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1. Introduction

Data science is an evolutionary step in interdisciplinary fields incorporating computer science,
statistics, engineering, and mathematics. At its core, data science involves using automated
and robust approaches to analyze massive amounts of data and to extract informative
knowledge from them. Data science transforms traditional ways of analyzing problems and
creates powerful new solutions. Diverse computational and analytical techniques contribute
to data science. In this chapter, we review and also propose one type of data mining and pattern
recognition strategy that has been under development in multiple disciplines (e.g. statistics
and machine learning) with important applications ---- outlier or novelty detection [1-4].

In biomedical engineering, data science can make healthcare and medical imaging science not
only more efficient but also more effective for better outcomes and earlier detection. Outlier
and novelty detection in these domains plays an essential role, though it may be underappre‐
ciated and not well understood by many biomedical practitioners. From the healthcare point
of view, an outlier probably reflects the need for heightened vigilance, if not full-fledged
intervention. For example, an abnormally high glucose reading for a diabetic patient is an
outlier which may require action. In high-dimensional medical imaging, developing automat‐
ed and robust outlier detection methods is a critical preprocessing step for any subsequent
statistical analysis or medical research.

An exact definition of an outlier or novelty typically depends on hidden assumptions regard‐
ing the data structure and the associated detection method, though some definitions are
general enough to cope with varieties of data and methods. For example, outliers can be
considered as patterns in data that do not conform to a well-defined notion of “normal”
behavior, or as observations in a data set which appear to be inconsistent with the remainder
of that set of data. Figure 1 shows outliers in a 2-dimensional dataset. Since most of the
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observations fall into clusters N1 and N2, they are two “normal” regions; while points in region
O1 as well as points o2 and o3 are outliers (in red), due to their sufficiently far distance from
the “normal” regions. Identifying observations inconsistent with the “normal” data, or
detecting previously unobserved emergent or novel patterns is commonly referred to as outlier
detection or novelty detection [5, 6]. The distinction between novel patterns and outliers is that
the novel patterns are often incorporated into the “normal” model after being detected whereas
outliers are typically removed or corrected. This chapter aims to consider both detection
schemes and sometimes treat them interchangeably for some general purposes.

Figure 1. An example of outliers in a 2-dimensional dataset.

Figure 2. A 2-dimensional dataset with a multivariate outlier (lower right diamond in red).

Outlier and novelty detection methods can be divided into univariate and multivariate ap‐
proaches [7-10]. The early univariate methods typically assume a known data distribution, for
example, independently and identically distributed (i.i.d). In addition, many tests for detecting
univariate outliers further assume the distribution parameters and the outlier types are known.
However, these assumptions may be violated in real applications. Moreover, in many situa‐
tions multivariate outliers can not be identified when each variable is examined independently.
Multivariate analysis is usually required in these cases for precise outlier detection, which
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allows for interactions over different variables to be taken into account within the class of data.
Figure 2 illustrates 2-dimensional data points, with the lower right observation (in red) a clear
multivariate outlier but not a univariate one. When analyzing each measure separately with
respect to the spread of values along the two dimensions, they are close to the center of the
univariate distributions. Therefore, the relationships between the two variables shall be
considered when testing for outliers, leading to multivariate methods that are the focus of this
chapter.

Another related topic is robust statistics for estimation that can handle outliers or at least is
less sensitive to the influence of outliers. Robust statistics perform well with data drawn from
a wide range of probability distributions, especially for distributions that are not normally
distributed. Robust statistical methods have been developed for many common problems,
such as estimating data properties including location and scatter or estimating model param‐
eters as in regression analysis [10, 11]. One motivation is to produce statistical methods that
are not unduly affected by outliers. Another motivation is to provide methods with good
performance when there are small departures from a parametric distribution. A typical
procedure or example of the former case is for multivariate estimation of location and
covariance as well as for multivariate outlier detection. In this case, as a first step, the ap‐
proaches often try to search for a minimum number of observations with a certain degree of
confidence being outlier-free. Based on this starting subset, location and covariance can be
estimated robustly. In a second step, outliers can be identified through computing the
observations’ distances with respect to these initial estimates.

