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1. Introduction

Phase transition in molecular crystals and molecular liquids is a complicated phenomenon.
The energy of intra-molecular interaction is higher than the characteristic temperatures of
the transitions, so the structural transformations are determined by a competition between
the inter-molecular interactions that try to put the molecules in some ordered state and
tendency of the entropy to break of this order. Since the small molecules interact with small
number of the neighbors, mean-field-approximation is inadequate and calculating of the
free energy requires non-trivial higher approximations. Besides, the relevant parameters of
the inter-molecular interactions depend on details of the molecular structure and correct
estimation of them requires a complex quantum-mechanical calculation, so huge numerical
calculations should be done in the real cases.

In this chapter we will consider the system that consists of the long semi-flexible
macromolecules1 or molecular aggregates (LM). We will assume also that the energy of
the relevant intra-units interactions is of the same order as a characteristic temperature
of the phase transformations. In such a case above mentioned complications could
be avoided by using the concepts of “quasi-monomers” or “blobs” (see [13, 16] and
references therein). Because of the macroscopic nature of these units, an effective inter-unit
interaction are defined by their geometrical properties, while most details of the internal
structure and internal interactions of the units become irrelevant. Moreover, since for
the relevant densities each macro-unit interacts with large number of the neighbors, so
the mean-field-approximation could be quite adequate for calculation of the most the
thermodynamic characteristics and these calculations can be done analytically.

1 A molecule will be called “long” if it length L is much more than it thickness a and “semi-flexible” if it persistent
length lp is much more than it thickness and much less than the molecule’s length: L ≫ lp ≫ a.
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2. Experimental study of phase transitions in the biological materials

2.1. The collagenous materials

A novel material was developed by exerting high pressure and temperature on natural
leather material2 in an oxygen poor environment. This material, which was called pleather, is
thermoplastic [2]. The leather itself may be inexpensive scrap which is commutated into fine
particles (∼2 mm). By using common plastic forming techniques it is possible to mould this
material into various shapes. Pleather, having a warmer feel than polymers, could replace
polymers in furniture parts and prestigious packaging, where the price of genuine leather
makes it use prohibitive.

Figure 1. SEM micrograph of internal structure of leather. Adapted with permission from Ref. [14]. l’
[1995] American Physical Society.

The structure and properties of leather and their building unit, the collagen molecule, at
atmospheric pressure and moderate temperatures have been extensively studied (see e.g. [8]
and the bibliography there). The collagen molecule in helix form, has a length of 3000A and
a diameter of 15A. The three folded spirals are bonded by relatively weak, mainly hydrogen,
bonds. The spiral consists of about 300 segments and each one contains approximately
3 amino-acid residues with 20 − 30 Carbon and Nitrogen atoms [8]. It was shown that
at temperatures 310o

− 330oK the collagen molecules are reversibly denatured (“melted”
[9]). The structure of collagenous material that emerges after compression at pressures
between 5 − 30MPa and at temperatures 310o

− 390oK have been investigated. Scanning
Electron Micrographs (SEM) taken after treatment [2], at room temperature, show how the
fibrous open leather structure transforms into a composite matrix, where left over fibers are

2 The term leather pertains to hides from cow and sheep that are chemically treated to make it stronger and to give
more resistance to heat.
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Figure 2. SEM micrograph of compressed leather at room temperature. Pressure: 750atm Adapted with
permission from Ref. [14]. l’ [1995] American Physical Society.

embedded in a continuous material (see Fig.1, Fig.2 and article [12]). By chromatography
and electrophoresis methods it was shown that harsher processing conditions (higher
temperature and pressure) produce an extensive degradation of the collagen superstructure,
without degradation of the amino acid chains of the collagen molecule.

The biochemical [12] and mechanical properties of the material, compression strength,
Young’s modulus and bulk density have been studied at various processing parameters [4].
The effect of pressure on the sol-gel transition in an aqueous solution of collagen (gelatin)
has been investigated in [11]. It was found, that high pressure shifts the temperature interval
of collagen denaturation to higher temperatures.If the temperature is low (T ≪ Td1, where
Td1 ≈ 310oK ) the helix form is stable. At higher temperature, hydrogen and other weak
bonds, which stabilize the helix form, become unstable and the helix breaks down to random
coils [8]. This transition, however, is not sharp, but spreads over a temperature interval
of 30o − 40oK. This indicates that a cooperative process takes place and not a real phase
transition [9]. For higher temperature (T ≥ Td2, Td2 ≈ 350oK ) collagen molecules are
“melted” completely. This process of the breakdown of the ordered helix structure, held
together by non-covalent bonds, to a randomly coiled phase is called denaturation. The
organized fibers are stable for T ≪ Td1 and break down for T ≥ Td2.

2.2. Crystallization of bacterial DNA

Bacterial DNA is an important example of a closed circular macromolecule. Although the
tightly packed crystalline state is generally considered as incompatible with life, simple
living systems use crystallization for different purposes. In viruses and bacteriophages
DNA crystallization is used for accommodating large amounts of DNA in a very small
volume. Bacteria use crystallization for protection against varied environmental assaults,
thus promoting their endurance and virulence [17, 18, 29]. DNA condensation was
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extensively studied during the last decade. This phenomenon has been found to be
complicated, strictly depending on the DNA’s topology and the cytoplasm’s composition
[17, 19] and involving the influence of different forces [20, 21]. DNA crystallization includes
many processes and could lead to different condensed states: liquid crystals, DNA-protein
co-crystals, DNA toroid [17, 18, 22].

DNA crystallization was studied in wild-type Escherichia coli AB1157 (recA1,lexA1) as well
as various recA mutants, which were grown to midlogarithmic phasein LB medium without
NaCl. Cultures then were exposed to DNA-damaging agents like UV irradiation (20 Jym2,
254 nm) or 100 mg of nalidixic acid. The cells were incubated at 37řC for different times
from 15 to 120 min, afterwards the E.coli cells were fixed by ultrafast freezing in liquid
ethane. For each time point 3 independent experiments were conducted and about 103 cell
slices were screened. After a wash with the blocking solution, the grids were incubated with
gold-conjugated goat antirabbit IgG for 1 h, dried, and stained with uranyl acetate. Images
of the intracellular crystals were digitized with an Imacon Flextight scanner [18].

In the SEM micrographs bacterial chromatin of the active cells is demarcated as amorphous
spaces, which are irregularly spread over the cytoplasm. After exposing to DNA-damaging
agents, the cells show the SOS response, where the DNA breaks by stalling its activity.
Continuous addition of nalidixic acid leads to an expansion of the assembly, whose average
length increases up to 4 times after 60 min. Further incubation does not affect an expansion
but results in a higher lateral order. The crystalline morphology of bacteria that have
sustained prolonged exposure to DNA-damaging agents is clear seen in Fig.3.

