
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6

Fiber-Based Cylindrical Vector Beams and Its
Applications to Optical Manipulation

Renxian Li, Lixin Guo, Bing Wei, Chunying Ding and
Zhensen Wu

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/59151

1. Introduction

Radiation pressure force (RPF) indeced by a focused laser beam has bean widely utlized for
the manipulation of small particles, and has found more and more applications in various
fields including physics [1], biology [2], and optofludics [3, 4]. Accurate prediction of optical
force exerted on particles enables better understanding of the physical mechanicsm, and is of
great help for the design and improvement of optical tweezers.

Many researches have been devoted to the prediction of radiation pressure force (RPF), and
different approaches have been developed for the theoretical calculation of RPF exerted on a
homogeneous sphere. The geometrical optics [5-7] and Rayleigh theory [8] are respectively
considered for the particles much larger and smaller than the wavelength of incident beam.
Since geometrical optics and Rayleigh theory are both approximation theories, rigorous
theories based on Maxwell's theory have been considered [9-13]. Generalized Lorenz-Mie
Theory (GLMT) [14] has been used to investigate the RPFs exerted on some regular parti‐
cles[10-13, 15, 16] induced by a Gaussian beam. GLMT can rigorously calculate RPF induced
by any beam. To isolate the contribution of various scattering process to RPF, Debye series is
introduced [17, 18].

Traditional optical tweezers use Gaussian beams as trapping light sources. This approach
works well for the manipulation of microscopic spheres. However, the deveopment of science
and technology brings new challenges to optical tweezers, and several approaches have been
developed. Holographic methods have been used to increase the strength and dexterity of
optical trap [19]. Another approch is the employment of non-Gaussian beam including
Laguerre-Gaussian beams [20] and Bessel beams [28]. Laguerre-Gaussian beams have zero on-
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axis intensity, and can increase the strength of optical trap. Bessel beams consist of a series of
concentric rings of decreasing intensity, and have characteristics of non-diffraction and self-
reconstruction. A single Bessel beam can be used to simultaneously trap and manipulate,
accelerate, rotate, or guide many particles. Bessel beams can trap and manipulate both high-
index and low-index particles.

In addition to Laguerre-Gaussian and Bessel beams, there is a speical class of beams which
have cylindrical symmetry in both amplitude and polarization, hence the name Cylindrical
Vector Beams (CVBs) [29-32]. CVBs are solutions of vector wave equation in the paraxial limit.
The special features of CVBs have attracted considerable interest for a variety of novel
applications, including lithography, particle acceleration, material processing, high-resolution
metrology, atom guiding, optical trapping and manipulation. The most interesting features
for optical trapping arise from the focusing properties of CVBs. A radially polarized beam
focused by a high numerical aperture objective has a peak at the focus, and can trap a high-
index particle. On the contrary, an azimuthally polarized beam has null central intensity, and
can trap low-index particle. These two kinds of beams can be experimentally switched.

CVBs can be generated by many methods, which are categorized as active or passive depend‐
ing on whether amplifying media is used. The simplest mothod is to convert an incident
Gaussian beam to a radially polarized beam using a radial polariser. However this method
does not produce very high purity tansverse modes. Moer efficient methods use interferom‐
etry. Since a CVB can be expressed as the linear superpostion of two Hermite-Gaussian or
Laguerre-Gaussian beams with different orientations of polarization. Another efficient
method is based on optical fiber [33]. This technique takes advantage of the similarity between
the poarization propeties of the modes that propagate inside a step-index optical fiber and
CVBs. When TE01 or TM01 is excited in the fibre, it excites a CVB in free space. Fiber-generated
CVB, taking Bessel-Gaussian as example, and its applicaions top optical manipulations will
be discussed in this chapter.

2. Mathematical description of cylindrical vector beams

Cylindrical vector beams are solutions of vector wave equation

2 0,Ñ´Ñ´ + =
r r
E k E (1)

where k=2π/λ is wavenumber with λ being the wavelength. In the paraxial approximation, the
radially and azimuthally polarized vector Bessel-Gaussian beams, two kinds of typical CVBs,
can be expressed as
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where r and ϕ are respectively the radial and azimuthal coordinates, êρ  and êϕ are unit vectors
in ρ and ϕ directions, and the subscripts rad and azi denote the polarization state. w0 is the
width of beam waist, and E0 is a constant. Fig. 1(a) and (b) respectively give the intensity
distribution of radially and azimuthally polarized Bessel-Gaussian beam in the plane z=0. Note
that the longitudial component of CVB is negligible under the condition of paraxial approxi‐
mation. A general CVB can be considered as a linear superposition of a radially polarized CVB
and an azimuthally polarized one.

