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1. Introduction

The aim of this chapter is to provide an overview of the air pollution generated by diesel
engines of the ocean-going ships and the technologies as well as methodologies available to
reduce these emissions. This chapter begins with general significant information of the air
pollutant emission from ships followed by a summary of the International Maritime Organi‐
zation (IMO) regulatory MARPOL Annex VI being developed to control marine shipping
emissions as well as information on the various types of the ocean-going ships and their prime
movers with particular emphasis on marine diesel engines as sources of air pollution from
ships. For better understanding of the formation of air pollutants from marine diesel engines,
authors gave a brief overview of the working principles of marine diesel engines as well as
their combustion process and chemistry of the pollutant formation during that process. Finally,
the chapter concludes with an analysis of several control methods that can effectively reduce
harmful pollutant emissions from marine diesel engines.

Climate change on Earth is one of the largest civilised problems at the beginning of the twenty-
first century. Anthropogenic impact on the Earth’s climate became one of the crucial environ‐
mental issues of modern civilisation in the late twentieth century. Therefore, nowadays the
ecology and preservation of human environment have become two of the very important
human activities all over the world. Besides primary pollution from the land, nowadays
attention is being paid to the pollution from the ships. In recent decades, shipping industry
and maritime traffic have rapidly developed. From the economic point of view, this trend,
which continues today, has a very positive impact on economic development but on the other
hand, a very negative impact on the environment in terms of air pollution. Exhaust gases from
marine diesel engines are the primary source of emissions from ships and contribute signifi‐
cantly to environmental pollution. Ocean-going ships are the major contributors to global
emissions of several hazardous air pollutants such as nitrogen oxides (NOx), sulphur oxide
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(SOx), fine particulate matter (PM), hydrocarbons (HCs), carbon monoxide (CO) and green‐
house gas carbon dioxide (CO2).

The presence of these pollutants has local and global impact. Impacts on local (or regional) air
quality are mainly linked to pollutants such as PM, NOx and sulphur, while CO2 has a global
impact on climate [1]. The amount of gases emitted from marine engines into the atmosphere
is directly related to the total fuel oil consumption. While pollutant emissions from land-based
sources are gradually decreasing, those from shipping show a continuous increase. It is
estimated that by 2020, the emissions NOx and SOx from international shipping around
Europe are expected to equal or even surpass the total emissions from all land-based mobile,
stationary and other sources in the 25 EU member states combined (see Figure 1). It should be
noted that these figures refer only to ships in the international trade and do not include
emissions generated from shipping in countries’ internal waterways or from ships plying
harbours in the same country, which are given in the domestic statistics of each country [2].
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Figure 1. Emissions NOx (a) and SOx (b) 1990–2030 from land-based sources and international shipping

It has been estimated that about 90 % of the total sulphur dioxide (SO2) and NOx emissions
from ships in the North Sea, including the English Channel, originate from a zone of approx‐
imately 50 nautical miles from the coast line. International shipping was estimated to be a
source of 97 % of the total SO2 and NOx emissions in the North Sea within a distance of 100
nautical miles from the seaboard, as in [3]. The emissions of sulphur dioxide (SO2), particulate
matter (PM) and greenhouse gases (GHGs) from global shipping were increased from 585 to
1096 million tons between 1990 and 2007. The CO2 emissions from international shipping are
estimated at 943.5 million tons for the year 2007 and CO2 emissions from global shipping are
about 1 billion tons for the year 2006. International shipping is responsible for 3 % of global
CO2 emissions as in [4].

2. International regulation concerning air pollution from merchant
shipping

Regulations concerning air pollution from merchant shipping are developed at the global level.
Because shipping is inherently international, it is vital that shipping is subjected to uniform
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regulations on issues such as air emissions from ships. The shipping industry is principally
regulated by the International Maritime Organization (IMO), which is a UN agency based in
London and responsible for the safety of life at sea and the protection of the marine environ‐
ment. IMO ship pollution rules are contained in the ‘International Convention on the Preven‐
tion of Pollution from Ships’ known as MARPOL 73/78, which represents the first set of
regulations on marine exhaust emissions. The original MARPOL Convention was signed on
17 February 1973, but did not come into force. The current Convention is a combination of the
1973 Convention and the 1978 Protocol. MARPOL73/78 contains 6 annexes concerned with
preventing different forms of marine pollution from ships:

• Annex I deals with regulations for the prevention of pollution by oil.

• Annex II details the discharge criteria and measures for the control of pollution by noxious
liquid substances carried in bulk.

• Annex III contains general requirements for issuing standards on packing, marking and
labelling.

• Annex IV contains requirements to control pollution of the sea by sewage.

• Annex V deals with different types of garbage, including plastics, and specifies the distances.

• Annex VI deals with gaseous emissions of ship engines and installations: the Convention
regulates sulphur oxide, nitrogen oxide and particulate matter emissions from ship exhausts
and prohibits deliberate emissions of ozone-depleting substances. It also contains provisions
allowing for the creation of special Emission Control Areas (ECA) with even more stringent
controls on air pollutant emissions. Annex VI also forbids any (deliberate) emission of an
ozone-depleting substance, such as halons and chlorofluorocarbons (CFCs) as well as any
new installation of equipment using these gases. Annex VI entered into force on 19 May
2005 and sets limits on nitrogen oxides, sulphur oxides and volatile organic compound
(VOC) emissions from ship exhausts and prohibits deliberate emissions of ozone-depleting
substances [5]. Annex VI regulation 13, nitrogen oxides (NOx), applies to diesel engines over
130 kW installed on ships built on or after 1 January 2000, excluding engines for emergency
purposes such as emergency generator engine, lifeboat engine, etc.

Three different levels (tiers) of NOx control apply based on the ship construction date as
follows:

• Tier 1 entered into force in 2005 and applies to marine diesel engines installed in ships
constructed on or after 1 January 2000 and prior to 1 January 2011.

• Tier 2 entered into force in 1 January 2011 and replaced the Tier 1 NOx emission standard
globally. It applies globally for new marine diesel engines installed in ships constructed on
1 January 2011 or later. Tier 2 NOx emission levels correspond to about 20 % reduction from
the Tier 1 NOx emission standard. Tier 2 is applicable outside the Tier 3 designated Emission
Control Areas (ECA).1

• Tier 3 will enter into force in the year 2016 and it will by then apply for new marine diesel
engines > 130 kW installed in ships constructed on 1 January 2016 or later when operating
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inside the ECA. The Tier 3 NOx emission level corresponds to an 80 % reduction from the
Tier 1 standard. The NOx emission limits are expressed as dependent on engine speed (n)
in revolution per minute (RPM). These are shown in Table 1 and Figure 2 [6,7].

Tier Effective date NOx limit (g/kWh)

n < 130 130 < n < 2000 n > 2000

Tier I 2000 17 45 n-0,2 9,8

Tier II 2011 14,4 44 n-0,2 7.7

Tier III 2016 3,4 9 n-0,2 1,96

Table 1. NOX limits according to MARPOL Annex VI

For engines with an engine speed lower than 130 RPM, the Tier III level is 3.4 g/kWh. When
operating outside an ECA, the engine must meet the Tier II limit of 14.4 g/kWh. Engines with
an engine speed higher than 130 RPM must meet even lower limits (see Table 1 and Figure 2).
Any abatement technology reducing the NOx emission to the required level can be accepted.

Furthermore, MARPOL Annex VI has set a maximum global fuel sulphur limit of currently
3,5 % in weight (from 1 January 2012) for any fuel used on board a ship. Annex VI also contains
provisions allowing for special SOx Emission Control Areas (ECA) to be established with more
stringent controls on sulphur emissions. In an ECA, the sulphur content of fuel oil used on
board a ship must currently not exceed 1 % in weight. The MARPOL Annex VI has undertaken
a review with the intention to further reduce emissions from ships. The current and upcoming
limits for future fuel oil sulphur contents are presented in Table 2 and Figure 2 [6,7].

Fuel sulphur cap Area Date of implementation

Max. 1 % S in fuel ECA 1 July 2010

Max. 3,5 % S in fuel Globally outside ECA 1 January 2012

Max. 0,1 % S in fuel ECA 1 January 2015

Max. 0,5 % S in fuel Globally outside ECA 1 January 2020

Table 2. Sulphur limits in fuel according to MARPOL Annex VI

The rules of SOx apply to all ships, no matter the date of ship construction. Although the SOx
requirements can be met by using a low-sulphur fuel, the regulation allows alternative
methods to reduce the emissions of SOx to an equivalent level.

1 Designated Emission Control Areas (ECA) that are defined by the IMO currently comprise the Baltic Sea, the North
Sea, the English Channel, the US Caribbean Sea and the area outside North America (200 nautical miles – see Figure 3)
The first sulphur Emission Control Area (ECA) was established in the Baltic and came into force internationally on 19
May 2005, and all ships were required to either use the 1.5 % low-sulphur fuel or fit an exhaust gas cleaning system as
required by regulation 14 of Annex VI 12 months from this date which was 19 May 2006.
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Figure 3. Existing Emission Control Areas as per MARPOL Annex VI (source: www.marlink.com)
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The sulphur ECA limit which entered into force in 1 January 2015 can be met using a low-
sulphur fuel with sulphur below 0.1 %. The global limit, outside sulphur ECA, can be met
using fuel with sulphur content below 0.5 %, which will be required from 2020. The date of
the global limit reduction may be changed to 2025 as a result of a feasibility review to be
conducted no later than 2018 (see Figure 2).

In order to comply with the requirements of Regulation 14 of MARPOL, the burning of low-
sulphur fuel oils (LSFOs) was introduced. There is also an EU regulative about the sulphur
content in marine gas oil. Namely, in accordance with EU’s marine fuel sulphur directive
(1999/32/EG, Article 4 with amendment as per directive 2005/33/EC), the sulphur content in
marine gas oil within the territorial waters of an EU member state may not exceed 0.1 % by
weight. This applies to all ships regardless of flag. As of 1 January 2010, the sulphur content
of any marine fuels may never exceed 0.1 % by weight for ships in port with the exception of
short stays in port (up to 2 h).