Figure 3. SEM micrograph of E. coli has been exposed to DNA-damaging agents. The array shows
crystallized DNA. Adapted with permission of the author from Ref.[18].
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3. Qualitative consideration of the theoretical approach

It is well known [6] that properties of phase transition in the polymer and liquid crystal

systems are determined by general characteristics of the molecule’s geometry and analytical

behavior of the intermolecular forces, while particular details of these features are less

relevant. So, we can assume that near the phase transition the major factors that determine

the process of the LM crystallization are the topology of the LM molecule and the behavior

of the effective LM’s segment-segment interactions.

The liquid-crystal ordering of a LM is determined by the angular-dependence of interactions

between LM segments. At low density, the LM pieces interact only at a small number of

points, but when the solvent approaches the crossover point the number of collision points

increases. When typical length between the collision points become approximately the same

as the persistent length, the rigidity of a long molecule becomes important and there is a

tendency to align quasi-straight pieces with quasi-parallel structure. This means that in the

high density state of LM the phase transition from disordered to liquid-crystal-like ordered

phase [5], should take place.

Let us estimate critical volume fraction of the molecules near crystallization point. The
average number of binary collisions between LM quasi-straight pieces can be estimated as:

kL ∼ N

(

L

lp

)2

v, (1)

where N is number of the molecules in the volume V and v is an interaction volume. So, we
have

kL ∼ L
cv

a2l2
p

, (2)

where - c is the volume fraction of LM segments. On the other hand, the average distance
between collision points is on the order of:

lk ∼

L

kL
∼

a2l2
p

cv
. (3)

Critical volume fraction - c∗, where structural phase transition could take place, can be
estimated from lk ∼ lp

c∗ ∼

a2lp

v

Since part of the LM shorter than lp can be considered as an almost rigid rod, for v we can

use an excluded volume approximation v ∼ l2
pa, which leads to

c∗ ∼

a

lp
. (4)
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This “naive” estimation is consistent with more rigorous calculations for the liquid-crystal
ordering of long semi-flexible molecules under pressure (see Sec.4.1).

4. Crystallization of the collagenous materials

4.1. A phase transition under pressure at low temperatures

Although the main assumptions of our theory are general enough to apply to a whole class
of compressed materials made from various natural or artificial fibers, we will discuss here
a concrete case of collagen made material - natural leather, which is made up of fibers of
the collagen molecules (see Section 2.1). At low temperature the fibers are stable and can be
considered as basic units. If the volume fraction of fibers - c, is relatively small which occurs
at low pressure, the fibers intermingle in a disordered way and interact only at a relatively
small number of points (see Fig.1). When the pressure is increased the number of fibers per
volume fraction increases and the interaction between the fibers becomes important.

If we designate a typical coefficient of elasticity per unit of length of fiber as γ, the persistence
length (quasi-straight pieces) lp, will be of order γ/T where T is the temperature. The
condition, that lp is much longer than the diameter a of the fibers, can be expressed as
aT/γ ≪ 1. It can also be seen from the SEM micrographs Fig.1, that the typical length of
fiber L is much longer than lp. So LT/γ ≫ 1. The energy of a fiber consists of its elastic
energy and the energy of interaction with other fibers. It follows from experimental data
[12],[2] that an ordered phase appears for quite a large value the of fiber’s volume fraction.
In this case repulsive short-range forces between fibers are dominant. It is obvious also that
the interaction between two quasi-straight pieces depends on the angle between them.

In the mean field approximation (MFA) the angular dependent part of the energy of
interaction between one fiber and the others can then be represented in the form:

∆Ui =
∫ L

0
dl U[si(l)]

where

U(s) =
Tc

a

∫

n
2=1

dn S(n)u (s;n)) (5)

Here si(l) is the unit tangent vector of the fiber (i) at a distance l from the beginning of the
fiber, S(n) is the average fraction of the quasi-straight pieces of the fibers that are directed in
the direction n and Tcu(s,n)/a is the angular dependent interaction between two pieces of
fibers.

If we assume the simplest form for the elastic energy of the fibers (isotropic approximation),
than in the lowest order on a/lp part of the energy, which depends on the local orientation
of the fiber pieces will be:

∆EMFA =
1

2

N

∑
i

∫ L

0
dl

{

γ

(

∂si

∂l

)2

+ U[si(l)]

}

(6)
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where N is the total number of fibers. The free energy of the system can be expressed as
path integral over all the possible shapes of the fibers:

F = F0 − T ln

[

∫

∏
i

D{si(l)} exp

(

−
∆EMFA

T

)

]

(7)

where F0 is the part of free energy which does not depend on the elasticity and shapes of
the fibers.

In the usual way3 the path integral (7) may be written in the form:

F = F0 − N ln

(

∑
n

exp−EnL

)

(8)

where En is the eigne-value of the Schrodinger-like equation associated with this path
integral

∂ψ

∂l
=

T

2γ
∇2

s
ψ −

U(s)

2T
ψ (9)

here s is a unit vector and ∇2
s
= ∂2/∂θ2 + tan−1 θ∂θ + sin−2 θ∂2/∂ϕ2 is the angular part of

the Laplacian operator.

In the ordered phase the “depth of the potential well - (Umax −Umin)/2T" is large compared
to the “kinetic energy -T/2γ", because, the phase transition to the ordered phase occurs for
c ∼ 1 [2] and

max
( γ

T2
U
)

∼
cγ

aT
∼ c

lp

a
≫ 1.

while min(U) ≈ 0. On the other hand, in a disordered phase S(n) ≡ 1/4π and U(s) = const.
In both cases the energy spectrum will be discrete and the gap between the ground state and
the 1st exited state will be about

E1 − E0 ∼
T

γ
.

As LT/γ ∼ L/lp ≫ 1, the ground state is dominant, and we obtain for the free energy per
unit volume

F = F0 +
Tc

a2
E0 (10)

and for S(n)

S(n) = |ψ0(n)|
2 = Ψ2(n) (11)

3 See more precise consideration in Sec.5
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E0 can be obtained by using the variation principle from which we find that

F = F0 +
Tc

2a2

∫

ds

[

T

γ

(

∂Ψ

∂s

)2

+
c

a

∫

dnΨ
2(s)u(s;n)Ψ2(n)

]

(12)

This is a well known Ψ
4 field Hamiltonian. The function Ψ(s) must be found by minimizing

F under the restriction
∫

dsΨ
2 = 1 (13)

It can be done in many ways. Here we will use the simple approximation, which Onsager
used in his treatment of liquid crystals [5]. In this approximation it is assumed that Ψ(s) is
a narrow peaked function in an ordered phase

Ψ(s) = φ (λ(s · s0)) (λ ≫ 1) (14)

where s0 is the direction of an average orientation of the quasi-straight pieces, while in a
disordered phase Ψ(s) ≡

√
1/4π (this means that in a disordered phase λ = 0) 4. The

parameter λ should be found by minimizing F.