In this chapter, we review and also propose statistical and machine learning approaches for
outlier and novelty detection, as well as robust methods that can handle outliers in data and
imaging sciences. In particular, robust statistical techniques based on the Minimum Cova‐
riance Determinant (MCD) are introduced in Section 2, which include a classical and fast
computation scheme of MCD and a few robust regression strategies. We present our newly
developed multivariate Voronoi outlier detection (MVOD) method for time series data and
some preliminary results in Section 3. This approach copes with outliers in a multivariate
framework via designing and extracting effective attributes or features from the data; Voronoi
diagrams allow for automatic configuration of the neighborhood relationship of the data
points, facilitating the differentiation of outliers and non-outliers. Section 4 reviews varieties
of machine learning methods for novelty detection, with a focus on probabilistic approaches.
In Section 5, we present some existing and new technologies related to outliers and novelty in
the area of imaging sciences. Section 6 provides concluding remarks of the chapter.

2. Robust statistical methods using Minimum Covariance Determinant
(MCD)

The Minimum Covariance Determinant (MCD) estimator is a highly robust estimator of
multivariate location and scatter. Since estimating the covariance matrix is the cornerstone of
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many multivariate statistical methods, the MCD has also been used to develop robust and
computationally efficient multivariate techniques.

2.1. MCD and its fast computing algorithm

Given a dataset consisting of p variables and n observations, i.e. a n × p data matrix, we can
represent this multivariate data as  X = (x1, …, xn)', where  x i, for i =1, …,  n, is the ith obser‐
vation and a p-dimensional vector. A classical distance measure, Mahalanobis distance (MD),
is given in Equation (1); it only depends on the sample mean (μ̂MD) and sample covariance
matrix (Σ̂MD), both of which are computed from the entire set of data.

MD(x)= (x - μ̂MD)'Σ̂MD
-1 (x - μ̂MD) (1)

A point with a larger Mahalanobis distance will lie further away from the center of the data
cloud than a point with a smaller Mahalanobis distance. A robust distance (RD) measure is
achieved if we substitute the MCD estimate of mean (μ̂MCD) and covariance (Σ̂MCD) into
Equation (1), which yields Equation (2).

RD(x)= (x - μ̂MCD)'Σ̂MCD
-1 (x - μ̂MCD) (2)

The classical estimates can be sensitive to outliers, while the MCD estimate is robust [8, 12,
13]. The MCD relies on a subset of the total observations. Choosing this subset makes the
algorithm robust because it is less sensitive to the influence of outlying points. Figure 3
illustrates the difference between these two estimates; it is a scatterplot of the distances for an
example dataset with 70 observations and 2 variables (i.e. n =70,  p =2). The two ellipses are two
outlier thresholds, determined by the 0.975 chi-square quantile with 2 degrees of freedom
when the classical and robust estimates are used, respectively. The dashed blue ellipse marks
off the 97.5% outlier threshold for the classical Mahalanobis distance, suggesting that two
observations lying beyond the ellipse are outliers. The 97.5% outlier threshold for the robust
distance measure is marked off by the solid red ellipse, suggesting ten points are outliers.

The MCD has a user-determined parameter,  h , which specifies the size of the subset of data
to base the estimate upon. It is constrained by (n + p + 1) / 2 ≤h ≤n. The h  observations are
chosen such that the determinant of the sample covariance matrix is minimal (but not mini‐
mized in the formal sense, because it relies on a sampling algorithm instead of a loss function).
The MCD is optimally designed for elliptically symmetric unimodal distributions, such as the
commonly encountered multivariate normal distribution. The MCD is most robust when
 h = (n + p + 1) / 2 . But this causes low efficiency [14] (at least for normal probability distribu‐
tions), which can be increased (while retaining high robustness) by applying reweighted
estimators [15, 16]. Robust statistical estimators are commonly evaluated both on their
breakdown value and influence functions. The MCD is a high breakdown estimator and its
influence function appears bounded, which is desirable. An alternative strategy that employs
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Delaunay triangulation to identify a robust outlier-free subsample in an adaptive way was
presented in [17].

