strands which inhibits strand separation and thus DNA replication and transcription.
The repair of ICLs can be a complex process and varies depending on the stage of the cell cycle
[58]. However, in brief, the presence of an ICL during DNA replication will lead to stalled
replication forks and repair of the lesion will then progress by the formation of incisions on
either side of the linked nucleotide via the action of NER endonucleases. Translesion synthesis
(TLS) polymerases allow bypass of the ICL site, generating a DSB, which can then be repaired
by HR. The FANC proteins have a major role in the repair of ICLs. FANC proteins are mutated
in Fanconi Anaemia (FA), a syndrome associated with bone marrow failure, developmental
defects and susceptibility to cancer. Activation of the FA pathway involves formation of a core
complex of eight FANC proteins which together with accessory proteins form a ubiquitin
ligase responsible for monoubiquitination of FANCD2 and FANCI which is essential for co-
ordinating the incision step of ICL repair [59]. Since ICLs are ultimately repaired by HR, in
general the functions of BRCA1 discussed above also apply to the repair of ICLs. The recruit‐
ment of BRCA1 in ICL-linked HR however, is dependent on FANC proteins since the BRCA1-
RAP80 complex, which modulates HR repair of ICLs, has been shown to bind to K63-linked
polyubiquitinated FANCG via the ubiquitin interacting motifs (UIMs) of RAP80 [58].

BRCA1 also regulates ICL repair independently of HR, evidenced by the observation that while
loss of 53BP1 restores HR defects in BRCA1-depleted cells, depletion of 53BP1 does not rescue
hypersensitivity of BRCA1 null cells to crosslinking agents [60]. Numerous reports suggest
loss of BRCA1 impedes the recruitment of the FANCD2 complex to the ICL, but has no effect
on the ubiquitination of FANCD2. Depletion of Ku70 rescues FANCD2 foci formation in
BRCA1Δ11/ Δ11 MEFs following cisplatin or MMC treatment and also decreases the hypersensi‐
tivity to these agents suggesting that BRCA1 may recruit or retain FANCD2 at sites of ICLs
via inhibition of Ku70/80 [60]. Recently, Long et al have reported another novel role of BRCA1
in ICL repair related to replication fork stalling. It has been shown that replication fork stalling
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first occurs approximately 20 bp from the site of the ICL at which point the CMG DNA
replicative helicase blocks extension of the leading strand and therefore needs to be removed
from the DNA to allow approach towards the ICL, which triggers activation of the FANC
pathway and thus ICL repair. Depletion of BRCA1 or defective BRCA1-BARD1 complex
formation inhibits CMG ‘unloading’ in response to ICLs but not during normal DNA replica‐
tion. As a result of BRCA1 loss, the extension of the leading strand towards the ICL was
impeded and a defect in the generation of incisions at the site of the ICL was observed.
Therefore localisation of the BRCA1-BARD1 complex is required at an early stage of ICL repair
in addition to its later role in HR [61].

11. BRCA1 and the cell cycle

Cell cycle checkpoints are essential for repair of damaged DNA as cell cycle arrest affords time
for the DNA to be repaired efficiently ensuring mutations or chromosomal aberrations are not
maintained or replicated leading to genomic instability. Cell cycle regulation is mainly
orchestrated by the balance of cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors.
However, many other factors are involved in mediating these cell cycle regulators and the
timely regulation of cell cycle checkpoints at different phases. Indeed, evidence exists of a role
for BRCA1 in the regulation of the G1/S, S and G2/M checkpoints. Initial studies focussed on
the role of BRCA1 in the intra-S and G2/M checkpoints, as the BRCA1 deficient cell line
HCC1937 also harbours mutations within p53, a master regulator of the G1/S checkpoint,
making it difficult to unravel the contribution of BRCA1 to this checkpoint in these cells.
However, these cells, which have a defective G1/S checkpoint, also exhibit defective S and G2/
M arrest following IR and both of these checkpoints are restored by expression of wildtype
BRCA1. While ATM-mediated phosphorylation of BRCA1 at Ser1423 is necessary for IR-
induced G2/M arrest, ATM-dependent phosphorylation of BRCA1 Ser1387 is required for S
phase arrest [62, 63]. Following this, another study using siRNA mediated depletion of BRCA1
found that the BRCA1/BARD1 heterodimer is required for G1/S checkpoint arrest following
IR induced DNA damage [64]. This study found that ATM dependent phosphorylation of
BRCA1 on serine 1423 and 1524 is required to allow BRCA1 to function as a scaffold, facilitating
the ATM dependent phosphorylation of p53 on Ser-15 thereby stabilising and activating p53
resulting in the transactivation of the cdk inhibitor p21 and activating the G1/S checkpoint. As
in HR where BRCA1 function depends on its binding partners, different BRCA1 complexes
regulate different cell cycle phases. BACH1 is activated in S phase and forms a complex with
BRCA1 and BRCA2 necessary for cells to progress from G1 to S phase [65], and BRCA1 and
TOPBP1 colocalise to foci specifically in S phase following treatment with different genotoxic
agents, namely hydroxyurea, UV and zeocin [66].

Interaction of BRCA1 with the phosphorylated form of BACH1 is also required for the G2/M
checkpoint as BACH1 depletion abolishes G2/M arrest following IR and while the expression
of wildtype BACH1 rescues this defect, the BACH1 S990A mutant, which is unable to bind
BRCA1, could not restore G2/M arrest [67]. BACH1 exerts cell cycle effects by binding to the
BRCT domains of BRCA1 but exon 11 of BRCA1 also appears to play a role in G2/M checkpoint
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activation as MEFs carrying homozygous BRCA1 exon 11 deletions display a defective G2/M
checkpoint [68]. A mechanism for BRCA1-regulated G2/M checkpoint arrest was postulated
by Yarden and colleagues who showed that in response to IR, ATM activates BRCA1 which
inhibits cdk1/cyclinB1 (responsible for G2 to M progression) via activation of Wee1 kinase
which antagonises cdk1/cyclinB1. This study also found that, following damage, BRCA1
activates Chk1 leading to inhibition of the cyclinB1 effector Cdc25c, ultimately resulting in G2/
M arrest [69]. This work has now been extended to show that BRCA1 E3 ligase activity may
regulate this signalling cascade since BRCA1-mediated ubiquitination leads to degradation of
Cdc25c and cyclinB1 thus arresting cells before progression into mitosis [70].