The difference between the free energy in the ordered and disordered phases is

∆F ≃
Tc2

2a3

{

g

(

Ta

γc

)

− 1

}

(15)

where the specific form of the function g(x) depends on the behavior of u(s,n) near s ≈ n.
If it is assumed that near s ≈ n the behavior of u(s,n) is of the form

f ∝ η[s×n]2ν (16)

(η is a constant O(1)), then in the Onsager approximation one finds5

g(x) ≈ (µx)
ν

1+ν (17)

with

µ ≈ (4κνη)
1
ν (18)

4 Onsager used the function φ in the form φ(x) = A cosh(λx), but the final results are weakly sensitive to the concrete
form of φ(x).

5 The parameter λ here is

λ =

{

(

4νac T∗
T

)1/1+ν
≫ 1 if T < T∗c

0 if T > T∗c

which justifies the use of the approximation (14)
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The numerical coefficient κ is O(1) and depend on the explicit form of the test function (14).

It is obvious from (15), that for fixed T and a specific value of the fiber fraction

c∗ =
T

T∗
(19)

where

T∗ =
γ

µa

the material undergoes a first order phase transition from the disordered to the ordered
phase. The ordered phase is stable for T < T∗ and it is called compressed leather (see Fig.2).

The order parameter Q, that describes the ordering in the orientation of the fibers, can be
defined as

Q ≈
1

2

(

3
∫

dnS(n)(n · s0)
2 − 1

)

(20)

In the ordered phase using (11) with Ψ(n) from (14) one obtains

Q ≈ 1 −
3

λ
≈ 1 − 3(4νa)−1/1+ν

(

T

T∗c

)
1

1+ν

(21)

(in the disordered phase Q = 0). The difference between thermodynamic parameters of the
ordered and disordered phase can be obtained as follows

q ∼
T∗
a3

ν

1 + ν

(

T

T∗

)3

(22)

∆C ∼
1

a3

ν(1 + 2ν)

(1 + ν)2

(

T

T∗

)
ν

1+ν

c
2+ν
1+ν (23)

∆KB ∼
Tc2

a3

(

1 −
2 + ν

2(1 + ν)2

(

T

T∗c

)
ν

1+ν

)

(24)

where q is the latent heat, C is the specific heat, KB is the bulk modules, and ∆ indicates the
difference between ordered and disordered phase. In general, the ordered phase consists of
domains with different fiber orientation (see Fig.2) but the energy of the domain boundaries
gives a small contribution to ∆F.

It should be noted, that for large volume fraction of the collagen fibers the form of their cross
sections changes, and therefore so do the effective diameter and elasticity. Furthermore, the
elasticity of the fiber bundles and coefficient ρ in the expression (12) depend on temperature,
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so that we must consider T∗ = T∗(T, c). If T is less than Td1 (Td1 is the lowest temperature of
collagen denaturation: Td1 ∼ 350oK) the inner structure of the fibers almost doesn’t change
and the dependence T∗ = T∗(T, c) is quite weak. In general such dependence does not
change the expressions for the free energy and order parameter, but additional terms appear
in the other thermodynamic quantities. However, as most of the expressions contains T∗ in a
low power they are relatively insensitive to its variations. It is not anticipated that a change
from the isotropic approximation for the elastic energy to a more realistic approximation
would produce changes of any significance.

4.2. A phase transition under increasing temperature at high pressure

If we increase the temperature of compressed leather with fixed c, to a temperature higher than
T0 = cT∗ a first order phase transition from the ordered to the disordered phase takes place.
If T0 ≪ Td1 this phase will be leather. A more complex situation occurs for T0 > Td1. If the
temperature is higher than Td1 the helix form of the collagen molecule becomes unstable,
the molecules melt and the fibers are destroyed. The approach of the previous Section fails,
because the variation in the internal free energy of the fibers plays a major role [10]. The
structure of the material for T ≥ Td1 is determined by the competition between the melting
and ordering of the collagen molecules. We will describe the behavior of the material by
using the following model.

In a first approximation the leading term of the free energy can be represented as

F = F0 + c fmol + Tceorien + Fint (25)

where fmol is the free energy of a single collagen molecule, eorien is the orientation dependent
part of the entropy and Fint is the energy of intermolecular interaction. In order to calculate
fmol we use an approximation which is close to the well-known Zimm-Bragg model. The
latter is in good agreement with the real behavior of the collagen molecules (see, for example
[9]).

Consider a collagen molecule that contains sN segments in helix form and pN boundaries
between “helix” and “coil” parts of the molecule (in the literature s is called spirality), where
N is the number of segments in the molecule. N is large. Let us call the free energy of
a segment in helix form - εh, in coil form - εc and the energy of segments on the boundary
between helix and coil parts as εs (εh − εc = ∆U − T∆S ≡ ∆S (Tm − T), where ∆U and ∆S are
the differences between the internal energy and entropy of a spiral and a melted segment).
As the collagen molecule can be considered as a one-dimensional system, we can calculate
the free energy fmol in an analogous way as for the 1D-Ising model. The result is [9]:

fmol = − (εc − εh) s + εs p − T {s ln s + (1 − s) ln (1 − s)− (26)

−2p ln p − (s − p) ln (s − p)− (1 − s − p) ln (1 − s − p)} (27)

The last two terms in (25) can be obtained in the MFA approximation (see Sec.4.1)
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eorien = s
∫

n2=1
dn g(n) ln (4πg(n)) ; (28)

Fint =
c2

2

{

s2
∫

n2=1
dkdng(k)g(n)U(k;n) + 2Tχshs (1 − s) + Tχss (1 − s)2

}

(29)

where g(n) is the average fraction of the segments in helix form that are directed in
the direction n. The first term in (29) corresponds to the interaction between helix-helix
segments, while the others describe the interaction between helix-coil and coil-coil segments
resp.

The energy of interaction between spiral segments we write in the form

U(k;n) ≃ Tχhhu(k;n), (30)

We assume as above, that near k ≈ n

u ∝ |k×n|2ω , (31)

which corresponds to a repulsive interaction in an excluded-volume approximation6. In
this approximation, ω = 0 corresponds to the bundles made from hard spheres, ω = 0.5
to the bundles made from hard bars, ω = 1 corresponds to MaierŰSaupe approximation
and larger ω may be used for arch-like “hemstitch” units. We will also assume that in a first
approximation the coefficients χhh ≈ χhs ≈ χss ≈ nsχ are of the same order. ns is the number
of atoms in the segments.

Using Onsager approximation for g(k) [5] and integrating (29) over n and k, we obtain for
λ ≫ 1:

Tceorien + Fint ≃ Tc
{

s (ln λ − 1) + s2 cnsχ

2
ζ (ω) λ−ω − s2 cnsχ

2

}

+
Tc2nsχ

2
(32)

where coefficient ζ (ω) is (see Appendix 1)

ζ (ω) = 22ω+1π−1/2
Γ

(

3

2
+ ω

)

.

6 In fact, U(k;n) must includes the term that corresponds to an attractive interaction. This term has the form:

δU ∼ −
p

s
µuattr(k;n).