Computing the exact MCD is possible but computationally difficult, as it requires the evalu‐

ation of all ( n
h ) subsets of size h . Even though the MCD is a powerful robust estimator, it has

only become widely used since the development of the so-called Fast-MCD algorithm [18]
which we summarize below. Assume we have a dataset X = (x1, …, xn)' and let H1⊂ {1…n}

represent a h -subset of length constrained by (n + p + 1) / 2 ≤h ≤n. Denote this first h -subset as
H1 and it is randomly chosen from the entire dataset. Compute the mean μ̂MCD,1 and covariance
matrix Σ̂MCD,1 of H1, as well as the determinant of Σ̂MCD,1, denoted as  det(Σ̂MCD,1). Then compute
the distance of all n observations in the entire dataset (and not just the h  comprising the initial
subset) using Equation (2). Next, these distances are ordered from smallest to largest. Retain
an equivalent number of observations from this ordering as chosen in the initial h -subset; but
instead of being chosen arbitrarily as in the initial subset, these are chosen such that they have
the smallest distances as defined by the order statistics. Call this subset of observations H2,
and compute μ̂MCD,2, Σ̂MCD,2 and  det(Σ̂MCD,2). Now Equation (3) must be true:

det  (Σ̂MCD,2)≤  det(Σ̂MCD,1) (3)

Going from H1 to H2 is called a C-step for “Concentration step”, because the algorithm
concentrates on the h  observations with the smallest distances and det(Σ̂MCD,2) is more
concentrated (or equivalently, has a smaller determinant). This C-step is repeated numerous
or sufficient times, with each iteration using a different initial h -subset. The 10 subsets that
yield the smallest determinants overall are retained and further concentrated until conver‐
gence is met.

Figure 3. Outlier thresholds, as represented by ellipses, based on a classical and a robust scheme.
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2.2. Robust multivariate regression and Multivariate Least-Trimmed Squares (MLTS)
estimator

Section 2.1 introduced the robust MCD estimator and showed how the MCD can be computed
efficiently. In this section, we review different frameworks for applying the MCD estimator to
multivariate regression. These methods offer robust alternatives to standard multiple regres‐
sion analysis.

We first look at robust multivariate regression in [19]. Suppose we have a full dataset of
predictors and responses containing no outliers; computing the regression parameter esti‐
mates from the full dataset using a least squares procedure will yield accurate results. With
outliers present in the dataset, the MCD is used to search for a subset of size h  whose covariance
matrix has the smallest determinant with h  constrained by (n + p + q + 1) / 2 ≤h ≤n, where p and
q are respectively the numbers of variables for the predictor and response matrices, and n is
the number of observations. Then, using this subset h , the sample mean and covariance
estimates are calculated, which would allow for accurate estimation of the regression coeffi‐
cients and covariance matrix of the errors in the presence of outliers.

Different from the above robust multivariate regression, the multivariate least trimmed
squares (MLTS) estimator in [20] first fits a regression model to the subset of data and then
calculates the covariance matrix of the residuals. The estimator is defined by minimizing a
trimmed sum of squared Mahalanobis distances, and can be computed by a fast algorithm. Let
us consider the classical multivariate regression framework. Assume we have a sample of data
defined as Zn = {(xi, yi); i =1, …, n} and let X = (x1, …, xn)' denote the design (or predictor)
matrix and Y = (y1, …, yn)' denote the response matrix. The regression model is:

Y = Xβ + ε (4)

The classical least squares estimator for the regression parameter is given by:

β̂ LS = (X 'X )-1X 'Y (5)

and the classical estimator of the scatter matrix is:

Σ̂LS = 1
n - p (Y - X β̂ LS )'(Y - X β̂ LS ) (6)