For ships continuously operating on low-sulphur fuel oil and for those that may be fitted with
an exhaust cleaning system, there is no issue. However, for ships which burn heavy fuel oil
with 3.5 % sulphur content and are not equipped with scrubbing equipment, the problem of
compliance is much greater as large quantities of fuel are being mixed during the oil change‐
over to low-sulphur fuel oil. MARPOL Annex VI Regulation 14 requires those ships using
separate low-sulphur fuel to comply with this regulation and in entering or leaving an
Emission Control Area, shall carry a written procedure showing how the fuel oil changeover
is to be done, allowing sufficient time for the fuel oil service system to fully flushed out all fuel
oils exceeding the applicable sulphur content prior to entry into a sulphur Emission Control
Area. The volume of low-sulphur fuel oils in each tank as well as the date, time and position
of the ship when any fuel oil changeover operation is completed prior to the entry into an ECA
or commenced after exit from such an area shall be recorded in such logbook as prescribed by
the Annex VI Regulation.

Furthermore,  ships  are  also  an  important  source  of  greenhouse  gas  (GHG)  pollutants.
According to the Green House Gas study by the IMO consensus,  international shipping
emitted 843 million metric tonnes of carbon dioxide, 2.7 % of the global CO2 emissions in
2007. Including domestic shipping and fishing ships larger than 100 gross tonnes (GT),2 the
amount would increase to 1.019 billion tonnes, i.e. 3.3 % of the global CO2  emissions. At
the present trend, this percentage could go two or three times higher from the present by
2050 emissions [8, 9].

In order to control this CO2 emission from shipping, the first formal CO2 control regulations
were adopted by the IMO at the 62nd session of the Marine Environment Protection Committee
(MEPC) in July 2011. The amendments to MARPOL Annex VI included the addition of Chapter
4 on regulations on energy efficiency for ships to make mandatory the Energy Efficiency
Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP)

2 Gross tonnage (GT) determined under the IMO 1969 Tonnage Convention represent the total volume of of ship’s
enclosed  spaces  measured  in  register  tonne  (RT)  where  1RT=100  f3  or  2,83  m3,  conversely.  Net  tonnage  (NT)
determined under the IMO 1969 Tonnage Convention represents the volume of cargo spaces (cargo holds and cabins)
in register tonne (RT).
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for all ships. The regulations apply to all ships of 400 GT and above and are entered into force
in 1 January 2013.

The basic formulation of EEDI is based on the ratio of total CO2 emission per tonne mile. As
CO2 depends upon fuel consumption and fuel consumption depends upon the total power
requirements, eventually this EEDI formulation has certain impact on ship design parameters
and hydrodynamics. The SEEMP establishes a mechanism for a shipping company and a ship
to improve the energy efficiency of ship operations. The SEEMP provides an approach for
monitoring ship and fleet efficiency performance over time using. The results from the study
that IMO ordered from Lloyd’s Register and Det Norske Veritas to estimate the impact of the
new requirements show that the EEDI will, as new ships are built, gradually reduce the
emissions from the world fleet with 3 % in 2020, 13 % in 2030 and 30 % in 2050. The SEEMP
will not directly mandate an emission reduction, but by increased awareness of costs and
reduction potentials, the study estimated the reduction to be between 5 and 10 % from 2015
onwards [9,10].

3. Sea ship classification and quantification

As per rules of the Shipping Classification Societies, ship is defined as ‘a floating unit intended
for sea-going service with length greater than 12 meters and with GT greater than 15, or which
carries more than 12 passengers. The present definition does not apply to ships of war and
troopships’. Marine ocean-going ships are generally very large ships designed for deepwater
navigation. Depending on the nature of their cargo, ships can be divided into different
categories, classes and types. A majority of these ships can be classified as one of the following:
tanker, bulk carrier, container ship, ro-ro ship, general cargo ship, reefer ship and passenger
ship. There are also smaller ship types, which are not included in the largest categories of ship,
as fishing ships intended and equipped for fishing or exploiting other living resources of the
sea; tugs, a ship specially constructed and equipped for towing and/or rescuing and salvage
of ships or other floating units; ships used by authorities which include the following types:
pilot boats, rescue ships, police boats, custom boats, etc.; training ships provided for training
of marine personnel gaining training and practical marine experience to develop seafaring
skills suitable for a professional career at sea and provided with special equipment and
arrangements suitable for that purpose (teaching rooms, accommodation spaces for teachers
and trainees, etc.); research ship, a ship without cargo spaces, engaged in scientific research,
noncommercial expeditions and surveys, carrying scientists, technicians and members of
expeditions, and provided with special equipment and arrangements suitable for that purpose
(i.e. laboratories, accommodation for research personnel, etc.); supply ship, a ship mainly
intended and equipped for the carriage of special personnel, special materials and equipment
which are used to provide facilities to offshore units and other marine installations, as well as
to provide assistance in performing special activities; and icebreakers and recreational ships
such as yachts classified as recreational craft for personal or commercial use, having hull length
greater than 12 m, having facilities and accommodation for extended navigation, authorised
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to carry not more than 12 passengers, excluding crew. The following is a brief description of
the characteristics of the main types of ocean-going ships:

Tanker is a merchant ship designed to transport liquids or gases in bulk. The major types of
tanker ship include the oil tanker, the chemical tanker and gas carrier.

Oil tanker is a ship which is constructed primarily to carry oil in bulk and comes in two basic
types: the crude carrier, which carries crude oil, and the clean product tanker, which carries
the refined products, such as petrol, gasolene, aviation fuel, kerosene and paraffin. Tankers
also include ship types such as combination carriers. Combination carrier is a general term
applied to ships intended primarily to carry oil or dry cargoes, including ore, in bulk (ore/oil
ships, oil/bulk/ore – OBO). These cargoes are not carried simultaneously. Generally they are
constructed with a single deck, two longitudinal bulkheads and a double bottom throughout
the cargo length area and intended primarily to carry ore cargoes in the centre holds or of oil
cargoes in centre holds and wing tanks.

Chemical tankers are ships which are constructed generally with integral tanks and intended
primarily to carry chemicals in bulk.

Gas carrier can be divided into two types: the LNG tanker carries liquified natural gas and the
LPG tanker carries liquified petroleum gas. Tankers can range in size of capacity from several
hundred deadweight tons (DWT),3 which include ships for servicing small harbours and
coastal settlements, to the real giants of several hundred thousand DWT: the VLCC (very large
crude carrier) of between 200,000 and 300,000 DWT and the ULCC (ultra large crude carrier)
of over 300,000 DWT.

Bulk carriers are sea-going self-propelled ships which are constructed and intended primarily
to carry dry cargoes in bulk such as ore, coal, pulp, rock, cement, scrap metal, grain, flour, rice,
fertilisers, sugar or any cargo that travels in bulk. Bulk carriers range from about 25,000 DWT
(‘handysize’) through the medium-size (‘Panamax’) ships of about 75,000 DWT, to the giant
(‘capesize’) ships of over 200,000 DWT.

Container ships are a type of dry cargo ships specially designed and equipped with the
appropriate facilities for carriage of containers. They carry standardising container at 20-feet
long (TEU – twenty-foot equivalent unit) or 40-feet long (FEU – forty-foot equivalent unit).
Today’s container ships are being built to take up to18,000 TEU.

Ro-ro (roll on/roll off) is a cargo ship (ferry) specifically designed for the carriage of vehicles,
which embark and disembark on their own wheels, and/or goods on pallets or in containers
which can be loaded or unloaded by means of wheeled vehicles. Another type of ro-ro is a
passenger ship (ROPAX). The acronym ROPAX (roll-on/roll-off passenger) describes a ro-ro
ship built for freight vehicle transport along with passenger accommodation. Ro-ro ships have
built-in ramps that allow the cargo to be efficiently rolled on and off the ship when in port.
The ramps and doors may be stern-only, bow and stern or side for quick loading.

3 Deadweight tonnage (also known as deadweight abbreviated to DWT) is a measure of how much weight a ship is
carrying or can safely carry. It is the sum of the weights in metric tonnes of cargo, fuel, freshwater, ballast water, provisions,
passengers and crew.
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General cargo ship is a ship intended for the carriage of general cargo which will not be carried
in containers.

Refrigerated cargo ship or reefer ship is a ship (excluding liquefied gas carriers and fishing ships)
specially intended to carry permanently refrigerated cargoes such as fruits, vegetables, dairy
products, fish and meat and has fixed refrigeration installations and insulated holds. Excluding
the temperature control, the reefers are similar to other dry cargo ships or containers.

Passenger ship as per rules of the ship’s classification society is a self-propelled ship with a
permission to carry more than 12 passengers, specially designed and equipped for that
purpose, with a single or multi-deck hull and superstructure and with cabin accommodation
for passengers.

As of 1 January 2013, there were 48,732 merchant ships (597,709,000 GT) involved in interna‐
tional trade, registered under the flags of over 150 nations (see Figure 4).
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Figure 4. Number of the main types of ocean-going ships in the world merchant fleet as of 1 January 2013 (source:
http://www.statista.com)

3.1. Ship engines

The power needed on ships is generated through main and auxiliary engines often called prime
mover in the literature and can be sorted as diesel engine, gas turbine, steam turbine and
electric motor. The diesel engine is the most common prime mover in the merchant marine,
mainly due to its low fuel consumption in comparison with other prime movers. Power ranges
between 0.25 MW for the smallest high-speed engines and 100 MW for the for the biggest low-
speed marine diesel engines. The main advantages of diesel engines are the following: it is
relatively insensitive to fuel quality; it can be operated by light fuel as well as the heaviest
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residual fuels; and it has high reliability and high efficiency. In the other hand, the main
disadvantages of diesel engines are pollutant emissions, low power-to-weight ratio if com‐
pared with gas turbine and vibration and noise.

From the application viewpoint, three main types of diesel engines are available: low-speed
diesel engines (rpm<200), medium-speed diesel engines (200<rpm<1000) and high-speed
diesel engines rpm>1000).