Other BRCA1-containing complexes have also been implicated in cell cycle regulation. BRCA1/
BARD1/MRN/CtIP is required for activation of the G2/M checkpoint with knockdown of
BRCA1 or CtIP leading to increased accumulation of cells in mitosis following IR [29].
Additionally, loss of RAP80 inhibits BRCA1 recruitment to DNA break sites, leading to
defective G2/M checkpoint arrest. RAP80 is likely to act upstream of BRCA1 which mediates
G2/M arrest partially via Chk1 activation. Therefore, it is not surprising that depletion of
RAP80 also results in decreased Chk1 phosphorylation [71], a finding which suggests that
RAP80 does indeed regulate the G2/M checkpoint via the same pathway as BRCA1.

12. Post-translational regulation of BRCA1 in the DNA damage response

Many new pathways involved in the regulation of BRCA1 in response to DNA damage have
recently emerged, including ubiquitination, SUMOylation and poly-ADP-ribosylation
(PARylation) signalling. However, one of the first recognised signalling pathways integral to
BRCA1 function in the DNA damage response was phosphorylation. In response to specific
types of cellular insults BRCA1 is phosphorylated at different residues by different PIKKs in
a cell cycle-dependent manner. Scully et al first demonstrated the phosphorylation of BRCA1
in response to DNA damage following observations of a mobility shift in BRCA1 gel migration.
The phosphorylation of BRCA1 was shown to occur specifically in S-phase but not in G1 [72].
The 3 major PIKKs which activate BRCA1 include ATR, which phosphorylates BRCA1
primarily at Ser1423 in response to UV, and ATM and Chk2 which phosphorylate BRCA1
following IR-induced DSBs, with ATM phosphorylating Ser1387, Ser1423 and Ser1524 and
Chk2 responsible for Ser988 phosphorylation [73-76]. Chk2-dependent BRCA1 phosphoryla‐
tion is directly involved in the regulation of HR with expression of the S988A BRCA1 mutant
in HCC1937 unable to restore HR activity in comparison to wild-type BRCA1. Similar effects
were observed following expression of a dominant negative Chk2 protein which inhibited
Chk2 kinase activity [77]. Phosphorylation of BRCA1 also allows formation of complexes with
other phosphorylated proteins through interaction with the BRCT domains of BRCA1. Indeed,
BRCA1s BRCT domains have been shown to be indispensable for the tumour suppressor
functions of BRCA1 and its ability to promote HR [18].

Over the past few years, much progress has been made on the role of ubiquitination in the
DNA damage response and DNA repair pathways. In 2007, a number of independent research
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groups identified RAP80 as an ubiquitin-binding protein that localises to DSBs following IR
and promotes HR mediated DSB repair [78]. Translocation of RAP80 to regions of damage is
dependent on 2 ubiquitin-interacting motifs (UIMs) within its N-terminus, which have specific
affinity for K63-linked polyubiquitin chains generated at DSBs. RAP80 also binds to the BRCT
domains of BRCA1 and loss of RAP80 results in loss of BRCA1 recruitment to sites of damage
thus RAP80 targets BRCA1 to ubiquitinated structures at DSBs. BRCA1 is recruited to sites of
DNA damage as part of the BRCA1-A complex which contains RAP80, ABRAXAS, BRCC36,
BRCC45, MERIT40 and BARD1 [79]. Formation of RAP80 and BRCA1 positive IRIF is de‐
pendent on MDC1 therefore interest developed in the upstream signalling controlling this
interaction. Phosphorylation of MDC1 by ATM was shown to recruit two ubiquitin E3 ligases,
RNF8 and RNF168 and these proteins were shown to be necessary for RAP80-BRCA1 locali‐
sation to DSBs via generation of ubiquitin chains on histone 2A, recruiting the ubiquitin-
binding protein RAP80 which binds to the K63 linked ubiquitin chains via it’s UIM domains
and recruits the rest of the BRCA1-A complex to DSBs (Figure 3). Other members of the BRCA1-
A complex such as MERIT40 and BRCC45 are thought to not only facilitate accumulation of
BRCA1 to sites of damage, but also stabilise and retain the binding of the BRCA1-A complex
to DSB sites [80]. Additionally, BRCC36, which is a zinc-dependent metalloprotease and JAMM
(JAB1/MPN/Mov34 metalloprotease) domain containing DUB with specific activity to K63-
linked polyubiquitin, also forms a cytoplasmic complex known as BRISC, which contains
BRCC36 and 45, MERIT40 and KIAA0157. Depletion of BRISC leads to an increase in BRCA1-
A complex formation at sites of DNA damage suggesting a balance exists between the 2
complexes [81].

Another post-translational mechanism, SUMOylation, has also been shown to have a role in
this signalling cascade and in localising BRCA1 to nuclear foci in response to IR. Small
Ubiquitin-like Modifier (SUMO) isoforms 1, 2 and 3, as well as the SUMO-conjugating enzyme
Ubc9, have all been shown to interact with BRCA1 in response to genotoxic stress. This
interaction is dependent on the PIAS family of SUMO E3 ligases, namely PIAS1 and PIAS4
which are also found in DNA damage induced foci and when depleted inhibit the localisation
of BRCA1 to γH2AX foci. The regulation of BRCA1 localisation by PIAS enzymes is thus
indirect and it has been shown that PIAS1 and 4 both regulate upstream factors with PIAS1
depletion showing diminished localisation of RAP80, and PIAS4 regulating RNF168, K63-
linked ubiquitination and RAP80 further up the damage signalling cascade [82, 83]. RAP80
contains a SUMO-interacting motif (SIM) as well as UIMs which mediate the interaction
between the BRCA1-A complex and SUMO [84]. RAP80 can thus bind ubiquitin and SUMO
simultaneously and both domains are required for RAP80 recruitment to DNA damage sites
[85] (Figure 3). A further ubiquitin E3 ligase RNF4, which ubiquitinates SUMO chains, has
been implicated in the recruitment of RAP80 and BRCA1 to DSBs and suggests that SUMOy‐
lation and ubiquitination act in concert in the recruitment of DNA repair factors to DSBs [84].