These classical least squares estimators are sensitive to outliers. A robust alternative to these
estimators based on the residuals is achieved as below. For any β∈ℝ p+q, let ri(β)= yi - β 'xi denote
the residuals from the fitted regression model. Furthermore let ℋ={H ⊂ {1, …, n}| # H =h } be
the collection of all subsets of size h . For any H ∈ℋ denote β̂ LS (H ) the least-squares fit solely

on the observations {(x j, y j); j∈H }. In addition, for all H ∈ℋ and β∈ℝ p+q denote the cova‐
riance matrix of the residuals with respect to the fit β, belonging to subset H as:
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cov(H , β)= 1
h ∑

j∈H
(r j(β) - r̄ H (β))(r j(β) - r̄ H (β))' (7)

where r̄ H (β)= 1
h ∑ j∈H r j(β). If we let Σ̂LS (H )=  cov(H , β̂ LS(H )) for any H ∈ℋ, the MLTS estimator

is defined as:

β̂MLTS (Zn)= β̂ LS (Ĥ ) (8)

where Ĥ ∈argmin
H∈ℋ  det Σ̂LS (H ). The covariance of the errors can be estimated by

Σ̂MLTS (Zn)=cαΣ̂LS (Ĥ ) (9)

where cα is a consistency factor. The observations corresponding to the residuals with the
smallest determinant of the covariance matrix can then be used to give robust results for the
regression parameters.

Using the MLTS as a means to estimate the parameters of the Vector Autoregressive (VAR)
Model was presented in [21]. The VAR model is popular for modeling multiple time series.
Estimation of its parameters based a typical least squares method is unreliable when outliers
are present in the data. Development of robust procedures for multiple time series analysis is
more crucial than for univariate time series analysis due to the data correlation structure.
Experimental results in [21] show that applying the reweighted MLTS procedure to the VAR
model leads to robust multivariate regression estimators with improved performance.

3. Multivariate Voronoi Outlier Detection (MVOD) for time series

In order to better analyze multivariate time series data, we have recently proposed a general
outlier detection method based on the mathematical principles of Voronoi diagrams. It is
general because different attributes or features can be extracted from the data for Voronoi
diagram construction. These attributes or features can be designed based on the nature of the
data and the outliers. This has the potential to increase the accuracy and precision of outlier
detection for specific application problems.

3.1. Background on Voronoi diagram

Our new method requires a Voronoi diagram, which is composed of Voronoi cells [22]. A
Voronoi diagram is a way of dividing space into regions. Assume we have a set S  of n points,
p1, …, pn in the Euclidean plane. Let V (pi) denote a Voronoi cell, which is a subdivision of the
plane where the set of points q are closer or as close to pi than to any other point in S . This is
expressed formally in Equation (10):
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V (pi)= {q |dist(pi, q)≤dist(p j, q), ∀ j ≠ i} (10)

where dist is the Euclidean distance function. The set of all Voronoi cells for all n points
comprises a Voronoi diagram.

Figure 4 shows part of a Voronoi diagram, assuming Euclidean distance between the points.
If one used a different distance metric, the Voronoi diagram would be configured differently.
The plane is decomposed into n convex polygonal regions, one for each pi. Vertices (or nodes)
are called Voronoi vertices and are equidistant to three or more sites. Voronoi edges are the
segments defined as the boundaries between two Voronoi cells and contain all the points in
the plane equidistant to the two nearest sites. The boundaries of a Voronoi cell V (pi) cannot
exceed n - 1 edges. Three important theorems apply to Voronoi diagrams:

Theorem 1: Every nearest neighbor ofpi defines an edge of the Voronoi polygonV (pi).

Theorem 2: Every edge of the Voronoi polygonV (pi) defines a nearest neighbor ofpi.

Theorem 3: Forn ≥3, a Voronoi diagram onnpoints has at most 2n - 5 vertices and3n - 6 edges.

Figure 4. A subset of Voronoi cells from a Voronoi diagram.