 
(a) Radially polarized CVB 

 
(b) Azimuthally polarized CVB 

 

Figure 1. Intensity distribution of CVB. The arrows indicate the direction of polarization

3. Radiation force induced by CVB

3.1. Optical force on Rayleigh particles

In the Rayleigh regime, particles can be considered as infinitesimal induced dipoles which
interact with incident beam. Here we assume that the particle is a microsphere. RPF will be
decomposed into scattering force and gradient force.

The oscillating dipole, which is induced by time-harmonic fields, can be considered as an
antenna. The antenna will radiate energy. The difference between energy removed from
incident beam and energy radiated by the antenna accounts for the change of momentum flux,
and hence rusults in a scattering force. The scattering force can be expressed as

22
1 0ˆ e=

r
scat z prC nF e E (4)
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with
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and

2 1/=m n n (6)

where n1 is the refractive index of surrounding media, and n2 is the refractive index of the
particle. a is the radius of microsphere. ε0 is the dielectric constant in the vacumm. Note that
the scattering force always points in the direction of incident beam.

When a particle is illuminated by a non-uniform electric field, it will experience a gradient
force.

2
22 3

1 0 2

1
2

p e
æ -

Ñ
+

ö
= ç ÷

è ø

r
grad n ma

m
F E (7)

For a time-harmonic field, the gradient force can also be expressed in terms of the intensity I
of incident beam:
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where c is the speed of light in the vacumm. It is obvious that the gradient force depends on
the gradient of the intensity. By sbustituting Eqs. (2) and (3) into Eqs. (4) and (7), we can obtain
the scattering and gradient force of vector Bessel-Gaussian beams exerted on a microsphere.
For radially polarized Bessel-Gaussian beam, they can be expressed as
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From Eq. (10), we can find that the gradient force has only ρ component. This is because |E|2

is only dependent on ρ. Here we give only the force for radially polarized beam incidence, and
that for azimuthally polarized beam incidence can be derived in the same way.

3.2. Radiation force exerted on Mie particles

Many practical particles manipulated with optical tweezers, such as bioloical cells, are Mie
particles, whose size is in the order of the wavelength of trapping beam. To calculate the
radiation force exerted on such particles, a rigorous electromagnetic theory based on the
Maxwell equations must be considered. Generalized Lorenz-Mie Thoery (GLMT) developed
by Gouesbet et al. can solve the interaction between homogeneous spheres and focused beams
with any shape, and has been entended to solve the scattering of shaped beam by multilayered
spheres, homogeneous and multilayered cylinders, and homogeneous and multilayered
spheroids. GLMT has been applied to the rigorous calculation of radiation pressure and optical
torque. In GLMT, the incident beam is described by a set of beam shape coefficients(BSCs),
which can be evaluated by integral localized approximation (ILA) [34].

This section is devoted to the GLMT for radiation force exerted on a sphere illuminated by a
vetor Bessel-Gaussian beam. The general theory for radiation force based on electromagnetic
scattering theory is followed by BSCs for CVB. To clarify the physical interpretation of various
features of RPF that are implicit in the GLMT, Debye Series Expansion (DSE) is introduced.

3.2.1. Generization Lorenz-Mie theory

Consider a sphere with radius a and refractive index m1 illuminated by a CVB of wavelength
λ in the surrounding media. The center of the sphere is located at OP, origin of the Cartesian
coordinate system OP-xyz. The beam center is at OG, origin of coordinate system OG-uvw, with u
axis parallel to x and similarly for the others. The coordinates of OG in the system OP-xyz is (x0,
y0, z0). The refractive index of surrounding media is m2. The other parameters are defined in
Fig. 2.

When a sphere is illuminated by focused beam, the RPF is proportional to the net momentum
removed from the incident beam, and can be expressed in terms of the surface integration of
Maxwell stress tensor

·
·< >=< >ò
t

ÑS TdSF n (11)

where < > represents a time average, n
^
 the outward normal unit vector, and S a surface

enclosing the particle. The Maxwell stress tensor T
↔

 is given by

( )2 21 1
4 2

e e
p
æ ö< >= + - +ç ÷
è ø

t t
T E H IEE HH (12)

Fiber-Based Cylindrical Vector Beams and Its Applications to Optical Manipulation
http://dx.doi.org/10.5772/59151

203



Where the electromagnetic fields E  and H  are the total fields, namely the sum of the incident

and scattered fields, given by

, = + = +i s i sE E E H H H (13)

Ei and H i are the incident electromagnetic wave, and can be expaned as:
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Figure 2. Coordinate systems in GLMT. OP-xyz is attached to the sphere, and OG-uvw to the incident beam.
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where Pn
m(cosθ) represents the associated Legendre polynomials of degree n and order m, ψ( · )

is the spherical Ricatti-Bessel functions of first kind, and the prime indicates the derivative of
the function with respect to its argument. gn,TM

m  and gn,TE
m  are so-called BSCs and will be

discussed in next subsection.