In 2013, a further post-translational modification, PARylation, was identified in the regulation
of BRCA1 recruitment to DNA break sites. γH2AX has a major role in BRCA1 recruitment to
foci in response to DNA damage but following the observation that γH2AX depletion inhibited
maintenance of BRCA1 at foci but did not inhibit the initial accumulation of BRCA1, Li et al
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postulated that γH2AX was responsible for stabilising BRCA1 at sites of damage but another
factor regulated its initial recruitment. This group then showed that the RING finger domain,
rather than the BRCT domain of BRCA1, was necessary for recruitment to DNA damage sites,
with the BRCT domains of BARD1 also required. Following DNA damage, PARylation is
induced and BARD1 was shown to interact with both PAR and the basic unit of PAR, ADP-
ribose, through its BRCT domain. BRCA1 and PAR also interact but this interaction is BARD1-
dependent. Moreover, BARD1 BRCT germline mutations identified in familial breast cancer
patients fail to bind PAR, suggesting this is an important step in the recruitment of BRCA1
and its tumour suppressive functions. In agreement, PARP inhibitors were then shown to
suppress early recruitment of BRCA1/BARD1 to DSBs [86].

13. The role of BRCA1 in transcription

The importance of BRCA1 in transcriptional regulation was highlighted by the discovery that
the C-terminal domain of BRCA1 forms a complex with RNA polymerase II via interaction
with RNA helicase A, which are both members of the core transcriptional machinery [87, 88].
Transcriptional regulation by BRCA1 can occur through either direct or indirect mechanisms.
Direct regulation involves BRCA1 binding to the promoter of the gene, however, as BRCA1

Figure 3. The Role of Post-translational Modifications in the Recruitment of BRCA1 to DNA DSBs. Following forma‐
tion of DSBs, ATM is activated and phosphorylates H2AX and MDC1 which stimulates RNF8 and RNF168 to generate
K63-linked polyubiquitin chains on histone 2A. The UIMs of RAP80 then bind to the polyubiquitin chains and recruit
BRCA1 and the rest of the BRCA1-A complex (ABRAXAS, BRCC36, BRCC45, MERIT40 and BARD1). PIAS1 and PIAS4
enzymes directly mediate BRCA1 SUMOylation, which is also required for BRCA1 localisation to DSBs and PIAS4 also
indirectly regulates SUMOylation via RNF168. Additionally, RAP80 SIMs bind SUMO and facilitate the SUMOlyation
of BRCA1.
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does not contain any sequence specific DNA binding domains, specific DNA-binding tran‐
scription factors are required to recruit BRCA1 to the promoter regions of target genes [89].
BRCA1 is therefore able to act as either a co-activator or co-repressor of transcription depend‐
ing on the transcription factor, and other members of the transcriptional complex, to which it
is bound. The functional outcome of BRCA1 transcriptional regulation is wide and varied
however many BRCA1 regulated genes play a role within the DNA damage response. For
example, BRCA1 binds to p53 on the promoter of many p53-regulated genes where it co-
activates their transcription. Intriguingly, BRCA1 was shown to selectively induce expression
of p53 target genes involved in DNA repair such as p53R2 and Cyclin G2, as opposed to pro-
apoptotic genes such as PIDD, PIG and KILLER/DR5. Additionally, BRCA1-mediated
transcriptional activation of p53 target genes appears to be particularly important for cell cycle
checkpoint control with BRCA1 also transactivating the p53 regulated genes 14-3-3σ and
GADD45 both of which are involved in G2/M arrest following DNA damage. BRCA1 also
interacts with c-Myc to form a transcriptional repressor complex. This complex binds to the
promoters of a large number of genes including basal genes such as psoriasin and p-cadherin
down-regulating gene expression [90]. This correlates with the low expression of BRCA1 in
basal-like breast cancer.

More recently a comprehensive study by Gorski et al employed microarray analysis to identify
almost 1,300 BRCA1-regulated genes in the MCF7 breast cancer cell line and also determined
by ChIP-ChIP that BRCA1 was bound directly to promoters of over 600 genes. However, the
majority of genes with BRCA1-bound promoters were not transcriptionally regulated by
BRCA1 in unperturbed cells although a number of these genes such as MMP3, USP32 and
CCL4L2 were commonly altered in response to DNA damaging agents. This implied a model
whereby BRCA1 forms an inactive complex on gene promoters in the normal cellular context
but in response to DNA damage can regulate the expression of genes involved in DNA repair
and/or other DNA damage response processes. This is supported by observations that siRNA
mediated knockdown of BRCA1 almost abolished the etoposide-induced activation of CCL4L2
transcription but had little effect on CCL4L2 mRNA expression in untreated cells [89].
Intriguingly, a different study showed that BRCA1 can negatively regulate its own expression
by binding to the BRCA1 promoter and inhibiting transcription. However, in response to DNA
damage, promoter binding may be inhibited releasing BRCA1 so it can be recruited to sites of
DNA damage. The authors suggest that loss of BRCA1 from the promoter then increases
BRCA1 transcription in order to replace BRCA1 protein consumed during DNA repair
although this hypothesis requires further validation [91].

BRCA1 can also indirectly regulate transcription by binding to chromatin remodelling proteins
such as the histone acetyltransferases (HATs) p300 and CBP [92] and the BRG1 and BRD7
subunits of the SWI/SNF chromatin remodelling complex which activates transcription by
allowing transcriptional machinery to access DNA. Additionally, BRCA1 can ubiquitinate
transcriptional preinitiation proteins which interferes with association of the transcriptional
complex and subsequently represses mRNA synthesis [93]. According to Park et al, BRCA1
also binds to the histone deacetylases HDAC1 and HDAC2 and leads to histone deacetylation
and transcriptional repression in a SUMO1-dependent manner. Following IR however,
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SUMO1 repression of BRCA1-mediated transcription was alleviated via release of HDAC1 at
BRCA1 bound promoters and this enhanced transcriptional activation [94]. BRCA1 mediated
transcription is also inhibited by interaction with heterochromatin protein 1γ (HP1γ). Similar
to the release of HDAC1 at BRCA1 regulated promoters, HP1γ is removed from the GADD45
promoter in response to etoposide treatment allowing BRCA1 to activate transcription.
HP1γ is also attributed a role in recovery from BRCA1-mediated transcription. Following
BRCA1 assembly at the promoter, HP1γ is then reassembled at the promoter and once again
represses BRCA1 transcription [95]. These studies also propose regulatory mechanisms
whereby BRCA1 differentially regulates genes in response to DNA damage.