In our theory, however, δU can be neglected for the following reasons: for s ≤ 1 and εs ≫ εc − εh , δU is small
because p ≪ s. On the other hand, if s ≪ 1 and p ∼ s the whole term s2

∫

n
2=1

dkdng(k)g(n)U(k;n) in (29) is
small and can be neglected.
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In the disordered phase g(k) ≡ 1/4π and the interaction term in this approximation does
not depend on spirality:

F′
int =

Tc2

2

{

χhhs2 + 2χshs (1 − s) + χss (1 − s)2
}

≈
Tc2nsχ

2
. (33)

In the ordered phase the quantities s, p and λ have to be found by minimizing (25). This
gives

λ =

(

c

c0

)1/ω

s1/ω , (34)

(1 − s − p) s

(s − p) (1 − s)
=

λ

τ
exp

2

ω

(

−
c

ζc0
s + 1 −

ω

2

)

, (35)

p2

(s − p) (1 − s − p)
= σ, (36)

where

τ = exp
εc − εh

T
≡ exp ∆S

Tm − T

T
,

σ = exp−
εs

T
, (37)

c0 =
2

χnsωζ
. (38)

(for collagen εs ≫ Tm, ω ≈ 0.5, ns ∼ 2 · 101 and ∆S ∼ 10). If cs ≪ c0, λ is small and the above
used approach fails. For such c and s however, the angle-dependent interaction between
molecules becomes irrelevant, and the system will be in the disordered phase. In this phase
λ = 0 and the free energy F′ can be calculated in an explicit form. The result is [9]

F′ ≈ F0 − cT ln
τ + 1 +

√

(τ − 1)2 + 4στ

2
+

Tc2nsχ

2
. (39)

The order parameter in the ordered phase is

Q ≈ 1 −
3

λ
+ o

(

1

λ2

)

≃ 1 − 3
( c0

c

)1/ω
s−1/ω . (40)
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Note, that we have here

∂ ln (1 −Q)

∂ ln c
=

∂ ln (1 −Q)

∂ ln s
≈ −

1

ω
, (41)

while for the phase transition under pressure at low temperatures it is obtained in Sec.4.1
that:

∂ ln (1 −Q)

∂ ln c
≈ −

1

1 + ν
, (42)

So in (41) the dependence of Q on ω is much stronger for small ω, than the dependence of
Q on small ν in (21). These derivations depend only on ω or ν and thus measurement of Q
gives important information on the type of inter-fiber interaction.

The solution of the system (34)-(36) that corresponds to large λ, is

1 − s ≈
1

τ

((

c

c0

)

exp

(

−
2c

ζc0
+ 2 − ω

)) 1
ω

≪ 1

Q ≈ 1 − 3

(

c

c0

)− 1
ω

. (43)

The phase transition temperature - Tc is found from the condition Forder (Tc) = F′
disorder (Tc).

So we obtain:

∆S
Tc − Tm

T c
≃ ξ

(

ω,
c

c t

)

− ln

(

1 +
σe−2ξ

1 − e−ξ

)

, (44)

ξ ≈
ρ (ω) (c/ct − 1)− ln (c/ct)

ω
,

ρ = ln ρ + ln ζ (ω) e1−ω , (45)

ct = ζρc0. (46)

The ordered phase can be stable only if c > ct = ζρc0. Thus λ > (ζρ)1/ω and the above used
approximation (32) is valid, because ζρ > 1.

The derivative of the transition temperature to the pressure

∂Tc

∂P
∝

∂Tc

∂c
∼

T3
c

qωTm



1 + σ

(

2 − e−ξ
)

e−2ξ

(

1 − e−ξ
)2





( ct

c

)

(

ρ
c

ct
− 1

)

> 0 (47)
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is positive. The latent heat and the jump in compressibility for this case are

q ∼ ctTc∆S (48)

∆κ ∝
ctTc

ω

(

1 − 2ρ
c

ct

)

< 0. (49)

For the jumps in the orientation order parameter and in the spirality we have

∆Q ≃ 1 − 3

(

ct

ζρc

)
1
ω

,

∆s ≃ 1 − exp
1

ω

(

1 − ρ
c

ct

)

, (50)

so the phase transition is of first order. Note, that in our approximation these jumps strongly
depend on the exponent of the small-angle interaction between the molecules segments.

The restriction ct ≤ 1 leads to

ns ≥ ns0 (ω) =
2ρ

χω
(51)

and for ns < ns0 (ω) the phase transition does not exist.

The numerical solution of the system (34)-(36) is shown in Fig.4. On the left hand side (c < ct)
cooperative “melting” takes place, while on the right hand side (c > ct) a first order phase
transition can clearly be seen. The inter-molecular interaction transforms the cooperative
“melting” to the phase transition of the first order.

5. Crystallization of a Closed Long Macromolecule

In the previous Section we have discussed crystallization of the long open macromolecules,
even though closed long macromolecules (CLM) are also widespread components of living
systems. Major efforts in these and many other works were put forth to understand the
peculiarities, structures and thermodynamics of condensed states of CLM. In contrast, the
present paper focuses on the phase transition to a crystalline state and on the behavior of its
general characteristics, like jumps of the CLM local density, the liquid crystal order parameter
and transition entropy, which are biologically significant, because DNA packaging capacity
and sharpness of the transition directly influence bacteria protection efficiency [17].

It is well known [6] that properties of phase transition in the polymer and crystal systems are
determined by general characteristics of the molecule’s geometry and analytical behavior of
the intermolecular forces, while particular details of these features are less relevant. So, we
can assume that near the phase transition the major factors that determine the process of the
CLM crystallization are the topology of the CLM molecule and the behavior of the effective
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Figure 4. Spirality as a function of the normalized inverse temperature and volume fraction of the
molecules. Adapted with permission from Ref. [14]. l’ [2000] American Physical Society.

CLM’s segment-segment interactions. The condensation process of a long macromolecule
includes two phenomena: collapse of the molecule’s chain and structural ordering of the long
semi-flexible molecule’s segments. Separately, each of these phenomena has been discussed
in literature [6, 13, 16, 27], but, as we will see later, these processes influence each other, so
their combined consideration leads to considerable change in the theoretical approach.

Consider a long closed macromolecule with a hard-core diameter a, persistent lengths lp and

total length L. (For bacterial DNA: lp/L ∼ 10−4, a/lp ∼ 10−2). Above the crossover point
between good and poor solvent, an effective repulsion between CLM segments dominates
over effective attraction and CLM remains in a low density “coil” state. Near the crossover
point, segment-solvent interactions compensate contribution of binary segment-segment
repulsion, so that below the crossover the effective attraction becomes dominant and
the molecule undergoes transition into a compact globular form. Since segment-solvent
interactions are independent of the segments’ orientations, such compensation takes place
only for angular-independent contributions to binary collisions.