From the construction viewpoint, two types can be distinguished: two-stroke low-speed
engines and four-stroke engines (medium or high speed). Low-speed diesel engines are
dominant in the deep sea tanker, bulk carrier and containership sectors. Such types of engines
are used as ship’s propulsion engine without gearbox, i.e. directly connected to the propeller
shaft system. These engines are currently the most efficient in terms of the specific fuel
consumption, but NOx emission level from these engines is very high in comparison with
medium- or high-speed marine diesel engines (see Figure 5b). The diesel engines have specific
fuel consumptions around 160–185 g/kWh, against the 220–240 g/kWh of gas turbines and 300
g/kWh of steam turbines (see Figure 5a).

Medium-speed engines are used for auxiliaries such as alternators and for the main propulsion
engine, with a gearbox to provide a propeller speed reduction, for smaller cargo ships, ferries,
passenger cruise liners, ro-ro carriers, supply ship, icebreakers, etc., while high-speed engines
are used as propulsion and for auxiliaries in smaller ships as fishing ships, tugs, pilot ships,
recreational ships, etc.
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Figure 5. a) Specific fuel consumption of prime movers b) NOx emission ratio for prime movers
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3.2. Marine diesel engine: Type and working principles

The diesel engine is reciprocating internal combustion engine where chemical energy of the
fuel is converted into thermal energy by means of combustion reactions of the fuel, and then
the thermal energy is converted into mechanical work. The actual cycle inside the engine can
be done either in four strokes (two crank revolutions) or in two strokes (one crank revolution)
[11]. A stroke is defined as the distance travelled by the piston between the top dead centre
(TDC) and the bottom dead centre (BDC). Cycles in the four-stroke engine are compression,
power, exhaust and intake strokes. During compression stroke, the piston moves upwards
from BDC to TDC. Inlet and exhaust valves are closed, and the combustion air is compressed
and thus increases air pressure and temperature (110 to 220 bar and 600 °C to 800 °C depending
on the type of engine). Fuel is injected several crank degrees before TDC and ignited by the
high temperature of the compressed air. Combustion starts at the end of the compression
stroke. The combustion is continued over a considerable crank angle after TDC, while the
combustion gases expand and perform work on the piston, forcing it down. This is power
stroke. Towards the end of the stroke, the exhaust valve opens which releases the combustion
gases into the exhaust manifold or exhaust gas receiver. Thereafter during the exhaust stroke,
the piston moves from BDC to TDC. The exhaust valve is open and the rest of the combustion
gases are forced out of the cylinder by the upward stroke of the piston. The gases that remain
in the cylinder are dispelled by a scavenging process; the inlet valve is opened early, whereas
the exhaust valve is closed late, so that both are open at the same time (overlap period).
Thereafter during the intake stroke, the piston moves downwards from TDC to BDC. The inlet
valve is open and the exhaust valve closed, while the cylinder is filled with a charge of fresh
air and thereafter is ready for the compression stroke. A complete cycle takes four strokes.
However, the power stroke is the only useful one, which suggests that there is a useful stroke
every two crank revolutions.

Slow-speed marine diesel engine (65–200 rpm) operates on the two-stroke cycle. This means
that this engine has one working or power stroke per every crank revolution. The main
difference comparing two-stroke with the four-stroke cycle is that charging and exhaust take
place without the piston enforcing the process. During the compression stroke, the inlet ports
and exhaust valve are closed and a volume of air is trapped into the cylinder. The piston moves
upwards to TDC, thus compressing this combustion air and causing a temperature and
pressure rise (110 to 160 bar and 600 °C to 800 °C depending on the type of engine) that is
sufficient to ignite the fuel that has been injected few degrees before TDC. At the end of the
compression stroke, combustion starts and continues several degrees during power stroke.
The combustion gases expand and perform work on the piston, forcing it down from TDC to
BDC. At the end of expansion, exhaust valve opens and combustion gases blow down to
exhaust receiver pressure. By the time the inlet ports are open, the cylinder pressure will have
reached a pressure lower than that of the scavenging air, so scavenging starts. These processes
take place in one stroke. Scavenging, which starts while the piston moves downwards, is
completed while the piston moves upwards. Both the inlet ports and exhaust valve are opened,
and fresh air from scavenging air receiver enters the cylinder, forcing the exhaust gases out.
The scavenging and compression processes take place in another stroke. The process described
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here is for uniflow scavenging. It is necessary to compress the scavenging air by the turbo‐
charger in order to scavenge the cylinder. The principal scheme of a turbocharged marine
diesel engine is shown in Figure 6 as in [12]. Turbocharger (TC) is composed of the compressor
(C) driven by the gas turbine (T) that receives its power from the heat energy of the exhaust
gases flowing through. The compressor and the turbine are directly coupled and they are built
together in a common housing. The gas turbine, usually one-stage axial type, is located after
an exhaust gas receiver (EGR) which collects the exhaust gases from all the engine cylinders.
The one-stage centrifugal-type compressor feeds compressed air through scavenging air cooler
into scavenging air receiver (SAR) that supplies all the engine cylinders.
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Figure 6. Principal scheme of turbocharging marine diesel engine

3.3. Types of fuel oils for marine diesel engine

Marine diesel engines use three types of liquid fuels standardised by ISO 8217 fuel standard
for marine distillate fuels as gas oil (GO) with max. density of 890 kg/m3 at 15 °C, marine diesel
oil (MDO) with max. density from 890 to 900 kg/m3 at 15 °C and heavy fuel oil (HFO) with
max. density from 920 to 1010 kg/m3 at 15 °C as in [13]. ISO 8217 fuel standard for marine
distillate fuels also defines the values of the essential properties of each type of the fuel. The
most important properties of marine fuels are as follows:

• Kinematic viscosity, expressed as mm2s-1, is a measure for the fluidity of the fuel at 50 °C.
The viscosity of a fuel decreases with increasing temperature. The moment the fuel leaves
the injectors, the viscosity must be within the limits prescribed by the engine manufacturer
in order to obtain an optimal spray pattern; otherwise, it will lead to poor combustion,
deposit formation and energy loss.
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• Density expressed as kg/m3 at 15 °C is an indicator of the ignition quality particularly for
the low-viscosity HFOs.

• The sulphur content which depends on the crude oil origin and the refining process. When
a fuel burns, sulphur is converted into sulphur oxides which has environmental implica‐
tions. Maximum permitted sulphur content in the marine fuels is 3,5 %.

• Flash point is the temperature at which the vapours of a fuel ignite. The minimum flash
point for marine fuels is 60 °C as per the IMO SOLAS Convention.

• Carbon residue is determined by a laboratory test performed under specified reduced air
supply. It gives an indication of the amount of hydrocarbons in the fuel which have difficult
combustion characteristics.

• Water in fuel is a contaminant and does not yield any energy. The percentage of water in
the fuel can be translated into a corresponding energy loss for the customer. Water is
removed on board the ship by centrifugal purification.

• Ash content is a measure of the metals present in the fuel (for GO and MDO max. 0,01 mass
% and for HFO from 0,04 to 0,15 mass %), either as inherent to the fuel or as contamination.

• Vanadium and nickel are elements found in some heavy fuel oil molecules. Upon combus‐
tion, vanadium oxides are formed, and some have critical melting temperatures. The most
critical are the double oxides/sulphates with sodium. The maximum permitted quantity is
50 to 450 mg/kg.

• Cetane index is a measure for the ignition quality of the fuel in a diesel engine. The higher
the speed of the engine required, the higher the cetane index.

• Heating value (calorific value) is defined as the amount of heat that is released during
combustion of 1 kg of fuel. Assumed that after combustion the water content in the fuel is
present as vapour, the condensation heat is not included in the heating value and it is
referred to as the net calorific value or lower heating value. Standard net calorific value for
GO is 44,000 kJ/kg, for MDO 42,000 kJ/kg and for HFO 40,500 kJ/kg.

4. Combustion process in the marine diesel engines and formation of the
air pollutants

4.1. Combustion stoichiometry

The aim of the combustion stoichiometry is to determine the required amount of air and fuel
in order to achieve complete combustion. A stoichiometric mixture contains the exact amount
of fuel and oxidiser, so that after combustion is completed, all the fuel and oxidiser are
consumed to form combustion products. This ideal stoichiometric mixture approximately
yields the maximum flame temperature, as all the energy released from combustion is used to
heat the products. As in references [14], combustion stoichiometry for a general hydrocarbon
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fuel (CαHβOy) can be expressed by equation (1) and it can be applied only for single-
component hydrocarbons (HC):

( )2 2 2 2

stoichiometric air amount

3,76 3,76
4 2 2 4 2y

y yC H O O N CO H Oa b
b b ba a a

   
+ + - × + ® + + × + -   
   1444442444443

(1)

Typical approaches for multiple-component hydrocarbon fuels develop the stoichiometric
combustion using the general principle of atomic balance, making sure that the total number
of C, H, N and O atoms is the same in the products and the reactants (e.g. multiple-component
mixture of a 95 % methane (CH4) and 5 % hydrogen (H2)):

( )4 2 2 2 2 2 20,95 0,05 1,925 3,76 0,95 1,95 7,238CH H O N CO H O N+ + + ® + + (2)

If less air than the stoichiometric amount is used, the mixture is described as rich fuel or rich
mixture, and if excess air is used, the mixture is described as lean fuel or lean mixture. For this
reason, it is appropriate to determine the amount of the combustible mixture using one of the
following methods: a)Fuel-air ratio (FAR), b) equivalence ratio (Φ) and c) percent excess air
( % AE).

a. Fuel-air ratio (FAR) or f is the actual ratio of fuel mass mf and air mass ma and it is expressed
as

f

a

mf
m

= (3)

and it is usually bounded by 0 and ∞. For a stoichiometric mixture, equation (3) becomes
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where Mf is the molar mass of fuel and Ma molar mass of air which is approximately 28.96 kg/
kmol. The stoichiometric mixture fuel-air ratio of the most hydrocarbon fuels is bounded by
0.05 and 0.07. Air-fuel ratio (AFR) is reciprocal of FAR and it is expressed as AFR=f -1.

b. Equivalence ratio (Φ) is the actual ratio of fuel-air ratio f to the stoichiometric fuel-air ratio
fs:

s

,as

a

mf
f m

F = = (5)
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and its value is bounded by 0 and ∞. Φ < 1 is a lean mixture; Φ = 1 is a stoichiometric mixture;
and Φ > 1 is a rich mixture. The fuel in the combustion process must be mixed with a greater
amount of air than in stoichiometric mixture because it is not possible to bring the ideal amount
of air to each fuel molecule in order to mix them perfectly so that complete combustion is
achieved. In the combustion analysis, an alternative variable lambda (λ) is often used by
engineers. Lambda is the ratio of the actual air-fuel ratio to the stoichiometric air-fuel ratio
defined as

a

s s as

1 1
/

mAFR
AFR f f m

l = = = =
F

(6)

c. Percent excess air (% AE) is the amount of air in excess of the stoichiometric amount and it
is defined as

a as a

as as

% 100 100 1 %
m m mEA

m m
 -

= × = × -  
 

(7)

4.2. Combustion process in marine diesel engine

Process of fuel combustion is comprised of the following steps: entry of fuel jet into the
combustion chamber, disintegration of the jet into droplets, decomposition of larger droplets
into smaller, droplet heating, droplet evaporation, mixing of fuel vapour with the surrounding
air, simultaneous auto-ignition of fuel mixture in several places, continued evaporation of the
droplets and burning around (diffusion combustion), formation of soot during combustion in
an area near droplets, temperature drop and slowing reaction due to expansion in the cylinder.