3.2. Our proposed MVOD method

The Voronoi Outlier Index (VOInd) used in our Multivariate Voronoi Outlier Detection
(MVOD) method is based upon the Voronoi notion of nearest neighbors. For a point pi of set
S , the nearest neighbors of pi defined by the Voronoi polygon V (pi) are the Voronoi nearest
neighbor of pi, denoted as V NN (pi). In Figure 4 the nearest Voronoi neighbors to point p1 are
p2, p3, p4, p5 and p6. For each point in the data set, our method uses the nearest neighbors to
compute an index (i.e. VOInd) of how likely that point is an outlier. It is multivariate because
it aggregates information across all individual time series, thus retaining features which might
be common to the entire interlocking set of variables.

Our method is based upon the geometric principles of Voronoi diagrams for defining the
neighborhood relationship of the data points and this facilitates the assignment of group or
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data membership (i.e. outliers and non-outliers). Construction of a two dimensional Voronoi
diagram requires two coordinates for each data point. Based on the nature of the data and the
nature of the outliers to be identified, we can embed their attributes into the coordinates via
extracting different valid features from the data. Here, we present one such case of the MVOD
framework for feature extraction; but many others are also possible, including nonparametric
forms. Figure 5 overviews the process and the rest of this subsection explains the steps in more
detail.

Figure 5. Flow chart of our MVOD procedure for outlier detection.

Feature Set 1 (feature value for the x-coordinate): In order to determine how a single obser‐
vation (at the same time point, across all time series under consideration) affects the covariance
matrix (which is a measure of inter-relationship among the individual time series), we remove
a given point from the data set and then use Multivariate Least Trimmed Squares (MLTS)
introduced in Section 2.2, which computes a determinant of the covariance matrix without that
point, to yield a single feature value. Removing one observation at a time is not part of the
original MLTS method; we introduced this modification into the procedure to show the effect
of removing that observation from all the time series. This determinant is known as the
generalized variance and can be interpreted as a volume. If we have outlying observations,
the volume will be larger. But if we remove those outlying observations, the volume will be
smaller.

Feature Set 2 (feature value for the y-coordinate): This is a two-step process. In Step 1, we
take the absolute value of all time series points for all variables, which provides some infor‐
mation about the total magnitude each time series contributes. However, sometimes, magni‐
tude alone is not sufficient for outlier detection as some data may have less extreme values
than those data with the largest magnitudes but are actually outliers for the data [23]. One way
to address this issue is by using the residual to calculate the feature value for the y-coordinate.
So Step 2 consists of fitting an appropriate model to the multivariate time series data and then
computing the residuals. Here, we estimate the parameters for a Multivariate Vector Auto-
Regressive (MVAR) model because our simulated data are generated from this type of model.
Once these residuals are obtained for each time series, they are squared and then summed
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across all time series. Finally, the feature value for the y-coordinate is determined by multi‐
plying together the results of Step 1 and Step 2. Specifically, let yi denote the ith observation
of the time series of length n, and ri denote the residual after fitting the MVAR model for each
observation. Then, for all i =1, …, n we compute this feature value as in Equation (11):

∑
1

n
abs(yi)×∑

1

n
ri

2 (11)

Although a regression model is used here in Step 2 to extract the feature value, in fact, our
method does not require this model. With either Step 1 or Step 2 alone, we will have a
corresponding nonparametric or parametric basis, both of which could be suitable for different
applications or datasets.

Voronoi Outlier Index (VOInd): Given the two feature sets (from the above procedures) that
can be used as the x-coordinates and y-coordinates for the data, we construct the Voronoi
diagram based on Section 3.1 and compute a Voronoi Outlier Index (VOInd) for each time
series point. The VOInd for point pi has as its numerator the sum of the Euclidean distance
(dist) between each point and all its nearest neighbors. This is divided by the denominator
term which is the number of nearest neighbors, yielding an average density, as expressed in
Equation (12):

VOInd(pi)=∑O∈V NN ( pi) dist(pi, o) /  |V NN (pi)| (12)

Note that a Voronoi outlier factor is used in [24] as the index which, however, was completely
univariate in nature, since the x-and y-coordinates were based on a univariate time series. One
of our primary motivations for this study is to create a novel and general MVOD method,
which can detect outliers in time series data in a multivariate framework with multiple,
interlocking sets of variables.