In contrast, the liquid-crystal ordering of a CLM is determined by the angular-dependence
of interactions between CLM segments. At low density, the CLM pieces interact only at a
small number of points, but when the solvent approaches the crossover point the number
of collision points increases. When typical length between the collision points become
approximately the same as the persistent length, the rigidity of a CLM molecule becomes
important and there is a tendency to align quasi-straight pieces with quasi-parallel structure.
This means that in the high density state of CLM the phase transition from disordered to
liquid-crystal-like ordered phase [5], should take place. However, “naive” estimation (4) is
even qualitatively incorrect in the case of the condensation of a long macromolecule. In
the liquid-crystal ordering that is accompanied by molecular collapse in a poor solvent,
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non-binary interactions should be taken into account and the critical volume fraction is given
by (see below):

ρc ∼

(

a

lp

)
ω

1+2ω

≫ ρ∗, (52)

where quantity ω is determined by a small-angle-limit of angular-dependent interactions
between two CLM segments [15].

The Hamiltonian of a DNA molecule in bacteria is very complicated and includes many
variables describing a DNA molecule, solvent components and DNA associated proteins.
It can be simplified, however, by integrating the microscopic Hamiltonian over the solvent
and the protein’s degrees of freedom. Of course, the resulting Hamiltonian will still be
sophisticated and will include nonlinear terms with derivatives and terms with nonlocal
segment-segment interaction. Near the transition point, however, where the CLM density
ρ is of the order of o(a/lp, K̄lp) (where K̄ is an average local curvature of the molecule,
see later), the nonlinear derivative terms can be omitted for the lowest approximation on
a/lp, K̄lp, while nonlocal contribution to the segment-segment interactions can be treated by
using self-consisting-field approximation, which is, apparently, valid in the transition region
(see below and corresponding discussion in [14]).

We will assume that the molecule’s core is twisted around its centerline, so in a mechanical
equilibrium state the molecule is super-coiled [23, 25] (Fig. 5). Since for bacterial DNA:
K̄lp . 10−1 [23], we will consider a case: a/lp ≪ 1, lp/L ≪ 1 and K̄lp ≪ 1.

Figure 5. Super-coiled macromolecule. lp is the effective bending persistent lengths, s is a unit tangent
vector and b is a unit bi-normal vector. β is the opening angle of the super-helix, a is the hard-core
diameter, ϕ is the twist angle and K0 is a local curvature. Reproduced with permission from Ref.[15].

For the lowest order on a/lp and K0lp energy of deformation of the super-coiled CLM can be
approximated as [15]:

HS

T
=

∫ L

0

{

lp

2

(

ds

dl
− K0(l)[s× b]

)2

+
lt
2

(

dϕ

dl
− Ω0(l)

)2
}

dl,

where the molecule is considered as a semi-flexible chain, with the contour parameter l
and the contour length L. lp and lt are the effective bending and torsion persistent lengths
(lp ∼ lt). s(l) is a unit tangent vector at the point l and b(l) is a corresponding unit bi-normal
vector. ϕ(l) is the twist angle. Note that b, s and ϕ are related as db/dϕ = [s× b]. The terms
are proportional to K0 and Ω0 ensure minimum of HS at an initial super-coiled state with
local curvature K0(l) and local twist per unit length Ω0(l).
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The effective energy of interactions between the molecule pieces and the molecule and
solvent components can be taken into account by adding an effective field U, induced by
the renormalized segment-segment interactions:

HPT = HS +
1

a

∫ L

0
U(x(l), s(l), ϕ(l))dl,

where x(l) is a coordinate vector at the point l. It follows from Eqs. (1) and (4) that near
the transition point each quasi-straight piece interacts with a large number of neighbors
[kneigh ∼ ρcv/a2lp ∼ (lp/a)1+ω/1+2ω ≫ 1]. Therefore, the term U(x, s, ϕ) can be obtained
by using a self-consisting-field approach [14]. In this region the repulsive and attractive
contributions to binary collisions between the molecule’s pieces compensate each other
and high order collisions become significant [6]. Such compensation, however, takes place
only for angular independent contributions, so we should keep higher order terms only
for angular independent contributions, while for angular-dependent interactions we could
take into account only collisions of the lowest order. Thus, the interaction energy can be
approximated as:

U ≃ T̺(x)

(

∮

ds′ dϕ
′

γ(s− s
′; ϕ − ϕ

′)g(x, s′, ϕ
′) + Φ(̺(x))

)

, (53)

where function g(x, s′, ϕ′) describes local fraction of quasi-straight segments with twist ϕ′,
which are oriented along the direction s

′. ̺(x) is the local density of the CLM segments near
point x. γ(s− s

′; ϕ − ϕ′) describes the angular-dependent part of energy of interactions,
while angle-independent contributions are included in the term Φ(̺). It is assumed that the
first term (53) is vanished for g(x, s, ϕ) = const. Using the same arguments as in [6, 16], we
can consider Φ(̺) as an analytical function and expand it over ̺:

Φ ≃ τ + κ̺. (54)

Note, that for the main approximation, higher order terms in (54) should be omitted, because

they lead to higher order contributions to the free energy ∼ o
(

(a/lp)4ω/(1+2ω)
)

. τ > 0

corresponds to a good solvent and τ < 0 to a poor solvent and it depends on the chemical
composition of the solvent.

It should be noted that because g(x) and ̺(x) are slowly changed within the interaction
scales, we can use local approximation for the functions γ and Φ. Corresponding
contribution to the free energy per unit volume can be found from [26]:

F = −
Tρ

a2L
ln

∫

d3
x

∮

ds dϕ G(s, ϕ,x|s, ϕ + 2πm,x; L), (55)

where G(s0, ϕ0,x0|s1, ϕ1,x1; L) is a Green function of Hamiltonian HPT and
∮

designates
integration over ϕ and directions of s and ρ is the average volume fraction of the molecule
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(m is an integer number). It can be shown in a standard way [6] (see Appendix 2) that for
the first approximation on (a/lp) and K0lp, G is:

∂G

∂L
− ĤG = δ(L)δ(s1 − s0)δ(x1 − x0)δ(ϕ1 − ϕ2), (56)

with

Ĥ = −(s · ∇)− K0

(
A ·

∂

∂s

)
− Ω0

∂

∂ϕ
+

1

2lp

∂2

∂s2
(57)

+
1

2lt

∂2

∂ϕ2
−

K0

2

∂A

∂s
−

U

aT
;

A = [s× b] =
(e− s(e · s)) cos ϕ + [e× s] sin ϕ√

1 − (e · s)2
,

where ∂/∂s and ∂2/∂s2 - are gradient and Laplacian over the angular variable s, while
∇ is gradient over the space variable x, (e is a constant unit vector, which reflects initial
orientation of the super-helix. The free energy, of cause, is invariant under arbitrary rotation
of e).