While the combustion temperature is still high, it is necessary that the soot particulate finds
their reactants (oxygen) to complete combustion reaction. The phases until the simultaneous
ignition of fuel mixture represent a delayed auto-ignition in several places which can be
defined as the time or engine crank angle that elapses from the beginning of fuel ignition to
the auto-ignition of the mixture.

A good spatial distribution of fuel affects the proper and economical operation of the engine.
To achieve a good spatial distribution of fuel, it must be injected at a rate of about 150–400
ms-1, which requires a pressure of over 80 MPa.

Dispersion quality is determined by the injection speed, fuel surface tension, fuel viscosity,
density of air in the cylinder, turbulence and cavitation in the nozzle. Better turbulence, mixing
with air and combustion can be achieved by better penetration and propagation of jet fuel.

In marine diesel engine, injection is performed by injectors with the nozzles that direct the fuel
into the cylinder space. Under the influence of aerodynamic forces of compressed air, fuel jet
expands and breaks down into small droplets. The quality of fuel atomisation is defined by a
mean diameter of the droplets and their uniformity. Better fuel dispersion is achieved with the
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smaller diameters of the nozzle holes, greater injection pressure and higher compression
pressure inside the cylinder. The combustion process in a diesel engine can be divided into
four phases (see Figure7).

Figure 7. Phases of the combustion process

The first phase, ‘ignition delay, curve C-D’, defines the period from the beginning of injection
until the ignition starts and has an impact on the pollutant formation. This period defines fuel
atomisation, evaporation, mixing and the reaction beginning. At sufficiently low turbulence,
local flame fronts are created and produce high temperature without soot.

The second phase, ‘uncontrolled combustion, curve D-E’, is a homogeneous phase of com‐
bustion. At this stage, there are sudden ignition and combustion of the already prepared fuel
mixture during the delayed ignition phase. Combustion begins simultaneously in several
places and conducts intensively, and there is a sudden increase in the pressure and the
temperature.

The third phase, ‘partially controlled combustion, curve E-F’, is diffusion combustion when
the fuel droplets vaporise from the surface. Evaporated fuel is mixed with air, and combustion
speed is limited by the rate of fuel evaporation and the speed of creating fuel mixture.
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The fourth phase, ‘after burning, curve F till the end’, is the final part of the combustion and
it takes about half of the total combustion time duration. During that phase, reaction slows
due to expansion and decrease amounts of reactants, and a part of soot that is created during
combustion leaves the cylinder as portion of emissions.

4.3. Adiabatic flame temperature

One of the most important features of a combustion process is the highest temperature of the
combustion products that can be achieved. The temperature of the combustion products will
be the highest when there are no heat losses to the surrounding environment and when all
energy released from combustion is used to heat the products. Constant pressure adiabatic
temperature calculation, using a mean specific heat capacity method, can be performed for the
lean and the rich combustion mixture as in [14]:

a. For a lean mixture (Φ < 1):

( )
s

AFT R
s ,P1 p

f LHVT T
f c

F × ×
= +

+ F × × (8)

where TR represents the temperature of the reactants, i.e. fuel which has the compression
temperature (T2) after injection and ignition delay, and c̄ p is an average specific heat capacity
of the mixture.

b. For a rich mixture (Φ > 1):

( ) ,P1
s

ATP R
s p

f LHVT T
f c

×
= +

+ F × × (9)

5. Formation of the air pollutants during combustion process in marine
diesel engine

The major pollutants in diesel exhaust emissions are a direct result of the diesel combustion
process itself. Typical concentrations of exhaust gas emissions from marine diesel engine
largely comprise nitrogen approximately 76 %, oxygen abt. 13 %, carbon dioxide (CO2) abt. 5
% and water vapour abt. 5 %, with smaller quantities of pollutants: nitrogen oxide (NOX) abt.
1200 ppm, sulphur oxide (SOX) abt. 640 ppm, carbon monoxide (CO) abt. 60 ppm, partially
reacted and non-combusted hydrocarbons (HC) abt. 180 ppm and particulate matter (PM) abt.
120 mg/Nm3 [15]. The composition of this gas mixture, liquids and solids that are actually
emitted into the air will vary depending on engine type, engine power, operating conditions
as well as fuel and lubricating oil type and also depends on whether the emission control
system is present. Pollutant formation in marine diesel engine is discussed below.
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5.1. Nitrogen oxides (NOx)

Nitrogen oxides (NOx) generate thermally from atmospheric nitrogen oxygen in the intake or
scavenging air. The oxidation of atmospheric nitrogen is influenced by local conditions in the
combustion chamber, such as the maximum cylinder pressure, local peak temperatures and
local air- fuel ratio. The primary reaction product is nitric oxide (NO) by approximately 90 %
of the volume, but about 5 % of it is converted into nitrogen dioxide (NO2) later in the
combustion cycle, during expansion and during the flow through the exhaust system. At the
same time, a very limited proportion of nitrous oxide N2O is also formed. Further oxidation
of NO to NO2 subsequently continues at ambient temperatures after the exhaust gases have
passed out to the atmosphere. Nitrogen oxide is of particular concern because of its detrimental
effects on respiration and plant life, as well as its significant contribution to acid rain. In
addition, NOx, together with volatile organic compounds (VOC), is also involved in a series
of photochemical reactions that lead to an increase in troposphere ozone which, in turn,
adversely affects human health and natural vegetation. These problems are only pronounced
on land and especially in urban areas.

Analysis of the combustion process in the cylinder and the reactions which are involved in
formation of NO has identified three main sources of NO formation of which, as mentioned
above, some is converted to NO2 to give the NOx mixture. These sources are thermal NO
formation, prompt NO formation and fuel source. A majority of the NO emission is generated
by internal combustion engines through the thermal process.

a. Thermal nitric oxide (NO) formation

During the combustion process in diesel engine, high temperatures are reached. Around 1700
K, and above up to 2500 K, sufficient thermal energy is available to dissociate oxygen, nitrogen
and also other molecules formed during the combustion process itself. The recombination of
the elements leads to the formation of NO. The reaction processes are quite slow so that most
nitrogen oxides are formed during the mixing of the stoichiometric combustion gases with
excess air in the cylinder. In low- and medium-speed diesel engines, by far the most important
part of NOx is generated in the thermal NO process.

Formation of nitric oxide can be represented with three chemical reactions based on Zeldovich
mechanism as in [16]:

2N O NO N+ ® + (10)

2N O NO O+ ® + (11)

N OH NO H+ ® + (12)

The first two reactions show the formation of nitric oxide for the lean mixture and the third
for the rich mixture. The first reaction is the rate-limiting step due to its very high temperature
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activation. The high activation energy is required to break the triple bond in the nitrogen
molecule (:N≡N:), which occurs at high combustion temperature; this is named thermal
nitrogen monoxide (NO). The formation rate of thermal NO is practically insignificant if the
temperature is below 1700 K. On the other hand, if the temperature rises, especially over 2000
K, the formation of thermal NO is strongly accelerated. The formation of thermal NO may be
reduced by lowering and controlling the temperature peaks and minimising flue gas residence
at high temperatures. As in [17], the equation for the total formation rate of thermal nitrogen
oxides (NOx) is

6909016 0,5
2 20,5

6 10 ,x Td NO
e N O

dt T

 - 
 
 

é ù ×ë û é ù é ù= × × ×ë û ë û (13)

where T is absolute flame temperature (K), N2 nitrogen molecule concentration (molcm-3), O2

oxygen molecule concentration (molcm-) and dNOx/dt nitrogen oxide speed formation
(molcm-3).

b. Prompt nitric oxide (NO) formation

Prompt nitric oxide can be formed promptly at the flame front by the presence of hydrocarbon
radicals produced only at the flame front at relatively low temperature. Nitric oxide generated
via this route is named ‘prompt nitric oxide (NO)’. Hydrocarbon (HC) radicals react with
nitrogen molecules with the following sequence of reaction steps:

2CH N HCN N+ ® + (14)

HCN N NO+ ®×××® (15)

Nitrogen reacts with an HC radical to produce hydrogen cyanide HCN, and further, HCN
reacts with nitrogen to produce nitric oxide via a series of intermediate steps. In contrast to
thermal NO mechanisms that have activation temperature above 1700 K from (160), prompt
NO can be formed starting at low temperature, around 1000 K as in [17].

c. Fuel sources of NO formation

NO formation from fuel becomes important when using heavy fuel oil because such fuels
contain more organic nitrogen than marine diesel oil and other distillate fuels. Heavy fuel oil
can contain up to 0.5 % nitrogen which increases the total NOx emission by as much as 10 %.