14. BRCA1 in mRNA splicing

Our group recently characterised a novel function for BRCA1 in the regulation of pre-mRNA
splicing of specific DDR genes via an interaction with BCLAF1 following DNA damage [96].
Phospho-peptide pulldown assays carried out with peptides mimicking BRCA1 phosphory‐
lated at serine-1423, revealed that BRCA1 and BCLAF1 interact and further studies went on
to show that they only associate following treatment with DNA damaging agents. Further
functional assays showed that BCLAF1 depletion, similar to the effects of BRCA1 knockdown,
results in increased sensitivity to DNA damage, decreased DNA DSB repair capacity and
genomic instability. Furthermore, decreased levels of BCLAF1 failed to sensitise BRCA1
mutant cells to IR suggesting the function of BCLAF1 in DNA repair is dependent on BRCA1.

BCLAF1 was previously identified as a member of a spliceosome complex containing numer‐
ous mRNA processing factors. This prompted investigation of the interactions of BRCA1 and
BCLAF1 with proteins involved in mRNA splicing. While BCLAF1 is constitutively bound to
the core splicing factors PRP8, U2AF64, U2AF35 and SF3B1, BRCA1 binding was only observed
following DNA damage and the interaction was abolished when BCLAF1 was depleted.
Conversely, BRCA1 was shown to be constitutively bound to the promoters of a large subset
of genes (approx. 980) including a large group of DDR genes, such as ATRIP1, BACH1 and
EXO1, whereas BCLAF1 and U2AF65 only bound after DNA damage and this was dependent
on the presence of BRCA1. This supports a model whereby DNA damage induces BRCA1-
mediated recruitment of splicing factors to the promoters of DDR genes via interaction with
BCLAF1 and associated mRNA processing factors in order to promote mRNA splicing of these
genes. Accordingly, mRNA splicing of BRCA1/BCLAF1 regulated genes is up-regulated
following DNA damage, a process which is dependent on both BRCA1 and BCLAF1. Con‐
currently, protein levels of the target genes tested; ATRIP1, BACH1 and EXO1, were down-
regulated following BRCA1 or BCLAF1 depletion after DNA damage. The study then went
on to show that proteins encoded by targets of the BRCA1/BCLAF1 complex are turned over
more rapidly following DNA damage and that the BRCA1/BCLAF1 mediated up-regulated
splicing of these genes following DNA damage, functions to maintain the stability of these
proteins, presumably by promoting the processing and subsequent stability of their tran‐
scripts.
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This suggests that as well as playing a direct role in the repair of DNA DSBs, BRCA1 also
regulates the transcription and mRNA processing of a large group of genes, many of which
are involved in the DDR, including core DNA repair genes/proteins such as ATRIP, BACH1
and EXO1, in order to maintain the fidelity of the DNA damage response machinery.

15. BRCA1 and ubiquitination

The role of the E3 ubiquitin ligase activity of the BRCA1/BARD1 heterodimer in DNA repair
and indeed the biological significance of this function of BRCA1 in general remains elusive.
Ubiquitination involves the conjugation of the ubiquitin moiety to its target protein by the
formation of a peptide bond between the C-terminal glycine 76 residue of ubiquitin and a
lysine residue of the substrate [97]. Monoubiquitination can function as a form of post-
translation modification that alters the function of a protein or it can target proteins for
lysosomal degradation [98]. However, there is a further degree of complexity to the modifi‐
cation of proteins by ubiquitin owing to the fact that polyubiquitin chains can also be formed
and the signal transduced as a consequence depends not only on the number of ubiquitin
moieties added, but also on the lysine residue to which the ubiquitin molecule is attached.
Since ubiquitin contains 7 lysine residues, there are several conformations a ubiquitin chain
can exhibit, each conferring a unique signal to the conjugated substrate [99, 100]. For example,
a K48-linked chain consisting of at least 4 ubiquitin adducts typically targets the protein for
proteasomal degradation whereas a K63-linked chain may signal a conformational change in
protein structure, form a docking site or transduce a signal in another way. K63-linked
ubiquitin chains have been reported to be involved in DNA repair, activation of signalling
pathways and protein trafficking [97]. The conjugation of ubiquitin to ‘tag’ proteins involves
a cascade of 3 classes of enzymes; E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating
enzymes) and E3 (ubiquitin-protein ligase enzymes). It is generally accepted that E3 enzymes
such as BRCA1/BARD1 are responsible for specific substrate recognition of the protein [101].
In fundamental terms, the process of ubiquitination begins when E1 activates the C-terminal
glycine of ubiquitin in an ATP-dependent reaction. E2 transfers the activated ubiquitin from
E1 to E3, which is bound to the substrate protein. E3 then facilitates the formation of an
isopeptide bond between ubiquitin and an internal lysine residue of the substrate [102].

The BRCA1/BARD1 E3 ligase was first shown to polyubiquitinate in a K6-linked manner,
which does not target proteins for proteasomal degradation however, the biological signifi‐
cance of the K6-linked ubiquitination is unknown. Nevertheless, BRCA1/BARD1 has been
shown to autoubiquitinate itself via K6 linkage and this enhances the ubiquitin ligase activity
of the complex [103, 104]. Although most E3 ligases only conjugate with one E2 enzyme,
BRCA1/BARD1 has been shown to interact with at least 8 different E2 enzymes which
determine mono- or polyubiquitination and also the linkage specificity of the ubiquitin chains,
therefore BRCA1/BARD1 does not only induce the originally identified K6-linkage mediated
via the UbcH5c E2 enzyme [105]. One of the biggest challenges in the BRCA1 field has been
the identification of bona-fide BRCA1 ubiquitination targets. This is due to the fact that BRCA1/
BARD1 is a relatively promiscuous ubiquitin E3 ligase when studied in-vitro. As a result
numerous in-vitro ubiquitination targets have been identified, including H2AX, RNA Pol II,
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CtIP, ERα, γ-tubulin and NPM1, however few bona fide BRCA1/BARD1 substrates have been
confirmed in-vivo [106].