3.3. Experimental evaluation and results

Simulation Setup and Data Generation: For each analysis, 5 multivariate autoregressive time
series, each containing 100 observations, were simulated 25 times using published Matlab code
[25]. The time series were generated using a Gaussian process with mean 0 and standard
deviation 1. The variance/covariance matrix contained all 1’s on the diagonal and all 0’s on the
off-diagonals. A total of 12 different unique multivariate time series were constructed, each
with differing numbers of outliers and strength/magnitude of the outliers. 5, 10 or 15 outliers
were introduced into a time series and the magnitude of those outliers was 1, 2, 3, 4 or 5. All
combinations of number of outliers and outlier magnitude were constructed; but they were
never mixed. For instance, if we introduced 5 outliers of magnitude 3 into a simulated time
series, only 5 outliers of magnitude 3 were used for all 25 simulated time series in that set. The
observation to which the outliers were introduced into the time series was always determined
randomly. Once the observations had been selected for outlier introduction, the same number
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of outliers for the given magnitude was added or subtracted (if the original observation was
negative) to each of the five components of the multivariate time series.

Validation Criteria and Procedure: We validated and compared the performance of our new
Voronoi Outlier Detection (MVOD) method with the MLTS, using True and False Positive
Rates (TPR and FPR) as defined in Table 1.

Outlier in data?
(Gold Standard)

Definition of TPR and FPR

True Positive Rate (TPR)
= TP / (TP + FN)Yes No

Detected
Outlier?

Yes TP FP False Positive Rate (FPR)
= FP / (FP +TN)No FN TN

Table 1. Definition of True (TPR) and False (FPR) Positive Rate.

The alpha parameter in the MLTS method determines both the size of the subset to use as well
as a critical value in a chi-square distribution. If an observation is greater than this threshold
in the chi-square distribution, then the MLTS method flags the observation as an outlier.
However, it is critical to note that a one-to-one correspondence does not exist between the
alpha value chosen, and the number of outliers flagged. For instance, one could set alpha at
0.10 but only have 2 out of 100 observations flagged as outliers. Partly for this reason we
considered a range of alpha values and then averaged across this range to fairly compare with
the MVOD method. For all simulated time series, we considered alpha between 0.01 and 0.20.

True Positive Rate False Positive Rate

Number of Outliers Number of Outliers

5 10 15 5 10 15

M
ag

ni
tu

de

1
MVOD 0.52 0.52 0.54 0.037 0.065 0.094

MLTS 0.21 0.37 0.32 0.012 0.028 0.047

2
MVOD 0.91 0.79 0.78 0.025 0.041 0.056

MLTS 0.63 0.61 0.73 0.002 0.012 0.011

3
MVOD 0.96 0.83 0.86 0.023 0.037 0.045

MLTS 0.93 0.78 0.80 0.004 0.006 0.005

4
MVOD 0.96 0.86 0.88 0.023 0.034 0.042

MLTS 0.97 0.87 0.85 0.002 0.002 0.003

5
MVOD 0.96 0.86 0.90 0.023 0.034 0.039

MLTS 0.96 0.90 0.87 0.002 0.002 0.002

Table 2. True and False Positive Rates for MVOD and MLTS with 5, 10, or 15 outliers of magnitudes 1, 2, 3, 4, or 5.
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In the results presented next, we obtained the TPR and FPR for the two methods in the
following way. For a given number of outliers with a specific outlier magnitude, we averaged
a total of five cases. The five cases averaged always included the threshold (MVOD) or alpha
value (MLTS) corresponding with the number of outliers, but also contained the preceding
four cases as well. For instance, in the 10 outlier case, we took the results for threshold=10
(MVOD), as well as thresholds of 9, 8, 7 and 6. In the corresponding MLTS case, we would
have taken alpha=0.10, 0.09, 0.08, 0.07 and 0.06. The TPR and FPR for each of these five cases
for each method were averaged to obtain the values shown in Table 2.