5.2. Sulphur oxides (SOx)

Formation of sulphur oxides (SOx) in the exhaust gases is caused by the oxidation of the
elemental sulphur in the fuel into sulphur monoxide (SO), sulphur dioxide (SO2) and sulphur
trioxide (SO3) during the combustion process. SOx emissions in diesel engine exhaust gas
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mostly comprise of sulphur dioxide and a small amount of sulphur trioxide. The stable
products such as sulphur dioxide (SO2), hydrogen sulphide (H2S), carbon disulfide (CS2) and
disulfide (S2) are created during the combustion of the rich mixtures. The radical sulphur
monoxide (SO) reacts with oxygen (O2) to produce sulphur dioxide (SO2) at high temperatures.
The amount of sulphur dioxide emissions depends on the sulphur content of the fuel used and
cannot be controlled by the combustion process. Furthermore, sulphur trioxide (SO3) cannot
be created in the combustion under fuel-rich conditions, even when the combustion is near the
stoichiometric point. However, if there is even a 1 % air excess, sulphur trioxide rapidly
increases in its quantity. Typically, the amount of SO3 is 5 % of the amount of sulphur oxides
(SO2 and SO3). For example, if the fuel contains 3 % sulphur, the volume of SOx generated is
around 64 kg per tonne of fuel burned; if fuel with 1 % sulphur content is used, SOx emission
amount is about 21 kg per tonne of fuel burned as in [18]. SOx formed from diesel exhaust is
corrosive and is partly neutralised by an engine’s lubricating oil which is used as a typical base.
Moreover, sulphur oxides (SOx) combine with moisture to form sulphuric acid (H2SO4), which
is then excreted in the form of acid rain. It has a harmful effect on plants and human health
and can damage many objects including buildings. Sulphur dioxide emissions also negatively
impact human health; sulphate particles particularly can induce asthma, bronchitis and heart
disease.

5.3. Carbon monoxide (CO)

The formation of carbon monoxide (CO) is a result of incomplete combustion of organic
material, which is due to a lack of oxygen or low temperature at some points in the combustion
chamber. Also the same reasons lead to the formation of hydrocarbons (HC). Hydrocarbons
can also be formed from evaporation of the lubrication oil towards the end of the firing period.
In diesel engines, the formation of carbon monoxide is determined by the air/fuel mixture in
the combustion chamber, and since diesel fuel has a consistently high fuel-air ratio and the
efficient combustion process, formation of this toxic gas is minimal. Nevertheless, insufficient
combustion can occur if the fuel droplets in a diesel engine are too large or the level of
turbulence is insufficient or swirl is created in the combustion chamber. When burning heavy
fuel oil, the hydrocarbon emissions are lower than from the light fuel oil combustion due to
lower evaporating level.

5.4. Hydrocarbon (HC)

Hydrocarbon (HC) emissions as fraction of the exhaust gases from diesel engines predomi‐
nantly consist of unburned or partially burned fuel and lubricating oils as a result of insufficient
temperature. This often occurs near the cylinder wall where the temperature of the air/fuel
mixture is significantly less than in the centre of the cylinder. In the atmosphere, the hydro‐
carbons are subjected to photochemical reactions with nitrogen oxides forming the ground-
level ozone and smog. Hydrocarbon (HC) emissions are represented as total hydrocarbons
(THC) or as non-methane hydrocarbons (NMHC), as in [19].
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5.5. Particulate matter (PM)

Particulate matter is a mixture of organic and inorganic substances largely comprising
elemental carbon, ash minerals, heavy metals, condensed sulphur oxides, water and a variety
of unburned or partially burned hydrocarbon components of the fuel and lubricating oils. More
than half of the total particulate mass is soot (inorganic carbonaceous particles), of which the
visible evidence is smoke. Some of the fuel particles do not burn completely, and they are
emitted as droplets of heavy liquid or carbonaceous material. The incomplete burning is a
result of locally low quantities of excess air. A mistimed or otherwise poorly operating fuel
injection and poor mixing of fuel within the cylinder also result in incomplete combustion and
increased the particulate matter emissions. Soot particles (unburned – elemental carbon) are
not themselves toxic, but they can cause the build-up of aqueous hydrocarbons (HC), and some
of them are believed to be carcinogens. Particulates constitute no more than around 0.003 %
of the engine exhaust gases. Almost the entire diesel particle mass is in the fine particle range
of 10 microns or less in diameter (PM10). Approximately 94 % of the mass of these particles are
less than 2.5 microns (PM2.5) in diameter. Diesel PM is of specific concern because it poses as
a lung cancer hazard for humans as well as a hazard from noncancer respiratory effects such
as pulmonary inflammation. Because of their small size, the particles are readily respirable
and can effectively reach the lowest airways of the lung along with the adsorbed compounds,
many of which are known or suspected mutagens and carcinogens. Secondary reactions of
NOx and SOx can also produce PM.

The most effective method of reducing particulate emissions is to use lighter distillate fuels;
however, this leads to added expense. Additional reductions in particulate emissions can be
achieved by increasing the fuel injection pressure to ensure that optimum air/fuel mixing is
achieved. The third method of reducing particulate emissions is to use cyclone separators,
which are effective for particle sizes greater than 0.5 μm.

5.6. Carbon dioxide (CO2)

Carbon dioxide is one of the basic products of combustion and is not toxic; however, it has
been linked to the ‘greenhouse effect’ and global warming. Diesel engine exhaust gases
containing CO2 as a result of carbon and oxygen O2 combustion. The maximum concentration
of carbon dioxide will be generated during stoichiometric combustion, i.e. when complete
amount of fuel reacts with oxygen from the air during combustion. The actual concentration
of CO2 depends on the relative contents of carbon (C), hydrogen (H) and other combustible
elements in the fuel. The maximum values of carbon dioxide for common types of marine fuel
are shown in Table 3 [20], assuming that the exhaust is dry.

The maximum value of carbon dioxide (CO2 max) can be calculated according to the following
expressions:

2
2

No. of molecules produced by complete combustion of fuelmax
Total no. of molecules of combustion products

COCO = (16)
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For ‘wet’ exhaust gases
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For ‘dry’ exhaust gases
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(18)

Carbon dioxide (CO2) concentration can be calculated in the exhaust gas emissions according

to equation (19), provided that oxygen concentration (O2), maximum concentration of carbon

dioxide (CO2) max and fuel type are known, as in [20]:

( )2 2
2

max 20,9
.

20,9
CO O

CO
é ù× - ë ûé ù =ë û (19)

Emission Source

NOx Function of peak combustion temperature, oxygen content and residence time (function of engine speed
in rpm)

SOx Function of fuel oil sulphur content

CO Function of the air excess ratio, combustion temperature and air/fuel mixture

HC Function of the amount of fuel and lubricating oil left unburned during combustion process

PM Originates from unburned fuel as well as ash content in fuel and lubricating oil

CO2 Function of combustion

Table 4. Summary of pollutants

Fuel CO2 max (%)

Natural gas 11.9

Light fuel oil 15.5

Heavy fuel oil 15.8

Table 3. CO2 max values for marine fuel, assuming the gases are dry
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Reduction of carbon dioxide emissions can be achieved by reducing specific fuel oil consump‐
tion (SFOC) since the amount of CO2 produced is directly proportional to the volume of fuel
used and therefore to the engine efficiency. An alternative is to use fuel with a low carbon ratio
relative to hydrogen, which greatly increases the price of marine fuel oils. Table 4 provides a
summary for the pollutants discussed above.

6. Methods for reducing harmful pollutant emissions from marine diesel
engines

Different methods of reducing the pollutant emission from ship’s diesel engines are briefly
described in the following text. The focus is more on NOx and SOx than on other emissions,
but some attention will be given to them as well.

6.1. NOx emission reduction technologies

Nitrogen oxides (NOx) are an important air pollutant created as a by-product of combustion.
Air contains primarily nitrogen (N2) and oxygen (O2). The heat generated during combustion
causes nitrogen (N2) and oxygen (O2) to react to form NOX which is in direct proportion to peak
combustion temperature and pressure. Therefore, NOX emissions can be mitigated by engine
controls that decrease combustion temperature and/or aftertreatment of the exhaust gas. NOx
reduction methods are generally categorised as primary methods or internal measure and
secondary methods or aftertreatment. The primary methods include changes to the combus‐
tion process within the engine and can be divided into three main categories: combustion
optimisation, water-based controls and exhaust gas recirculation. Many of the mentioned
methods aim to reduce NOx emissions by reducing peak temperatures and pressures of the
combustion process in the engine cylinder. Secondary methods or aftertreatment implies post-
combustion abatement in which the exhaust gas is treated in order to remove NOX, either
passing it through a catalyst or plasma system. Each of these methods is discussed below.

6.1.1. Primary methods or internal measure

The primary methods include changes to the combustion process within the engine and can
be divided into three main categories. The first category is combustion optimisation; the second
one is water-based control which consists of water injection, water/fuel emulsion and humid‐
ification; and the third category is exhaust gas recirculation. These methods have generally
low impact on fuel consumption. Another drawback is to retrofit the system of existing
engines. Tier II limits under MARPOL Annex VI, Regulation 13, can be achieved using primary
controls.