Nevertheless, a number of pathogenic mutations in the RING finger of BRCA1/BARD1 such
as C61G and C64G have been identified in cases of familial breast cancer suggesting the
ubiquitin ligase function of BRCA1/BARD1 may be important for its tumour suppressor
functions. Additionally, many of these studies have reported that these mutations result in
increased genomic instability, again suggesting that the ubiquitin ligase function of BRCA1 is
important for its role in tumour suppression. However, controversy exists over whether this
is the case or not. Many studies have employed cells expressing the synthetically engineered
RING finger mutation I26A. This mutation inhibits binding of BRCA1 to E2 enzymes but
doesn’t alter the formation of BRCA1/BARD1 complex therefore allowing separation of the
functions of BRCA1 due to ubiquitin ligase activity from those dependent on BARD1 associ‐
ation. Shakya et al have shown that in response to DNA damage, mice harbouring the BRCA1
I26A mutant exhibit similar phenotypes to mice expressing wildtype BRCA1 with comparable
levels of chromosomal abnormalities, mitomycin C resistance and ubiquitin foci at sites of
DNA damage [18]. Furthermore, Reid et al reported similar findings and extended their study
to show the I26A mutation had little effect on Rad51 recruitment at damage-induced foci or
on levels of HR activity. However, ubiquitin ligase deficient cells exhibited increased numbers
of chromosomal abnormalities following treatment with mitomycin C compared to BRCA1
wildtype ES cells, although the chromosomal aberrations were much more pronounced in cells
with deletions of BRCA1 exon 11 [107]. These studies suggest BRCA1 E3 ubiquitin ligase
activity is dispensable for its role in DNA damage repair.

On the contrary, several findings support a role for BRCA1-dependent ubiquitination in DNA
repair. First, CtIP ubiquitination was shown to be specifically dependent on BRCA1 following
DNA damage and this was required for localisation of CtIP to damage-induced foci and
association with chromatin as well as G2/M checkpoint regulation [108]. More recently,
Shabbeer et al have shown that while re-expression of wildtype BRCA1 rescues cell survival
in cell line models with decreased levels of functional BRCA1, introduction of the I26A BRCA1
mutant or the C61G RING domain mutation failed to increase cell survival. This study also
demonstrated BRCA1-dependent ubiquitination of cell cycle proteins Cyclin B and Cdc25c in
response to IR and HU, in a K48-linked manner via the E2 enzyme UbcH1. This tags these
proteins for proteasomal degradation which enables efficient G2/M arrest following DNA
damage [70]. Furthermore, mouse models have shown that introduction of the C61G mutation
increases genomic instability to a similar level of that observed in BRCA1 null mice and in-
vitro experiments showed low levels of HR activity in C61G mutant cells. However, in
comparison to BRCA1 null mice, mice expressing the BRCA1 C61G mutation displayed a
greater number of DNA damage-induced Rad51 foci and γH2AX-positive cells and were less
responsive to PARP inhibition indicative of residual HR activity despite loss of ubiquitin ligase
activity [109]. Thus, although there are conflicting reports on the role of the BRCA1/BARD1
ubiquitin E3 ligase in DNA repair pathways per se, evidence seems to suggest BRCA1/BARD1
E3 ligase activity may be important in HR and cell cycle checkpoint regulation after DNA
damage, but the significance of this function remains an active area of research.
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16. BRCA1 in tissue-specific tumourigenesis

As mentioned earlier, the majority of BRCA1 mutant tumours do not express the oestrogen
receptor. Despite this, the notion that oestrogen may contribute to the development of BRCA1-
related tumours is supported by the fact that the risk of breast cancer in BRCA1 mutation
carriers is reduced by approx. 50% following oophorectomy, which decreases circulating
oestrogen levels. Additionally, pregnancy has been reported to increase the risk of breast
cancer in BRCA1 carriers, in contrast to non-carriers for whom pregnancy is protective. This
suggests a potential ERα-independent mechanism by which oestrogen may promote tumouri‐
genesis. One such mechanism may be through the conversion of oestrogen to semi-quinone
and quinone forms during normal oestrogen metabolism, a process which also results in the
release of free radicals. Indeed, our group has recently demonstrated that exposure to the
predominant endogenous oestrogen, estradiol (E2), or its metabolites 2-hydroxyestradiol (2-
OHE2) or 4-hydroxyestradiol (4-OHE2) induces DNA DSBs in breast cell lines [110]. Addition‐
ally, depletion of BRCA1 leads to decreased repair of DSBs generated by treatment with
oestrogen metabolites and results in genomic instability marked by increased levels of
chromosomal aberrations. Interestingly, cells with decreased BRCA1 expression also exhibited
elevated numbers of DSBs at early time-points following 2-OHE2 and 4-OHE2 exposure which
could not be attributed to a repair defect. Since BRCA1 was previously shown to mediate the
transcriptional repression of the CYP1A1 gene, which encodes an enzyme responsible for
metabolising androgens to bioactive oestrogens, it appeared plausible that loss of BRCA1 may
enhance the production of oestrogen metabolites [111]. Indeed this study then went on to
confirm that BRCA1 loss leads to up-regulation of oestrogen metabolising enzymes CYP1A1
and CYP3A4 and down-regulated expression of the detoxification enzyme NQO1 leading to
an increase in the production of 2-OHE2 and 4-OHE2. Thus BRCA1 has a role in repressing the
production of oestrogen metabolite induced DSBs as well as mediating the repair of DSBs in
response to 2-OHE2 and 4-OHE2 exposure. This finding is particularly significant in explaining
why BRCA1 mutation carriers predominantly develop tumours in hormonal tissues such as
the breast or ovaries where levels of oestrogen are particularly high [110].

17. Role of BRCA2 in the DNA damage response

Like BRCA1, BRCA2 was identified as a breast/ovarian cancer susceptibility gene by linkage
analysis and to date approximately 2000 distinct BRCA2 mutations, polymorphisms or
variants have been catalogued in BIC. In comparison to BRCA1, much less is known regarding
the functions of BRCA2 owing mainly to the large size of the BRCA2 protein (3418 amino acids),
which has been difficult to express and/or purify, hampering functional studies. Additionally,
the structure of BRCA2 shares limited homology to other proteins and it’s most distinguishing
feature is the presence of conserved BRC repeats which are repeated regions of approximately
30 amino acids [112], the number of which varies by species. Human BRCA2 contains eight
BRC domains which can mediate interaction with 6-8 Rad51 molecules [113]. BRCA2 also
contains a DNA binding domain (DBD) capable of associating with both ssDNA and dsDNA
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and it was the combination of these two properties (Rad51 and DNA binding) that proposed
a role for BRCA2 in HR [112, 114, 115]. BRCA2 also contains an N-terminal region, which
interacts with PALB2 and is also involved in transcriptional activation and a C-terminal region
which can bind multimeric Rad51, in comparison to BRC domains which interact with
monomeric Rad51 [116] (Figure 4).