If K0(l), Ω0(l) are changed slowly on scale lp, where G significantly changes (this is typical
for bacterial DNA [25]), we can use adiabatic approximation for Green function [26] and
write:

G ≃ ∑
i

w+
i (s1, ϕ1,x1)w

−
i (s0, ϕ0,x0) exp−

∫ L

0
Ei(K0(l), Ω0(l))dl, (58)

where l is considered as an imaginary time and {Ei} is the energy spectrum of the equation

Ĥwi ≃ −Eiwi. (59)

w−
i (s, ϕ,x) = w+

i (−s,−ϕ,x) and they are normalized as
∫

w+
i w−

i d3
x ds dϕ = 1.

The main contribution to the sum in Eq. (58) is given by the lowest part of the energy

spectrum. The structure of this part depends on the ratio of l−1
p , l−1

t to the depth of the

"potential well": ∼ (Umax − Umin)/T. If this ratio is small, the lowest part of the spectrum
will be discrete, otherwise it will be continuous. In the high density phase this ratio can
be estimated as Tl−1

p /(Umax − Umin) ∼ a/ρlp ∼ ρ∗/ρc, so, for ρc ≫ ρ∗ the lowest part
of the spectrum is discrete. (In the low density phase ∇w = 0 and U ≃ const., and
the spectrum is obviously discrete, because s and ϕ are changed in the finite regions.)
Since a gap between the ground and the first exited state is about E1 − E0 ∼ l−1

p , so

[exp−L(E1 − E0)] ∼ exp−L/lp ≪ 1, we can keep in (58) only the term with the lowest
E0 [15].
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Then, free energy is expressed as:

F ≃
Tρ

a2L

∫ L

0
E0(K0(l), Ω0(l))dl + o(a/L).

Rewriting w in the pseudo-polar form:,

w(s,x, ϕ) = u(s,x, ϕ) exp[K0lp f (s,x, ϕ)], (60)

where

u(s, ϕ,x) =
√

w(s, ϕ,x)w(−s,−ϕ,x)

K0lp f (s,x, ϕ) = ln

(

√

w(s, ϕ,x)/w(−s,−ϕ,x)

)

, (61)

one obtains (see Appendix 3):

F =
T

a3

∫

d3
x

∮

ds dϕ

{

a

2lp

(

∂u

∂s

)2

+
a

2lt

(

∂u

∂ϕ

)2

+

+

[

U(s,x, ϕ)

T
+ h

(

(

∂ f

∂s

)2

+
lp

lt

(

∂ f

∂ϕ

)2
)]

u2

}

, (62)

where h = alpK2 = alpL−1
∫ L

0 K2
0dl. For DNA molecule h can be estimated as h ≃

(lp/2a)σ2 cos4 β [25], where σ is super-helical density and β is an opening angle of the
super-helix.

Expression (62) should be minimized over u(s,x, ϕ) under restriction (see Appendix 3):

(

∂

∂s
·

(

u2 ∂ f

∂s

))

+
lp

lt

∂

∂ϕ

(

u2 ∂ f

∂ϕ

)

= (63)

=

(

∂

∂s
· (u2

A)

)

+
Ω0

K0

∂u2

∂ϕ
+

1

K0

(

∇ · su2
)

,

∫

d3
x

∮

ds dϕ u2(s,x, ϕ) = 1

In order to find the minimum of (62) we will use the Onzager approach [5], where it is
assumed that u = exp λψ(s,x) and the function ψ(s,x) has a maximum in the direction
of the local average orientation of quasi-straight segments. The parameter λ is found by
minimizing F and it is assumed that λ > 0 in the ordered phase and λ = 0 in the disordered
one.
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To define factor γ(s − s
′; ϕ − ϕ′) , note that for λ ≫ 1 (which is correct near the phase

transition in our case), the function u(s,x) has a narrow maximum in the direction of the
local average orientation of quasi-straight segments. Because in the used approximation
g = u2, the small-angle collisions give the main contribution to the angular-dependent term
in (53). This means that the behavior of γ near |θ| ≪ 1, where θ is the angle between s and
s
′, is relevant and we will approximate γ as

γ ≃ ς + η|θ|ω ,

The constant ς < 0 ensures that the average of γ(s− s
′; ϕ − ϕ′) is vanished (we will assume

later that ς is included in τ). Generally speaking, η is an analytical function of (ϕ − ϕ′), but
for Ω0lt ≪ K0lp dependence γ on ϕ can be neglected. For the excluded volume contribution
and for the forces that were considered in [21] ω = 1 should be chosen.

The final result depends weakly on the specific form of the prob function u (see Appendix
5) and can be obtained explicitly for λ ≫ 1. Somewhat exhausting but straightforward
calculations show that λ ∼ [ηΓ(2 + ω)ρlp/a]1/1+ω , so λ ≫ 1 for ρ ≫ a/lp. (Here Γ is
Gamma function). Finally one obtains

F ≃ Ta−3
[

(

ã/lp
)α

ρ2−α + τρ2 + κρ3 + hρ
]

, (64)

with α = ω/1 + ω and ã ∼ [ηΓ(2 + ω)]1/ωa.

It is easy to show (see Appendix 4) that near point:

τc ≃ −2κρc

{

1 + (1 − α)

(

ασ

κσc
Λ

)−1/1+α
}

, (65)

where σc ≃ [(ηΓ(2 + ω))−1/2ωα(3+α)/2(1+α) cos−2 β]κ(α−1)/2(1+α)(ã/lp)(1+3α)/2(1+α), the
system undergoes the first order liquid-crystal phase transition with critical volume fraction
of the molecule:

ρc ≃ co

(

ã

lp

)α/1+α σ

σc
Λ

(

σ

σc

)

, (66)

where co ≃ (α/κ)1/1+α and function Λ satisfies to

(σc/σ)1+α
Λ

1−α − Λ
2 + 1 = 0. (67)
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It has an asymptotic:

Λ

(

σ

σc

)

≃

{

σc/σ for σ ≪ σc

1 for σ & σc

The jump of entropy near the transition point is:

∆Sc = q/T ∼ (ã/lp)
2α−1/1+αρ2−α

c , (68)

where q is latent heat and it is relatively small, while a jump of the liquid-crystal order
parameter

Qc ≃ 1 −
3

λ(ρc)
∼ 1

is large.