a. Combustion optimisation

There are a number of ways to modify the combustion process, each aimed to reduce NOx
emissions. Optimisation of the engine combustion process includes modifying the spray
pattern by modification of the fuel valve design, injection timing, intensity of injection and
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injection rate profile (injection rate shaping), compression ratio, scavenge air pressure and
scavenge air cooling. Delayed injection timing is very effective in reducing NOx but increases
fuel consumption and smoke. It is usually combined with increased compression pressure and
decreased injection duration to minimise or avoid increase in fuel consumption. Other
operational modifications that could be made to reduce emissions are combustion chamber
optimisation, variable valve timing, increasing the turbo efficiency, the use of a fuel injection
system that can be easily adjusted (e.g. electronically controlled injection system) and decrease
in the engine air intake temperature using Miller supercharging.4 Modification of the fuel valve
design means replacing the conventional injectors with fuel efficient valves (e.g. slide valves)
that optimise the fuel injected into the cylinder. These valves differ from conventional valves
in their spray patterns, and they are designed to reduce the dripping of fuel from the injector
into the postinjection combustion zone. This fuel entering late the combustion zone is subjected
to lower temperatures and therefore results in the emission of unburnt fuel (PM) and VOCs.
Changing the conventional fuel valves with slide valves has a significant impact on NOx
reduction and PM emissions since PM is a product of incomplete combustion and unburnt
fuel. Currently, the slide fuel valves are only applicable for slow-speed two-stroke diesel
engines. However, all new engines of this type are supposed to have these valves fitted as the
standard. The fuel nozzle was optimised for NOx simultaneously with the development of the
slide valve. Tests on a 12K90MC engine (55MW at 94 rpm) at 90 % load showed a 23 % reduction
in NOx emissions for a slide-type valve compared with a standard valve and nozzle and with
a 1 % fuel consumption increase. Furthermore, increasing the number of injectors per cylinder
enables the combustion process to be better controlled and therefore more efficient combus‐
tion. However, additional injectors, piping and associated equipment are associated with a
cost penalty. Nowadays, modern slow-speed engines use three fuel injectors located near the
outer edge of the combustion chamber. With sequential injection, each of the three nozzles in
a cylinder is actuated with different timings. Pulsed injection gives about 20 % NOx reduction
with about 7 % increase in fuel consumption. Sequential and pre-injection gave less NOx
reduction and less fuel consumption increase. The effects are the result of changes in the overall
pressure development and interaction between fuel sprays. Pre-injection can be used to
shorten the delay period in medium-speed engines and thus decreases temperature and
pressure during the early stages of combustion, resulting in reduced NOx. Pre-injection can
reduce particulates which are increased by other NOx control measures, thus allowing greater
flexibility in NOx control. Delayed injection combined with increased compression ratio have
effect on reducing the maximum combustion pressure and hence temperature. By using this
simple technique, a reduction of up to 30 % can be achieved. However, delayed injection
increases fuel consumption up to 5 % in specific fuel oil consumption due to later burning, as
less of the combustion energy release is subjected to the full expansion process and gas
temperatures remain high later into the expansion stroke, resulting in more heat losses on the

4 Reduced scavenge air temperature reduces combustion temperatures and thus NOx. For every 3 OC reduction, NOx
may decrease by about 1 %. On four-stroke engines, the Miller concept can be applied to achieve low scavenge air
temperature. Using a higher-than-normal pressure turbocharger, the inlet valve is closed before the piston reaches bottom
dead centre on the intake stroke. The charge air then expands inside the engine cylinder as the piston moves towards
bottom dead centre, resulting in a reduced temperature. Miller supercharging can reduce NOx by 20 % without increasing
fuel consumption.
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walls. In some engines, the timing adjustment can be made while in service. Smoke and
emission of PM also increase due to reduced combustion temperatures and thus less oxidation
of the soot produced earlier in the combustion, as in [21]. Furthermore, increasing injection
pressure leads to better atomisation of the fuel and therefore to reduction in particulates and
CO. Since combustion is cleaner, this technique tends to increase NOx reduction. There is also
the new generation of the electronically controlled camshaftless engines that allow great
flexibility for optimisation of the combustion process over the full range of operating condi‐
tions. These computer-controlled engines have allowed greater operational flexibility. As far
as NOx is concerned, the main features are computer control of variable injection timing (VIT),
injection rate shaping, variable injection pressure and variable exhaust valve closing (VEC).
Variable exhaust closing gives the ability to change the effective compression ratio. With
variable injection timing and variable exhaust valve closing, it is possible to optimise the
injection timing delay and increased compression ratio over the whole load range to maintain
peak pressures at low load while avoiding excessive peak pressures at high load. Computer-
controlled camshaftless engines are equipped with common rail injection techniques which
give high injection pressures and thus good spray characteristics even at low loads granting
of NOx reduction emissions.

b. Water-based control

The second category is water-based controls consisting of water injection, water/fuel emulsion
and humidification. Water-based controls reduce emissions of the NOx from diesel engines
by introducing freshwater at different stages of the combustion process. Introduction of water
into the combustion chamber reduces maximum combustion temperature due to the absorp‐
tion of energy for evaporation and the increase in the specific heat capacity of the cylinder
gases and thus reduce emissions of the NOx [23]. The in-cylinder evaporation of the water also
improves the atomisation of the fuel and causes it to burn more completely. Freshwater can
be introduced in the charge air (humidification), through direct injection into the cylinder or
through water/fuel emulsion. Water/fuel emulsion is the process of introducing water into the
fuel prior to injection into the combustion cylinder and can reduce smoke, while humidification
can increase smoke. Direct water injection is the process of introducing water directly into the
combustion cylinder at pressures of 200–400 bar. The water is injected into the cylinder by a
combined injection valve and nozzle that allow injection of water and fuel oil. The process is
electronically controlled. Direct injection of water and water/fuel emulsions place the water
more directly in the combustion region, where it has maximum effect on NOx production.
Generally, direct water injection or water/fuel emulsions will yield about 1 % reduction in NOx
for every 1 % of water-to-fuel ratio. This one-to-one ratio is consistent up to about 30 % water
content, at which point the combustion temperature decreases too much, resulting in an
increase in PM emissions. Alternative to water injection and water/fuel emulsion is the
scavenge air humidification as a second category of the primary methods for NOx emission
reduction that implies injection of very fine water mist in scavenge airstream after the
turbocharger using special nozzles (Scavenge Air Saturation System). The fine water droplets
evaporate fast, and further heat is introduced in the scavenge air. Humidification requires
about twice as much water for the same NOx reduction compared with direct injection of water
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and water/fuel emulsions. Humidification can reduce NOx levels down to 2 to 3 g/kWh
without fuel consumption penalty. Similar technique that is used for humidification of the
engine scavenge air is the so-called humid air motor (HAM). In this system, hot compressed
air from the turbocharger is led to a humidification tower and exposed to a large surface area
and flushed with hot water. The water can be heated by a heat exchanger connected to the
jacket cooling system or using an exhaust gas boiler. One manufacturer claims considerable
success in service in reducing NOx emissions with the added claim of increasing the indicated
power of the engine at certain loads, therefore reducing fuel consumption hence proportionally
reducing CO2 emissions. The actual degree of NOx reduction varies from 10 % to over 60 %,
depending on the engine type and which of the above reduction methods are adopted. For
example, the experiment carried out on the Viking Line’s MS Mariella has shown a NOx
emission reduction from 17 to between 2.2 and 2.6 g/kWh and a decrease in fuel consumption
of 2–3% using the HAM system [24].

c. Exhaust gas recirculation (EGR)

The  exhaust  gas  recirculation  (EGR)  system  is  based  on  lowering  of  the  combustion
temperature  and  oxygen  concentration  thus  lowering  NOx.  EGR  reduces  combustion
temperatures by increasing the specific heat capacity of the cylinder gases and by reduc‐
ing the overall oxygen concentration, taking away a part of the exhaust gases and mixing
it into the engine intake air. Some of the exhaust gas is cooled and cleaned before recircu‐
lation to the scavenge air side. The usage of the exhaust gas as intake air reduces the oxygen
content  in intake air  from 21 % to 13 % which limits  the NOx that  can be formed and
reduces the amount of combustion products that can take place. In engines operating on
poor-quality fuel,  external EGR can lead to fouling and corrosion problems. The residue
from cooling and cleaning the exhaust gas on ships using heavy fuel oil contains sulphur
in  a  form  which  is  difficult  to  dispose  of.  The  relative  changes  in  measured  emission
parameters  as  a  function of  the  recirculation amount  at  75  % engine load show that  at
increased recirculation amounts, the HC and PM emissions are reduced corresponding to
the reduction of the exhaust gas flow from the engine. Increased recirculation amount leads
to increase in CO emissions due to lower cylinder excess air ratios and thus lack of oxygen
in the combustion chamber. Furthermore, EGR tends to increase smoke by reducing the O2

concentration, increasing the combustion duration and decreasing the combustion temper‐
ature. All of that may be controlled using additional techniques such as water in fuel to
achieve an optimum balance between NOX, CO and PM. Test engine work by MAN Diesel
& Turbo has shown that,  with 40 % recirculation, EGR has the potential  to reduce NOX

down to Tier III levels on a two-stroke low-speed marine engine and that increased fuel
consumption,  carbon  monoxide  emissions  and  PM  emissions  resulting  from  reduced
combustion  efficiency  are  manageable  with  engine  adjustments.  It  is  also  reported  that
specific fuel consumption is greatly improved when using EGR to reduce NOX  down to
Tier II limits, when compared with using engine adjustments to achieve the same level of
emissions, particularly at part load as in [25]. There are many different components to an
EGR system such as high pressure exhaust gas scrubber fitted before the engine turbocharg‐
er, cooler to further reduce the temperature of the recirculated gas, water mist catcher to
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remove entrained water droplets, high-pressure blower to increase recirculated gas pressure
before reintroduction to the engine scavenge air and automated valves for isolation of the
system. The scrubber in the EGR system is used to remove sulphur oxides and particu‐
late matter from the recirculated exhaust, to prevent corrosion and reduce fouling of the
EGR  system  and  engine  components.  The  system  requires  the  use  of  an  electrostatic
precipitator and catalysts to remove the particulates from the exhaust gas before injecting
it as intake air. There is also a need for wet-scrubbing technology to remove the sulphur
components of the exhaust stream prior to reintroduction into the engine. A cooling unit
is also needed to reduce the temperature of the exhaust gas before it returns to the engine.

6.1.2. Secondary methods or aftertreatment

Secondary methods, or aftertreatment, are based on treating the engine exhaust gas itself by
passing it through a catalyst or plasma system. There has been much development in selective
catalytic reduction (SCR) and nonthermal plasma (NTP) reduction systems over the last few
years. Using these methods, NOx emission reductions of over 95 % can be achieved [26].

Selective catalytic reduction (SCR) is an exhaust gas treatment method by which the NOx
generated in a marine diesel engine exhaust gas can be reduced to a level in compliance with
the NOx Tier III requirements. The method involves mixing of ammonia as a reducing agent
with the exhaust gas which is passed over a catalyst where more than 90 % of the NOx can be
removed to below 2 g/kWh. The SCR system converts nitrogen oxides into harmless nitrogen
and water, by means of a reducing agent injected into the engine exhaust stream before a
catalyst. Hydrocarbons are also reduced. Exhaust emission abatement systems using SCR
technologies usually use an ammonia (NH3) reductant introduced as a urea/water solution
((NH2)2CO) into the exhaust stream, prior to the catalyst blocks. For marine systems, a 40 %
solution of urea in de-ionised water is typically used for safe handling and toxic risk reasons
[27, 28]. The use of urea in the system breaks down the NOx emissions to N2 and H2O. The
degree of NOx removal depends on the amount of ammonia added. A NOx reduction
efficiency of 90 % can be achieved using a urea injection rate of 15 g/ kWh. NOx is reduced
according to the following overall reaction scheme [26,27,29]:

Urea decomposition before entering the reactor:

( ) ( ) ( )2 2 3(NH ) CO urea NH ammonia  + HNCO isocyanic acid® (20)

2 3 2HNCO  H O NH  CO+ ® + (21)

The resulting quantity of CO2 is minor when compared with that resulting from fuel combus‐
tion.