Figure 4. Structural Features and Binding Partners of BRCA2. Schematic diagram of BRCA2 and the functional do‐
mains mediating important protein interactions including; PALB2 binding to the RING domain, binding of Rad51
monomers and Rad51 filaments at BRC repeats 1-4 and 5-8 as well as polymeric Rad51 binding at the C-terminus,
which is dependent on phosphorylation of Serine3291 by CDK. Also shown are the DNA binding domains and DSS1
binding region which allow BRCA2 to recruit Rad51 to sites of RPA-coated ssDNA thereby promoting HR.

Early phenotypic studies demonstrated that BRCA2 depletion led to increased sensitivity to
DNA damaging agents, impaired homologous recombination and decreased formation of
Rad51 foci following DNA damage [117, 118]. More recent investigations, following the
purification of the full-length BRCA2 protein, have shed light on the mechanism of BRCA2 in
HR showing that BRCA2 is responsible for Rad51 nucleation and filament formation by
overcoming the inhibitory effects of RPA to allow Rad51 binding to ssDNA at DSB sites [119].
This process is enhanced by Deleted in Split Hand/Split Foot protein 1 (DSS1), which associates
with BRCA2 to promote Rad51 nucleofilament formation potentially through stabilisation of
the BRCA2 protein [120, 121]. Not only does BRCA2 mediate Rad51-ssDNA interaction but it
also inhibits Rad51 binding to dsDNA, which impedes Rad51-mediated DNA strand exchange.
Furthermore, BRCA2 can stabilise the Rad51 nucleoprotein filaments by blocking Rad51 ATP
hydrolysis, which maintains the active ATP-bound form of Rad51-ssDNA necessary for
efficient HR [114].

Carreira et al have demonstrated that the BRC repeats are required for the function of BRCA2
in Rad51-mediated HR and have investigated the functions of individual BRC domains. While
all BRC domains bind Rad51 and facilitate the formation of Rad51-ssDNA nucleofilaments,
they function via slightly different mechanisms, with BRC domains 5-8 having higher affinity
for Rad51-ssDNA filaments and BRC domains 1-4 preferentially binding free Rad51 as well as
mediating the inhibition of ATPase activity and preventing binding to dsDNA in order to
stimulate DNA strand exchange [122, 123]. In contrast to BRC binding of Rad51 monomers,
the C-terminal region of BRCA2 binds only oligomeric Rad51 and the role of this interaction
in HR is more controversial than that of BRC repeats. Specifically, serine 3291 of BRCA2 is
required for Rad51 association and this residue is phosphorylated by CDK in a cell cycle
dependent manner, which abolishes the BRCA2-Rad51 interaction. In response to DNA
damage, S3291 phosphorylation is reduced and the affinity of the BRCA2 C-terminal region
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for Rad51 is increased which stabilises the Rad51 nucleoprotein filament and may even protect
against nucleofilament disassembly. Thus a model is proposed in which IR stimulates ATM-
dependent inactivation of CDK, which maintains S3291 in a non-phosphorylated form,
promoting HR by allowing the formation and stabilisation of Rad51-ssDNA. On the contrary,
it has been suggested that S3291 phosphorylation, which is detected at the highest levels in
G2/M, could be involved in the termination of HR, therefore allowing progression into mitosis
following efficient repair in S and G2 [124-126].

The CAPAN-1 pancreatic cancer cell line is commonly used for studies of BRCA2 function, as
it contains a naturally occurring BRCA2 mutation in which one allele is lost and the other
contains the 6174delT frameshift mutation resulting in a truncated BRCA2 protein with loss
of 1416 amino acids at the C-terminus. Consequently, CAPAN-1 cells show defective Rad51
foci formation in response to DNA damage and thus decreased HR activity and hypersensi‐
tivity to PARP inhibitors [127] which are currently in clinical trials for the treatment of BRCA1/2
deficient tumours (discussed in next section). Intriguingly, Edwards et al were able to produce
PARPi resistant clones following treatment of CAPAN-1 cells with the PARPi KU0058948.
Edwards et al. then went on to show that many of these cell line clones contained further
deletions within the BRCA2 gene, resulting in restoration of the BRCA2 open reading frame.
These restored BRCA2 ORFs always contained the N-terminus of BRCA1 fused to the C-
terminus, however, they contained large deletions of other BRCA2 regions thought to be
functionally important such as the BRC repeats and the DBD. Despite the loss of these domains,
the PARPi resistant clones regained the ability to localise Rad51 to nuclear foci and to repair
cells by HR [128]. This adds confusion to the significance of specific BRCA2 regions and
suggests possible redundancy of BRCA2 domains. Similarly, Siuad and colleagues demon‐
strated that deletion of the entire BRCA2 DBD had minimal effects on HR providing PALB2
was present. However, when PALB2 was not bound, mutation of the DBD significantly
abrogated HR. Additionally, mutation of the DSS1 binding region within the DBD also
decreased HR despite tolerance of the DBD deletion. Additionally “micro-BRCA2” constructs
less than 20% of full length BRCA2 were also sufficient for HR providing the C-terminus was
intact [116]. Together these studies suggest plasticity of the BRCA2 protein in enhancing HR
and also indicate the functional importance of the C-terminal region of the protein. This is in
contrast to a number of other studies which claim the BRCA2 C-terminus may be dispensable
for HR, therefore the significance of BRCA2 domains in HR requires further clarity [129, 130].