Similarly, the scattered fields Es and Hs have the expression :
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Where ξn(k0r) is Ricatti-Hankel functions, and scattering coefficients An
m and Bn

m can be

expressed by traditional Mie scattering coefficients an, bn and BSCs gn,TM
m , gn,TE

m  :
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Substituting Eqs. (14) - (19) and (23) - (28) into Eqs. (11) - (12), and after some algebra, we can
get the formula for RPFs which can be characterized by radiation pressure cross section (RPCS):
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where RPCS Cpr ,i (i = x, y, z) has a longitudinal cross section Cpr ,z
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and two transverse cross section Cpr ,x and Cpr ,y

, ,Re( ) Im( )= =pr x pr yC C C C (35)

where
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Note that substituting Eq. (13) into Eqs. (11) - (12) shows that the total RPF can be devided into
thress parts:

< >=< > + < > + < >i mix sF F F F (41)

where <F i >  depends only on the incident fields, <Fs >  is associated with the scattered fields,
and <Fmix >  involves the interactions of the incident beam with the scattered field. After a great
deal of algebra, we can get that <F i > =0, which can be understood by the momentum conser‐
vation law for monochromatic fields in free space. The RPCS for <Fmix >  and <Fs >  can be
directly given using Eqs. (34) - (40) by changing Eqs. (38) - (40) using
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for <Fs > .

3.2.2. Beam shape coefficients for CVB

This section is devoted the derivation of BSCs for CVB using ILA. In the ILA, the beam shape
coefficients gn,TM

m  and gn,TE
m  are obtained respectively from the radial component of electric and

magnetic field Er  and Hr  according to [34]
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Er̄  and H r̄  are respectively the localized fields of Er  and Hr , and they are obtained by changing
kr  to (n + 1 / 2) and θ to π / 2 in their expression. For a radially polarized Bessel-Gaussian beam,
the localized radial component of electric field are derived from Eq. (2):
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Substituting Eq. (47) into Eq. (45), and considering the formula of Bessel function
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we can obtain the final expression of BSCs
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Here we only derive gn,TM
m,rad , and gn,TE

m,rad  can be derived in the similar way.

3.2.3. Debye series expansion

GLMT is a rigorous electromagnetic theory, and can exactly predict the RPF exerted on a sphere
by focused beam. Whereas the solution is complicated combinations of Bessel functions, and
the mathematical complexity obscures the physical interpretation of various features of RPF.
The DSE, which is a rigorous electromagnetic theory, expresses the Mie scattering coefficients
into a series of Fresnel coefficients and gives physical interpretation of different scattering
processes. The DSE is an efficient technique to make explicit the physical interpretation of
various features of RPF which are implicit in the GLMT. The DSE is firstly presented by Debye
in 1908 for the interaction between electromagnetic waves and cylinders. Since then, the DSE
for electromagnetic scattering by homogeneous, coated, multilayered spheres, multilayered
cylinders at normal incidence, homogeneous, multilayered cylinder at oblique incidence, and
spherical gratings are studied. In our previous work, DSE has been employed to the analysis
of RPF exerted on a sphere induced by a Gaussian and Bessel beam.

As shown in Fig. 3, when an incoming spherical multipole wave, which is
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encounters the interface of the sphere at r=a, portion of it will be transmitted into the sphere,
and another portion will reflected back. The transmitted and reflected waves are respectively:
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Figure 3. Debye model of light scattering by a sphere

Applying the boundary conditions, which reqires continuity of the tangential components of

filds at the interface, to the incident, transmitted and reflected waves,we can obtain:
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Similarly, the consideration of outgoing multipole waves can get

12 2
=n

n

iT
D (61)

(2) (2) (2) (2)
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n n n nR
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(62)

Substituting all Fresnel coefficients into

( )( )121 212 21 121 1- - -n n n nR R T T (63)

and after much algebra, we get
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(64)

where the prime indicates the derivative of the function with respect to its argument. ξn
(1)( · )

and ξn
(2)( · ) are respectively the spherical Ricatti-Hankel functions of first and second kinds.

The definition of all Fresnel coefficients and Debye term p are given in Fig. 3. For convenience,
we note p = - 1 and p = 0 respectively for the diffraction and direct reflection. In our previous
work, we have theoretically and numerically proved that when p ranges from 1 to , the Eq.
(64) is identical to the traditional Mie scattering coefficients. Here we provide the DSE for
homogeneous spheres, and the DSE for multilayered spheres can be found in our previous
work.