It is clearly seen that there is a well defined critical value of the super-helical density - σc,
that alters the transition properties. For σ ≪ σc the transition’s parameters are independent
of the super-helical density:

τc ∼ −κ

(

ã

lp

)α/1+α

,

ρc ∼

(

ã

lp

)α/1+α

,

and the phase transitions in the closed and the open macromolecule are the same. However,
in the opposite case σc . σ the situation is cardinally changed:

τc ∼ −κ

(

ã

lp

)α/1+α σ

σc

[

1 + o
(

(σc/σ)1/1+α
)]

,

ρc ∼

(

ã

lp

)α/1+α σ

σc
,

so, super-helical density becomes one of the major factors that influence the crystallization
process. This case corresponds to bacterial DNA, where the crossover value σc ∼ 5 · 10−3

is very small, while typical values of the super-helical density are σ ∼ 5 · 10−2 ≫ σc. It
can be seen that super-helicity doesn’t prevent phase transition to the crystalline state but
decreases the transition point and increases sharpness of the phase transition. Qualitative
behavior of ρ(τ), ρc(σ), τc(σ) and Qc(σ) is shown in Fig. 6. It should be noted that free
energy (64) contains only bulk contribution, because the surface contribution is proportional
to (ρa/L)1/3 and should be neglected in the used approximation.
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Figure 6. Behavior of the transition’s parameters. A - behavior of ρ(τ) for different σ. Dashed line σ = 0,
solid line σ ≫ σc. B behavior of τc(σ), C - behavior of ρc(σ), D - behavior of Qc(σ). Reproduced with
permission from Ref.[15].

It should be emphasized that condition a/lp ≪ 1 is essential for liquid-crystal ordering.
Although our approach is not quantitatively validated for a/lp ∼ 1, one can hope that it
qualitatively correctly predicts the behavior of the system characteristics in this limit. Since
for a ∼ lp it should take λ = 0, the liquid crystal ordering should not take place in this case.

6. Discussion

The MFA is the most crucial approximation in our theory but it is a reasonable one. At low
temperatures each quasi-straight piece of a fiber or collagen molecule interacts with a large
number of neighbors and, therefore, fluctuations of the concentration are irrelevant. On the
other hand, the phase transitions are of the first order and fluctuations of the order parameter
are therefore small. Note, that main assumptions, which have been used in the Sec.4, are
general enough to apply the theory to a class of compressed materials made from various
fibers. It could be used, for example, for implant materials made from actin myofibrils or for
artificial wood made from natural cellulose fibrils.
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It has been shown in [12], [2], that a novel material can be developed by exerting high
pressure and temperature on natural leather material. The production is done in an oxygen
poor environment in order to prevent burning of the leather. The resulting material, which
was called pleather, is thermoplastic.

For low pressure, heating leads to destruction of the leather, but for high pressure it leads to
the appearance of an amorphous material. This transformation corresponds to the transition
described here. For this transition the jump of Young’s modulus is strongly correlated with
the jump in the compressibility. The theory predicts the stabilization of the spiral form of
the collagen molecules at high pressure and the sensitivity of the transition to an uniaxial
stress [10]. The spiral form stabilization has been found already in an aqueous solution of
collagen [11], while the sensitivity to an uniaxial stress should be tested by experiment. Other
predictions of the theory like positive shift of the transition temperature with pressure and
small latent heat of the transitions are in good agreement with the experimental observations
[12], [2] as well.

It should be noted, that in the real material the phase transition under heating is not
reversible and after cooling the system does not return to the initial low-temperature phase.
This effect is connected with the cross-links between collagen molecules in the coil form.
These cross-links are not important for the behavior under heating, because until the phase
transition the spirality of collagen is large. However, if we cool the material after phase
transition the cross-links prevents spiralization and, therefor, stabilize the disordered phase.

Considering the bacterial DNA crystallization, one can say [28] that the cellular conditions
that determine super-helical parameters regulate the packaging of DNA as well and,
therefore, regulate bacterial endurance and virulence. The theory predicts crucial role of
super-helicity in DNA condensation, which has been found experimentally [19, 24, 28]. It
was found also that the condensation conditions of closed (with σ ≃ 3 · 10−2) and of open
DNA are different [19]. For ω = 1, which looks reasonable in the considered situation,
ρc ∼ 0.4 and Qc ∼ 0.75 are in qualitative agreement with the experimental observation.

Apparently, the situation a/lp ∼ 1 is realized in eucaryote cells, where the initial phase
of DNA packing is presented by fiber that comprises a string of repeating units: the
nucleosomes, where DNA molecules wind around histone cores. The nucleosomes are
connected by pieces of free DNA, so the flexibility of the fiber is close to the flexibility
of the DNA chain, while the fiber’s effective diameter is approximately of nucleosome
size: anucl ∼ lp, so there is no liquid crystal crystallization. In fact, in this situation, the
“beads on string” model [16] seems more appropriate. It is shown [16] that in this case an
ordinary collapse of the chain to a friable, non-crystalline state must occur. This supports the
hypothesis [29] that nucleosomes were formed to counteract spontaneous transition of the
eucaryotic DNA into crystalline state.
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Appendix 1

We have for λ ≫ 1:

F ≃ F0 +
χTc2

2D3

1
∫

0

dx

(

TD

χγc

(

1 − x2
)

Aλ2
(

φ′(x)
)2

exp (λφ(x)) +

+2ωκA2 exp (λφ(x))

1
∫

0

dy exp (λφ(y)) |x − y|ω Pω

(∣

∣

∣

∣

2 − x − y

x − y

∣

∣

∣

∣

)



 .

where

κ = lim
−→n →k

u (n,k)

|n× k|2ω
,

ω = lim
n→k

1

2

∂ ln u (n,k)

∂ ln |n× k|
.

and Pω is a Legendre function. Since the main contribution to these integrals gives x ∼ y ∼ 1

we can put: φ (y) ≃ φ (1)− φ′ (1) (1 − y) + o
(

(1 − y)2
)

≃ φ (1)− u + o
(

u2
)

and obtain for

the coefficient ζ (ω)

ζ = 2ωκ
∫

∞

0
dudze−u−z |u − z|ω Pω

(∣

∣

∣

∣

u + z

u − z

∣

∣

∣

∣

)

+ o
(

e−λ
)

≃

≃ 2ω+2κ

∞
∫

0

du′dz′ (uz) e−u′2−z′2
∣

∣

∣u′2 − z′2
∣

∣

∣

ω
Pω

(∣

∣

∣

∣

u′2 + z′2

u′2 − z′2

∣

∣

∣

∣

)

=

= 2ω+2κ

2π
∫

0

dϕ sin ϕ cos ϕ
∣

∣

∣sin2 ϕ − cos2 ϕ
∣

∣

∣

ω
Pω

(∣

∣

∣

∣

1

sin2 ϕ − cos2 ϕ

∣

∣

∣

∣

)

×

×

∞
∫

0

dr r2(1+ω)+1 exp
(

−r2
)

= 2ω−1κ

∞
∫

0

dx x1+ωe−x

π
∫

0

dφ sin φ |cos φ|ω Pω

(∣

∣

∣

∣

1

cos φ

∣

∣

∣

∣

)

=

≃ 2ωκΓ (2 + ω)

∞
∫

1

dz z−2−ω Pω (z) .

where Γ(x) is Gamma function. So

ζ (ω) = 22ω
Γ (1 + ω) κ.
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If the term |n× k|2ω gives the main contribution to u (n,k) , we obtain

κ ≈
2Γ

(
3
2 + ω

)

√
πΓ (1 + ω)

,

and for ω ≤ 1

ζ (ω) ≈ 22ω (1 − 0.02ω) .