In addition to its role in HR, BRCA2 also maintains genomic integrity by preventing the Mre11
mediated degradation of stalled replication forks. A recent study conducted by Schlacher et
al confirmed in a number of mammalian cell lines that the absence of BRCA2 led to shortened
nascent DNA strands at stalled replication forks in response to hydroxyurea (HU). Cells with
mutations in the C-terminal Rad51 binding region of BRCA2 were defective in protecting
nascent DNA strands from Mre11 mediated fork degradation thus stabilisation of Rad51 by
the C-terminal region of BRCA2 is essential in the maintenance of stalled replication fork
stability. Importantly, degradation of stalled replication forks due to loss of BRCA2 had little
effect on cell survival but significantly increased chromosomal aberrations, indicating another
mechanism whereby BRCA2 maintains genomic stability. This finding also has clinical
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implications as drugs which elicit replication fork stalling such as HU may actually increase
the mutagenic potential of BRCA2 deficient cells and thus may be contraindicated in these
patients [129-131].

BRCA2 can also function independently of Rad51 to promote genomic stability through a
role in the maintenance of G2/M checkpoint arrest after DNA damage. Depletion of BRCA2
or  PALB2  leads  to  premature  recovery  of  the  G2/M  checkpoint  via  Aurora  A/PLK1
activation, causing unrepaired cells to enter mitosis. Thus, BRCA2 and PALB2 halt activation
of Aurora A/BORA/PLK1 until DNA damage is repaired and it is appropriate for cell cycle
progression to occur [132]. A role for BRCA2 in transcriptional regulation and chromatin
remodelling has also been reported. In 1997, Milner and colleagues showed that a region
of  BRCA2  exon  3  fused  to  the  GAL4  DNA  binding  domain  stimulated  transcriptional
activity in U2OS cells [133].  It  was later demonstrated that BRCA2 coactivates androgen
receptor  (AR)  mediated  transcription  via  binding  to  GRIP1  and  P/CAF1  both  of  which
possess histone acetyltransferase activity, also suggesting a role for BRCA2 in chromatin
modulation.  AR  signalling  is  anti-proliferative  and  it  was  therefore  postulated  that
decreased AR-mediated transcription following loss of BRCA2 may contribute to tumouri‐
genesis in BRCA2-linked cancer [134]. On the contrary, the nuclear protein EMSY binds to
exon 3 of BRCA2 and silences the transcriptional activation function of BRCA2. EMSY also
associates with two additional chromatin remodelling proteins, HP1β and BS69 and localises
to  sites  of  DNA  repair,  potentially  implicating  BRCA2  in  the  modulation  of  access  to
chromatin during repair. EMSY is overexpressed in a number of sporadic breast and ovarian
cancer  cases  and  it  has  been  postulated  that  increased  EMSY  expression  may  emulate
BRCA2 mutant familial cancers but this requires further validation [135].

As mentioned earlier another BRCA2 interacting protein, PALB2, is an important mediator of
BRCA2 function within HR mediated DSB repair. PALB2 was first identified as a nuclear
interactor of BRCA2 following mass spectrometric analysis of protein bands immunoprecipi‐
tated in HeLa lysates using a BRCA2 antibody [136]. PALB2 is functionally similar to BRCA2
in several ways. Biallelic mutations in both BRCA2/FANCD1 and PALB2/FANCN have been
identified as the cause of Fanconi Anaemia complementation groups D1 and FA-N, respec‐
tively. There are now 13 different subtypes of FA attributed to mutations in 12 unique genes
but the BRCA2 and PALB2 related FA groups differ from the other identified subgroups,
exhibiting a more severe phenotype and increased incidence of solid tumours such as Wilms
tumours and medulloblastomas at an early age, suggesting a possible common functionality
[137]. Indeed, PALB2 colocalises with BRCA2 in nuclear DNA repair foci and depletion of
PALB2 leads to decreased Rad51 localisation to foci, abrogated HR activity and increased
sensitivity to the DNA crosslinkers such as MMC [136]. Additionally, 3 of 8 mutations within
the PALB2-binding N-terminal region of BRCA2 were shown to disrupt the BRCA2-PALB2
interaction and only these 3 mutations exhibited defective HR when introduced into BRCA2
deficient V-C8 cells [138]. As discussed earlier, PALB2 and BRCA2 recruit BRCA1 to sites of
DSBs and promote Rad51 loading and HR. However, the BRCA2/PALB2 complex has also
been shown to interact with DNA polymerase η at DNA DBSs induced by collapsed replication
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forks and this complex is required for completing efficient HR via initiation of DNA synthesis
following Rad51-dependent formation of a D-loop structure [139].

Additionally, mutations within PALB2 itself have now been identified in 0.4 - 4.8% of familial
breast cancer patients depending on the population examined [140, 141]. Initial studies
estimated that pathogenic PALB2 mutations increase breast cancer risk by ~2.3 fold [142, 143].
However, subsequent analysis of PALB2 mutation carriers estimate that the relative breast
cancer risk is approximately 17.6 for 20 to 39 year olds and 8.7 for mutation carriers between
40 and 79 years. The same study found PALB2 mutation carriers with no family history had a
33% risk of breast cancer by 70 years of age whereas two or more cases of early onset breast
cancer amongst first degree relatives increased this risk to 58%, comparable to the risk
associated with BRCA2 mutation [144]. Therefore, PALB2 is now considered a bona-fide breast
cancer susceptibility gene.

18. Clinical and therapeutic implications of BRCA1/2 dysfunction

As this chapter reveals, BRCA1 and BRCA2 are involved in the regulation of various DNA
damage response and DNA repair pathways at the cellular level, but what are the clinical
implications of this? The majority of BRCA1 mutant tumours are of triple negative breast
cancer subtype (75%), present at young age (less than 50 years) and typically have a poor
prognosis due to lack of targetable receptors. BRCA1 dysfunction has also been noted in over
30% of sporadic breast and ovarian cancers marked by low expression of BRCA1. On the
contrary, BRCA2 mutant tumours are normally ERα positive. Although the DNA repair
defects in BRCA1/2 mutation or dysfunction increase genomic instability and are associated
with breast and ovarian cancer susceptibility, the same repair defect may also be exploited in
the treatment of BRCA1/2-related cancers. Breast and ovarian cancer patients harbouring
BRCA1/2 mutations are highly sensitive to treatment with platinum compounds, such as
cisplatin and carboplatin, as well as alkylating agents as these agents cause ICLs, which are
normally repaired by BRCA-dependent HR. On the other hand, BRCA1 mutant tumours are
relatively resistant to treatment with taxanes and investigations in mouse models have
suggested this may be due to an up-regulation of the drug efflux transporter P-gP, although
this is yet to be confirmed in human BRCA1-mutant tumours [145-147]. Based on this it is clear
that knowledge of the BRCA status of a tumour may be used to inform treatment regimes.