4. Numerical results and discussions

In this section, the GLMT and DSE will be employed to analyze the RPF exerted on a homo‐
geneous sphere induced by a radially polarized vector Bessel-Gaussian beam. Xu et al. used
GLMT to analyze the RPF exerted on a slightly volatile silocone oil of refractive index , which
can be levitated in the air by a beam of wavelength . We first use GLMT to analyze the RPF
exerted on such oil induced by vector Bessel-Gaussian beam, and DSE will be employed to the
study of the contribution of various scattering process to RPF. In our calculation, the radius of
the particle is .
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We first explore the influence of beam center location on the RPF. In our calculation, we assume
the beam center is located on the x axis so that . Fig. 4 gives the transverse RPCS ∞ versus
m1 =1.5 for various beam-waist radius λ =0.5μm. Here we consider a =2.5μm and y0 = z0 =0, which
are respectively larger, equal and smaller than the radius of the particle. We can find that the
particle can not be trapped at the beam center Cpr ,x for all beams. This results from the fact all
beams have null central intensity. It is worth pointing out that a stable trap corresponds to a
particle position where the RPF is zero and its slope is positive. All curves have two equilibrium
points, which are symmetric with respect to beam axis (x0). This is decided by the intensity
maxima of beams. So a vector Bessel-Gaussian beam can simultaneously trap more than one
particles. We can also find that the interval of equilibrium points increases with the increasing
of w0. This can be easily explained from the fact that the interval of intensity peaks increases
with the increasing of w0 =5μm, 2.5μm.
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Figure 4. Transverse cross-section 1μm versus x0 =0 with parameter x0 =0. w0, w0, Cpr ,x, x0, w0 and λ =0.5μm

To clarify the physical explanation of some features of RPCS, it is necessary for us to consider
the contribution of each mode p to RPCS. The contribution of each p mode to RPCS can be
computed separately by considering a single term in Eq. (64). Now we consider the contribu‐
tion of a single p mode to transverse RPCS m1 =1.5. Here we set beam-waist radius m2 =1.

It is shown in Fig. 5 the transverse RPCS y0 =0 versus a =2.5μm with parameter pmax =∞. In the
calculation, the beam-waist radius is assumed Cpr ,x. Comparison of Fig. 5 with Fig. 4 shows
that when w0 =5μm the results obtained by DSE are identical to those by GLMT. In fact, when
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Cpr ,x is large enough, the difference between two theories should be negilible. For example, if
x0, the results of DSE is very close to GLMT results. Special attention should be paid to the case
of pmax. Fig. 5 shows that when w0 =5μm, the agreement between the results of GLMT and DSE
is already good. This concludes that main contribution of RPF comes from the scattering
processes of diffraction (pmax →∞), specular reflection (pmax) and direct transmission (
pmax =100).
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Figure 5. Transverse cross-section pmax =1 versus pmax =1 with parameter p = −1. p =0, p =1, Cpr ,x, x0, pmax and

λ =0.5μm.

To clarify the physical explanation of some phenomena of RPF, it is necessary to consider the
contribution of each mode p to RPCS, which can be computed separately by considering a
single term in Eq. (64). Now we consider the contribution of a single p mode to transverse RPCS
m1 =1.5. Fig.6 depicts the transverse RPCS m2 =1 versus y0 =0 for a =2.5μm and w0 =5μm. Gener‐
ally, the RPF at Cpr ,x is zero for any mode p because of the symmetry. The magnitude of Cpr ,x

for x0 is much greater than that for p =1. This validates that the transverse RPCS p =2 is
dominated by the contributions of direct transmission (x0 =0). Note that the curve for Cpr ,x has
two equilibrium points at about p =1, while the curve for p =2 has only one points at Cpr ,x. Near
the beam axis (p =1), the curvesfor p =2 has positive slope, while that for x0 = ± 1.3μm has
negative one. To explain such phenomena, we must consider the integral effect of all intensity
peaks.
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Figure 6. Transverse cross-section p =1 versus x0 =0 corresponding to single mode p. x0 =0, p =1, p =2, Cpr ,x x0
and λ =0.5μm.

5. Conclusions

Rigorous theories including GLMT and DSE for RPF exerted on spheres induced by CVB is
derived. The incident beam is described by a set of BSCs which is calculated by integral
localized approximation, and the scattering coefficients are expanded using Debye series. For
very small particles, namely Rayleigh particles, an approximation model is also given. Such
thoery can be easily extended to the RPF exerted on multilayered sphere, and also to the RPF
induced by other beams. Debye series is used to isolate the contribution of various scattering
process to the RPF. The results are of special importance for the improvement of optical
tweezers system.
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