Appendix 2

Green function G(s0, ϕ0,x0|s1, ϕ1,x1; L) is defined as:

G(s0, ϕ0,x0|s1, ϕ1,x1; L) =
∫ ∫

︸︷︷︸

Dx(l)s(l)ϕ(l) exp− HPT(L)

T
,

with: x(0) = x0; s(0) = s0; ϕ(0) = ϕ0; x(L) = x1; s(L) = s1; ϕ(L) = ϕ1,

where
∫ ∫

︸︷︷︸

Dx(l)s(l)ϕ(l) is a path integral over all possible shapes of a molecule chain. This

Green function satisfies the equation [6] (see Fig. 7):

G(s0, ϕ0,x0|s, ϕ,x; L) =
∫ ∮

d
3
x
′

ds
′

dϕ′ G(s0, ϕ0,x0|s′, ϕ′,x′; L − dL)

G(s′, ϕ′,x′|s, ϕ,x; dL). (69)

Figure 7. To equation (69). L is a macromolecule’s contour length, persistent lengths, s0,s′,s are unit
tangent vectors, b0, b′, b are unit bi-normal vectors, ϕ is the twist angle and x0,x are coordinate vectors
at initial and end points of the molecule. Reproduced with permission from Ref.[15].

If dL is small the function G(s′, ϕ′,x′|s, ϕ,x; dL) can be presented as:
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G(s′, ϕ′,x′|s, ϕ,x; dL) ≃ 1

Z
exp−

{

lp

2

[

s− s′

dL
−K

(

s+ s′

2
,

ϕ + ϕ′

2
, L − dL

2

)]2

+
lt
2

[

ϕ − ϕ′

dL
− Ω0

(

L − dL

2

)]2

+

+
1

aT
U

(

s+ s′

2
,

ϕ + ϕ′

2
,
x+ x′

2

)}

dL, (70)

where Z is a proper normalization multiplier. Observing that x′ = x− sdL and symbolling:

√
dLp = s− s′ −KdL,√
dLt = ϕ − ϕ′ − ΩdL,

and keeping in (70) the lowest on dL terms one obtains:

G(s′, ϕ′,x′|s, ϕ,x; dL) ≃ 1

Z

[

1 − lp

2

(

p ·
(

p · ∂

∂s

)

K

)

dL − lp

2
t

(

p · ∂K

∂ϕ

)

dL−

− lt
2

(

t2 ∂Ω0

∂L

)

dL +
U(s, ϕ,x)

aT
dL

]

exp−
(

lpp
2

2
+

lpt2

2

)

. (71)

Correspondingly, for G(s0, ϕ0,x0|s′, ϕ′,x′; L − dL) = G(s0, ϕ0,x0|s −
√

dLp − KdL, ϕ −√
dLt − Ω0dL,x− sdL; L − dL) one has

G(s0, ϕ0,x0|s′, ϕ′,x′; L − dL) ≃ G(s0, ϕ0,x0|s, ϕ,x; L) +

+

[

p2

2

∂2G
∂s2

=
t2

2

∂2G
∂ϕ2

− ∂G
∂L

−

−
(

[K + dL−1/2p] · ∂G
∂s

)

− [Ω0 + dL−1/2t]
∂G
∂ϕ

− (s · ∇G)−

− 1

2
t

(

p · ∂2G
∂s∂ϕ

)]

dL. (72)

Substituting (71),(72) to (69) and integrating over (p, t) one obtains (56),(57).

Appendix 3

Using (60) in (59) and taking into account that u(−s,−ϕ,x) = u(s, ϕ,x); f (−s,−ϕ,x) =
− f (s, ϕ,x), one obtains:
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− Eu(±s,±ϕ,x) =
1

lp

(

∂2u

∂s2

)

+
1

lt

(

∂2u

∂ϕ2

)

+ K0lp

[

Ω0
∂ f

∂ϕ
+

(

K ·
∂ f

∂s

)

+ (s · ∇ f )

]

u

+

[

K2
0 l2

p

(

1

lp

(

∂ f

∂s

)2

+
1

lt

(

∂ f

∂ϕ

)2
)

+
1

2

∂Ω0

∂l
−

U

aT

]

u +

±

{

−Ω0
∂u

∂ϕ
−

1

2

∂K

∂s
u − (s · ∇u)−

(

K ·
∂u

∂s

)

+

+ K0lp

[

1

lp

(

∂u

∂s
·

∂ f

∂s

)

+
1

lt

(

∂u

∂ϕ

∂ f

∂ϕ

)

+ (73)

+
1

2lp

(

∂2 f

∂s2

)

u +
1

2lt

(

∂2 f

∂ϕ2

)

u

]}

.

Subtracting the expressions with different signs one obtains (63). Summing the expressions
with different signs, multiplying both sides by u(s, ϕ,x) and integrating over s, ϕ,x and
dl/L one obtains (62).

Actually, restriction (63) ensures that w+
0 and w−

0 have the same eigenvalue E0. Indeed, it

follows from (73) and (63) that w+
0 Ĥw−

0 = w−

0 Ĥw+
0 . Let us assume that:

−E+
0 w+

0 = Ĥw+
0 ,

−E−

0 w−

0 = Ĥw−

0 .

Multiplying the first equation by w−

0 and the second by w+
0 one obtains:

(E+
0 − E−

0 )w−

0 w+
0 = w+

0 Ĥw−

0 − w−

0 Ĥw+
0 = 0.

So, E+
0 = E−

0 = E0.

Appendix 4

Since F (ρ) in Eq (64) is not singular for any positive ρ, phase transition to the crystalline
state can be only of a first order. The transition point τc and jump of volume fraction of the
molecule ρc should be found from the conditions:

F (ρc) = F (0),

∂F

∂ρc
= 0,

or
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(

ã/lp
)α

ρ1−α
c + τcρc + κρ2

c + h = 0,

(2 − α)
(

ã/lp
)α

ρ1−α
c + 2τcρc + 3κρ2

c + h = 0,

which after simple algebraic transformations lead to Eqs. (65)-(67).

Appendix 5

Various forms of ψ(s,x), corresponding to different structures of condensed phases, have
been checked. For laminar-like ordering this function can be chosen in the form of:

ψ ∼ −[s× e]2,

for toroid-like ordering it is:

ψ ∼ −(s · e)2 − ([s× e] · [e× x])2/[e× x]2,

while for cholesteric ordering it is :

ψ ∼ − ([s× k] cos(2πq(e · x)) + [s× p] sin(2πq(e · x)))2 ,

where 1/q ≫ 1 is a cholesteric repeat, |k| = |p| = 1, e = [k × p] and (k · p) = 0. With
accuracy to slight variance in the numerical coefficients, all forms of ψ(s,x) lead to the
same expression for the free energy. This means that the Onzager approach is unreliable
concerning information about the specific structure of the crystalline state. On the other
hand, this approach gives a reasonable approximation the for thermodynamic properties of
the phase transition.
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