NOX reduction at the catalyst:
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3 2 2 24NO + 4NH + O 4N + 6H O® (22)

2 3 2 22NO + 2NO + 4 NH 4N + 6H O® (23)

2 3 2 2 26NO + 8NH + O 3N + 6H O® (24)

Equation 22 shows the main SCR reaction as nitric oxide dominates in the exhaust. The reaction
shown at equation 23 occurs at the fastest rate up to an NO2:NO ratio of 1:1. However, at higher
ratios, the excess NO2 reacts slowly as per equation 24. The rate of urea injection must be
sufficient to reduce NOX emissions to the required level but not so great to avoid ammonia
slip. Control is based on the load and speed of the engine with active feedback provided on
some systems by NOX and ammonia emission monitoring. At engine start-up, urea injection
is initiated once the catalyst reaches operating temperature, which is key for effective NOX

reduction performance, deposit prevention and avoidance of ammonia slip. Catalysts have
considerable heat capacity so the time taken to reach the injection trigger temperature is
dependent on a number of factors including the minimum catalyst operating temperature
recommended for the fuel type, the period of cooldown since the engine was last operated, the
size of the catalyst and the engine load pattern at start-up. Injection can begin up to 30 min
after a fully cold start, whereas it may begin within 10–15 min if the catalyst is still warm from
running in the previous 6–10 h. SCR units are typically installed in the exhaust system of a
diesel engine, if applicable, before the exhaust gas economiser and as close as possible to the
engine because of the relatively high exhaust gas temperatures required by the catalysts for
effective NOx reduction reactions. The SCR catalysts may also be integrated with the engine
by close coupling to the engine, typically applicable to small high-speed diesel engines. For
slow-speed diesel engines with inherently low relative exhaust gas temperatures, this may
necessitate the integration of the SCR reaction chamber and catalysts before the turbocharger
exhaust turbine. Depending on the engine load, the exhaust gas temperature on this side is
50–175 °C higher than on the low pressure side. Even though the reactor is placed before the
turbine, the exhaust gas temperature will normally still be too low at low loads. To increase
the temperature, a cylinder bypass from the scavenge air receiver to the turbine inlet is
installed. The bypass is controlled by the cylinder bypass valve.

When opening the bypass, the mass of air through the cylinders will be reduced without losing
the scavenge air pressure, and, accordingly, the exhaust gas temperature will increase. This
system makes it possible to keep the temperatures above the required level. However, the
cylinder bypass will increase the SFOC depending on the required temperature increase.
Selective catalytic reduction is the only technology currently available to achieve compliance
with the Tier III NOx standards for all applicable engines. Another option is selective non-
catalytic reduction (SNCR), which works in a similar way with selective catalytic reduction
but without the use of a catalyst. A reducing agent (ammonia or urea) injected during the
combustion process converts the nitrogen oxides into nitrogen and water, reducing NOx
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emissions by 50 % [30]. The drawback of this system is that it is less efficient than the SCR
method, because only 10–12 % of ammonia reacts with NOx. Since the cost of ammonia is
relatively high and since the system requires extensive modification to the engine, the SNCR
option does not appear to be competitive. Plasma reduction systems are based on the use of
plasma. This is a partially ionised gas composed of a charge of a neutral mixture of atoms,
molecules, free radicals, ions and electrons. Electrical power is converted into electron energy,
and the electrons create free radicals, which destroy pollutants in exhaust emissions. Experi‐
ments have shown that plasma reduction systems can reduce NOx by up to 97 % [30]. It seems
to be flexible in terms of size and shape and should be at relatively low cost. However, for
marine use, it is still in the development phase.

6.2. SOx reduction technologies

The emission of sulphur dioxide is directly proportional to the content of sulphur in fuel. To
meet the restrictions on emissions of sulphur oxides (SOx) and PM (particulate matter) that
are determined by the MARPOL convention Annex VI which specifies a global and a local
(ECA) limit on the sulphur content in marine fuel, there are only two possibilities for reducing
SOx emissions: either use fuels with low sulphur content (there will be no restrictions in the
use of heavy fuel oil) or apply an exhaust gas cleaning system to reduce the total emission of
SOx. Although the SOx requirements can be met by using a low-sulphur fuel, the regulation
allows alternative methods to reduce the emissions of SOx to an equivalent level. The process
of exhaust gas cleaning is performed in a scrubber unit. There are two main types of SOX

scrubber: wet scrubbers that use water (seawater or fresh) as the scrubbing medium and dry
scrubbers that use a dry chemical. The wet scrubbing technology is based on the fact that
sulphur oxides dissolve in water. This means that when the exhaust gas is sprayed with the
alkaline water in the scrubber, the SOx will dissolve in the scrubbing water and be cleaned
from the exhaust gas. The water is injected into the exhaust gas stream and is discharged from
the bottom of the scrubber. The alkalinity in the scrubbing water will neutralise the SOx
emissions. The scrubbing water must be cleaned of particulate matter and other contaminants
before being discharged out into sea. Wet scrubbing systems which are normally fitted on
marine engines may be categorised as open-loop system, closed-loop system or hybrid system.

Open-loop systems – In an open-loop technology, the water comes from the sea and goes directly
to the scrubbers. After the scrubbing process, the water goes through water treatment and to
the sea again. This system takes advantage of the natural alkalinity of seawater to buffer the
acidity of SOX gases. The seawater flow rate in open-loop systems is approximately 45 m3/
MWh. Sulphur oxide removal rate is close to 98 % with full alkalinity of the seawater, meaning
emissions from a 3.5 % sulphur fuel will be the equivalent of those from a 0.10 % sulphur fuel
after scrubbing [29]. The sulphur oxides generated in the combustion process are dissolved
and removed by the scrubber water. Sulphur dioxide (SO2) is dissolved and ionised to
bisulphite and sulphite, which is then readily oxidised to sulphate in seawater containing
oxygen. As in reference [29], similarly sulphuric acid, formed from SO3, and hydrogen sulphate
dissociate completely to sulphate according to chemical reactions:

For SO2:
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( ) ( )2 2 2 3 3SO H O H SO sulphurous acid H HSO bisulphite++ ® ® + (25)

( ) ( )2
3 3HSO bisulphite H SO sulphite- + -® + (26)

( ) ( )2 2
3 2 41 / 2SO sulphite O SO sulphate- -+ ® (27)

For SO3:

( )3 2 2 4SO H O H SO sulphuric acid+ ® (28)

( )2 4 2 4 3H SO H O HSO hidrogen sulphate H O- ++ ® + (29)

( ) ( )2
4 2 4 3HSO hidrogen sulphate H O SO sulphate H O- - ++ ® + (30)

Closed-loop systems use freshwater treated with sodium hydroxide (NaOH) as the scrubbing

media for the neutralisation of SOX. This results in the removal of SOX from the exhaust gas

stream as sodium sulphate according to the following chemical reactions as in [29]:

For SO2:

( )2 3NA OH SO NaHSO aq sodium bisulphite+ -+ + ® (31)

( )2 2 3 22 2NA OH SO Na SO aq sodium sulphite H O+ -+ + ® + (32)

( )2 2 2 4 22 2 1 / 2NA OH SO O Na SO aq sodium sulphate H O+ -+ + + ® + (33)

For SO3:

( )3 2 2 4SO H O H SO sulphuric acid+ ® (34)

( )2 4 2 4 22 2NaOH H SO Na SO aq sodium sulphate H O+ ® + (35)
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In a closed-loop technology, absolutely no water comes from the sea. The freshwater comes
from a buffer tank and is cooled by the seawater. The freshwater is composed of NaOH and
leaves the buffer tank to go to the scrubber. After the scrubbing process, the water comes back
to the buffer tank, cleaned by a filter. The black water goes to a sludge tank and the clean water
goes back to the scrubbing cycle. A big storage tank fills up the buffer tank. Closed-loop
systems can also be operated when the ship is operating in enclosed waters where the alkalinity
would be too low for open-loop operation. Closed-loop systems typically consume sodium
hydroxide in a 50 % aqueous solution. The dosage rate is approximately 15 l/MWh of scrubbed
engine power of a 2.70 % sulphur fuel is scrubbed to equivalent to 0.10 %. Using a closed-loop
technology can have some advantages. First, there is a possibility to increase the pH level in
order to reduce more SOx. Also there is no corrosion of the parts and less discharge water to
clean. The running costs of the closed-loop technology are relatively high because it uses NaOH
which is 0.2 €/kg and its required monitoring units. Also the sludge tanks have to be discharged
at the harbour which costs a lot of money. The closed-loop reduces about 98 % SOx in the
exhaust gas.

Hybrid system – A hybrid system is a mixture of both open loop and closed loop. In harbours
and ECA, the system can operate with freshwater without generating any significant amount
of sludge to be handed at port calls. At open sea, the system switches to the seawater open
loop. Using a hybrid technology can have some advantages. First, if the ship is running at open
sea, after switching to open loop, the accumulated water of the buffer tank can slowly be
removed back to the sea. Also, the tank is slowly filled up again to prepare for the arrival at
sensitive areas.