While platinum agents are relatively effective in treating BRCA-related cancer cells, they
also  cause  a  high  level  of  toxicity  in  normal  cells,  resulting  in  severe  side  effects  and
intolerance  in  many  patients.  Thus  the  identification  of  PARP  inhibitors  as  a  potential
treatment specifically targeting BRCA deficient cells was welcomed [148-150]. Poly(ADP-
ribose) polymerase (PARP) is an enzyme responsible for catalysing the transfer of ADP-
ribose to target proteins, including itself and many histone proteins, at single strand break
sites  within  DNA.  Poly-ADP-ribosylated  (PARylated)  proteins  form  docking  sites  for  a
number of BER proteins such as XRCC1, DNA ligase III and DNA polymerase β thereby
mediating their recruitment to sites of damage [151]. Therefore, when PARP is inhibited,
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SSBs are unrepaired which results  in stalled replication forks during S-phase of  the cell
cycle. As mentioned above the rescue of stalled forks requires the HR machinery includ‐
ing BRCA1 and BRCA2. Because of this,  inhibition of PARP in the absence of  BRCA1/2
leads to  accumulation of  DNA DSBs during S-phase  (due to  collapse of  stalled replica‐
tion forks), resulting in synthetic lethality of these cells. It was therefore initially thought
the effectiveness of PARPi’s in BRCA-associated cancer was due to the synthetic lethality
caused by the lack of HR to repair excessive damage caused by loss of PARP. According‐
ly,  PARP  inhibitors  have  been  well  tolerated  because  normal  cells  with  at  least  one
functional  allele  of  BRCA1/2  can  overcome  the  effects  of  PARP  inhibition  [152].  Other
mechanisms of action for the effectiveness of PARP inhibitors have since been demonstrat‐
ed.  For  example,  PARP inhibition  has  been  shown to  increase  mutagenic  NHEJ  in  HR
deficient cells via a DNA-PK-dependent pathway, with inhibition of various NHEJ factors
able to abrogate sensitivity to PARPi in cells lacking BRCA1, BRCA2 or ATM. Based on
this, it has been suggested that up-regulation of the NHEJ pathway may mediate cytotox‐
icity  of  PARPi  in  an  HR-deficient  setting  [153].  Another  model  of  sensitivity  to  PARP
inhibition involves trapping PARP1 and PARP2 on the damaged DNA causing cytotoxic
lesions  that  cannot  be  repaired in  the  absence  of  an  efficient  HR pathway.  PARP-DNA
lesions had a greater effect on cell viability than the accumulation of SSBs due to inactiva‐
tion of  PARP suggesting this  may be  the  primary mechanism of  cell  death in  HR-defi‐
cient cells following PARP inhibition [154].

Phase I and II clinical trials treating BRCA mutant patients with the PARPi olaparib have in
general been successful with one study showing clinical benefit in 12 out of 19 patients with
BRCA-related breast, ovarian or prostate cancer [155, 156]. However, the progression of PARP
inhibitors into the clinic suffered a setback in 2011 when Phase III trials investigating the use
of iniparib in TNBC failed to prolong the survival of study participants [157]. Although
numerous studies have since confirmed that iniparib did not actually inhibit PARP activity
and had a different mechanism of action from the other PARP inhibitors currently in trials, the
failure of iniparib did hamper the advancement of PARP inhibitors [158, 159]. Nevertheless,
Phase III clinical trials are now underway to determine whether PARP inhibitors should be
approved in a combination regime with platinum agents or even as single agents for the
treatment of BRCA deficient breast and ovarian cancer patients. There are also trials underway
in other cancer types with mutations or dysfunction of DNA repair genes. Thus it is hoped
that PARP inhibitors will not only be an effective treatment for BRCA-linked breast and
ovarian cancers but also for other cancer types with defective HR pathways [160].

19. Conclusion

In conclusion, BRCA1 and BRCA2 both have essential roles in numerous DNA repair pathways
and the importance of efficient DNA repair mechanisms is illustrated by the dysfunctional
repair observed when BRCA1 or BRCA2 are mutated leading to genomic instability and thus
susceptibility to breast and ovarian cancer. While BRCA1 is a multifunctional protein media‐
ting HR, NHEJ, SSA, ICL repair and cell cycle regulation via a variety of mechanisms including

The BRCA1 and BRCA2 Breast and Ovarian Cancer Susceptibility Genes — Implications for DNA Damage…
http://dx.doi.org/10.5772/59996

241



transcriptional regulation, ubiquitination and mRNA splicing, the role of BRCA2 is more
straightforward, facilitating Rad51 loading to ssDNA to promote HR as well as protecting
stalled replication forks from degradation. Different binding partners of both proteins can
modulate their function in repair pathways and therefore the identification of novel interactors
of BRCA1 and BRCA2 is likely to shed further light on their mechanism of action. Additionally,
the identification of these interactors may identify novel therapeutic targets for the treatment
of BRCA-associated breast and ovarian cancers. Furthermore, the regulation of BRCA1 in
response to DNA damage is becoming increasingly complex as more signalling pathways such
as SUMOylation and PARylation have been shown to mediate recruitment of BRCA1 to DSBs
with the intricate control of BRCA1 potentially reflecting it’s prominent and varied role in
DNA repair. Recent studies have also demonstrated the significance of specific regions of
BRCA1 and BRCA2 in mediating different repair functions and therefore it is likely that not
all cancer-associated mutations within these genes affect repair in the same way and further
investigation of the role of different mutations may be useful, particularly in the case of BRCA2
where PARPi resistant clones have arisen still harbouring BRCA2 mutations albeit different
from the original BRCA2 mutation. However, in general PARP inhibitors so far appear
promising for the treatment of some BRCA1/2 mutant tumours and provide an example of
how DNA repair defects, normally harmful to the cell, may actually be utilised for treatment
benefit. Overall, BRCA1/2 mutations lead to highly dysfunctional DNA repair pathways, the
catastrophic effects of which are revealed by phenotypic investigations demonstrating
accumulation of genetic mutations and chromosomal instability, ultimately predisposing to
cancer.
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