Dry SOXscrubber known as an ‘absorber’ brings the exhaust gas from diesel engine in the
multistage absorber where contact with calcium hydroxide (Ca(OH)2) granules reacts with
sulphur dioxide (SO2), forming calcium sulphite as in reference [29]:

( ) ( )2 3 22
SO Ca OH CaSO calcium sulphite H O+ ® + (36)

The sulphite is then oxidised and hydrated in the exhaust stream to form calcium sulphate
dihydrate, or gypsum:

( )3 2 42 2CaSO O CaSO calcium sulphate+ ® (37)

( )4 2 4 22 2CaSO H O CaSO H O calcium sulphate dihydrate gypsum+ ® × - (38)

Similarly, chemical reactions take place for SO3:

( ) ( )3 2 4 22
2SO Ca OH H O CaSO H O calcium sulphate dihydrate gypsum+ + ® × - (39)
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Using a dry scrubber can have some advantages. First, the good point of this technology is that
the desulphurisation unit requires, aside from electrical energy, only Ca(OH)2 in the shape of
spherical granulates. Also the dry scrubber further operates as a silencer. Dry scrubbers
typically operate at exhaust temperatures between 240 °C and 450 °C. Calcium hydroxide
granules are between 2 and 8 mm in diameter with a very high surface area to maximise contact
with the exhaust gas. Within the absorber, the calcium hydroxide granules (Ca(OH)2) react
with sulphur oxides to form gypsum (CaSO4 2H2O). To reduce SOX emissions to those
equivalent to fuel with a 0.1 % sulphur content, a typical marine engine using residual fuel
with a 2.70 % sulphur content would consume calcium hydroxide granules at a rate of 40 kg/
MWh (i.e. a 20 MW engine would require approximately 19 tonnes of granulate per day) [29,
30]. The dry scrubber reduces up to 99 % SOx in the exhaust gas. It will be absolutely no
problem to fulfil all the IMO 3 requirements for 2016. The dry scrubber compared to the wet
scrubber has lower investment costs and higher running costs and requires a lot of space which
reduces the benefits. The efficiency of the SOx scrubber systems depends on the sulphur
content in the fuel and generally ranges up to 97 %. Anyhow, the efficiency system must be
sufficient to achieve a SOx emission level that is equal to or lower than the required limit.

On the other hand, it should be noted that the reduction of both NOx and SOx emissions from
marine diesel engines be achieved by replacing conventional fuels with alternative fuels, e.g.
liquefied natural gas (LNG). In case of using LNG, NOx emission can be reduced by 60 % and
SOx emission by 90–100 %.

There is also another option to use onshore power supply at ports which is especially beneficial
for local air quality. In this case, NOx and SOx emissions can be reduced by 90 %, while CO2

reduction depends on the source of electricity. The total CO2 emission reduction depends on
how the used electricity is produced. In the European Union, the use of shore-side electricity
rather than electricity generated by a ship using low-sulphur fuel will cut CO2 emissions by
an average of 50 %.

One of the main benefits of shore connection systems stems from the fact that electricity
generated on land by power plants has a smaller adverse impact on the ecosystem than that
produced by ship engines. Namely, the main cause of air pollution from ships in ports is the
use of auxiliary diesel engines to generate electricity on ships. Furthermore, experiments with
wind and solar power, biofuels and fuel cells are ongoing and could be useful in the future to
reduce air pollution from ships.

In Table 5, overview of different technologies and their potential for reduction of emissions
from marine diesel engines are summarised as in [31].

Category
Technology aimed to
reduce

NOx SOx PM CO2

Engine modification
NOx

Optimise combustion 20–40% 0% 25–50% 0%

Water-based control Direct water injection 50% 0% 0% 0%
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Category
Technology aimed to
reduce

NOx SOx PM CO2

Water in fuel (30 %
emulsion)

30% 0% 0% 0%

Scavenge air
humidification

30–60% 0% 0% 0%

Humid air motor 10–70% 0% 40–60% 0%

Exhaust gas
recirculation

ERG 20–85% 0% 0% 0%

Aftertreatment

Selective catalytic
reduction

90–95% 0% 0% 0%

SOx 0% 0% 0% 0%

Scrubber 0% 90–97% 80–85% 0%

(Alternative) fuels

Low-sulphur fuel
2,7 %S to 0,1 %S

0% 97% 20% 0%

Both NOx and SOx 0% 0% 0% 0%

LNG 60% 90–100% 72% 0–25%

Onshore power supply
(in harbour only)

97% 96% 89%
Depending on energy

source,
average 50%

Table 5. Different technologies and their reduction potential

7. Conclusion

Owing to rapidly developed shipping industry and maritime traffic in recent decades, air
pollution emissions from ocean-going ships are continuously growing. Exhaust gases from
marine diesel engines are the primary source of emission harmful pollutants such as nitrogen
oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO) and particulate matter (PM)
which contribute significantly to environmental pollution, especially in port areas that are
often located in or near urban areas, and a significant number of people are exposed to these
emissions. The increased air pollutant concentrations and deposition have several negative
effects. Nitrogen oxide and particulate matter can contribute to many serious health problems
and increased morbidity and mortality (especially from cardiovascular and cardiopulmonary
diseases). Nitrogen oxides also contribute to the formation of ground-level ozone, which has
a harmful effect on plants and human health. Furthermore, sulphur dioxide and nitrogen oxide
emissions increase acidification of sensitive forest ecosystems along the coastal areas and have
a harmful effect on plants, aquatic animals and infrastructure by accelerating the deterioration
process of various materials. Finally, ships are also a source of greenhouse gas, a pollutant
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which contributes to global warming. Recent studies indicate that the emission of CO2 by ship
corresponds to about 3 % of the global anthropogenic emissions. If things remain the same, by
2020, shipping will have been the biggest single emitter of air pollution especially in areas of
the dense maritime traffic such as Europe, North America and East Asia which surprisingly
surpasses the emissions from all land-based sources together. Since harmful pollutant
emissions from ships have great impact on the human health and the environment, it is
required to tighten uniform regulations at the global level, bearing in mind that shipping is
inherently international. The International Maritime Organization (IMO) responsible for the
safety of life at sea and the protection of the marine environment reacts on NOx, SOx, PM and
CO2 emissions from a ship by adoption of Annex VI of the MARPOL 73/78 Convention, titled
‘Regulations for the Prevention of Air Pollution from Ships’. MARPOL Annex VI sets limits
on NOx and SOx emissions from ship exhausts and prohibits deliberate emissions of ozone-
depleting substances. Furthermore, the IMO marks out Emission Control Areas (ECAs) in
cooperation with national governments with more stringent controls on sulphur emissions.
These areas currently comprise the Baltic Sea, the North Sea, the English Channel, the US
Caribbean Sea and the area outside North America (200 nautical miles). Ships are currently
being permitted to burn fuel oils with sulphur content of less than 3.5 % while operating outside
an ECA but must ensure that they burn fuel with a sulphur content of less than 1 % while
within the sulphur Emission Control Areas. In accordance with EU’s marine fuel sulphur
directive, the sulphur content in marine gas oil within the territorial waters of an EU member
state may not exceed 0.1 % by weight. This applies to all ships regardless of flag. Regarding
reductions in nitrogen oxide emissions from marine engines, Annex VI introduced Tier I, II
and III NOx emission standards for new engines. NOx emission limits are set for diesel engines
depending on the engine’s maximum operating speed. Tier I and II limits are global, while the
Tier III standards apply only in NOx Emission Control Areas. Tier II NOx standards are
currently being in force. In order to control CO2 emission from shipping, the first formal CO2

control regulations were adopted by the IMO, introducing a new chapter, Chapter 4, to Annex
VI. Chapter 4 introduces two mandatory mechanisms intended to ensure an energy efficiency
standard for ships: the first is the Energy Efficiency Design Index (EEDI), for new ships, and
the second the Ship Energy Efficiency Management Plan (SEEMP) for all ships. The regulations
apply to all ships of 400 gross tonnage and above and are entered into force on 1 January 2013.
Energy Efficiency Design Index (EEDI) is the first globally binding climate change standard.
It is anticipated that global CO2 reductions of 10 to 20 % could be obtained by implementation
of EEDI and SEEMP. Detailed descriptions of the emission restrictions prescribed by Annex
VI of the MARPOL 73/78 Convention are listed in section 2 entitled ‘International regulation
concerning air pollution from merchant shipping’. To meet these restrictions on emissions of
harmful pollutants from marine diesel engines, different methods and technical solutions can
be implemented. Nitrogen oxide reduction methods are generally categorised as primary
methods or internal measure and secondary methods or aftertreatment. Primary methods
include changes to the combustion process within the engine and can be divided into three
main categories: combustion optimisation, water-based control and exhaust gas recirculation,
while secondary methods, or aftertreatment, is based on treating the engine exhaust gas itself
by passing it through a catalyst system. MARPOL Annex VI will reduce global ship sourced
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NOx emissions at a small rate because it only applies to new installations or major conversions.
For NOx levels below MARPOL Annex VI, or for retrofitting, the main measures available
now are water/fuel emulsions, direct water injection, inlet air humidification and catalyst
system. Technical measures to reduce the sulphur oxide emission from ship’s diesel engines
include the adoption of low-sulphur fuels, the easiest way of reducing sulphur oxides
emission. Usage of an exhaust gas cleaning system, i.e. scrubbers, is a possible alternative to
low-sulphur fuels to reduce the total emission of SOx and considerably reduces emissions of
other polluting particles. A detailed description of these methods is given in section 5 entitled
‘Methods of reducing harmful pollutant emissions from marine diesel engines’ As the air
pollution emissions from ships are continuously growing, it is necessary to constantly improve
and implement the efficient technologies and methods in order to reduce pollutant emissions
from marine diesel engines and maintain them within the limits prescribed by MARPOL
Annex VI as well as by other national and regional regulations. Some of these technologies
and methods include the use of shore connection systems of which the main benefits stem from
the fact that electricity generated on land by power plants has a smaller adverse impact on the
ecosystem than that produced by ship engines, owing to that of particular concern is the
pollution generated by ships at berth. Ships equipped with a green technology receive a higher
grade. Furthermore, other technical measures for reducing air pollution from ships include
the adoption of liquefied natural gas (LNG) as alternative fuel for marine engines. Wind, solar
power, biofuels and fuel cells, the world of alternative energy is ongoing and could be useful
for reducing air pollution from ships in the future. Finally, harmful pollutant emissions from
ships require a stringent international standard due to their impact on the human health and
the environment. It includes extending the SOx Emission Control Areas in the EU (e.g. in the
Mediterranean, in the Black Sea, in the Irish Sea and in the North East Atlantic) and designating
NOx Emission Control Areas as soon as possible.
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