          

Number of 
Outliers 

 

5 
 
 
 

10 
 

 
 
 

15 

Figure 6. True Positive Rate (TPR, y-axis) for MVOD and MLTS for 5 outliers (top panel), 10 outliers (middle panel),
and 15 outliers (bottom panel) with outlier magnitudes of 1, 2, 3, 4 or 5 (x-axis).

Results:Table 2 and Figure 6 show that in terms of the TPR, our method outperforms the MLTS
when the outlier strength is low (i.e. magnitudes of 1 and 2) and has slightly better performance
than the MLTS for medium outlier strength (i.e. magnitude of 3), while the two approaches
are comparable when the outlier strength is high (i.e. magnitude of 4 and 5). As evident from
Table 2, for the FPR, the two methods have similar behavior, with negligible difference on the
order of 10-2. Additionally, the number of outliers (5, 10 or 15) does not have an obvious effect
on either of the methods. In summary, the experiments demonstrate that our MVOD method
can work effectively and accurately in detecting the outliers from the multivariate time series
data. Compared to MLTS, the MVOD is more sensitive in detecting the small magnitude
outliers, which are often difficult for an outlier detection algorithm. Furthermore, both our
MVOD and the MLTS work reasonably well for a wide range of contamination levels. That is,
both methods are quite robust to the number of outliers in the dataset.

4. Machine learning methods for novelty detection

Novelty detection can be considered as the task of classifying test data that differ in some
respect from the data that are available during training. This may be approached within the

Advances in Bioengineering328



framework of “one-class classification” [3], in which a model is built to describe “normal”
training data. Novelty detection methods can be categorized into several areas such as
probabilistic, distance-based, reconstruction-based, domain-based, and information-theoretic
techniques. In this section, we mainly introduce the first category of probabilistic approaches,
and briefly summarize the others.

4.1. Probabilistic approaches

Probabilistic approaches to novelty detection are based on estimation of the generative
probability density function of the data, which may then be used to define thresholds for the
boundaries of “normality” in the data space and test whether or not a test sample is from the
same distribution. Statistical hypothesis tests are the simplest statistical techniques for novelty
detection [5]. Among the different statistical tests for novelty detection, here we concentrate
on more advanced statistical modeling methods involving complex, multivariate data
distributions. Techniques for estimating the underlying data density from multivariate
training data broadly fall into parametric and nonparametric methods. The former imposes a
restrictive model on the data, leading to a large bias when the model does not fit the data; the
later builds up a very flexible model with fewer assumptions but requires a large sample size
for a reliable fit of all free parameters when the model size becomes large.

In parametric approaches, the widely used distribution form for continuous variables is
Gaussian. The involved parameters are estimated from the training data via maximum likelihood
estimates (MLE), for which a closed-form analytical solution is available for a Gaussian
distribution. More complex data distribution forms can be modeled through mixture models
(e.g. Gaussian Mixture Models, or GMMs for short), or other mixtures of different types of
distributions (e.g. the gamma, the Poisson, the Student’s t, and the Weibull distributions) [26,
27]. When the form of the data distribution is not available, Gaussian distribution is usually
taken due to its convenient analytical properties. The parameters of the GMMs can be
estimated with maximum likelihood methods (using optimization algorithms including
conjugate gradients or expectation-maximization, EM) or with Bayesian methods (e.g.
variational Bayes) [26]. Besides the requirement of large numbers of training examples in
estimating model parameters, another limitation of parametric methods is that the chosen data
distribution form and the model generating the data may not match well. Despite the limita‐
tions, GMMs have been a popular scheme for novelty detection. The other strategy for novelty
detection is to utilize time-series approaches, for example, the stochastic process of Autore‐
gressive Integrated Moving Average (ARIMA), which can be used to predict the next data point
and determine whether or not it is artefactual [28]. State-space models are also typically used
for novelty detection in time-series data, assuming there is some underlying hidden state that
generates the observations and this hidden state evolving through time [29]. The Hidden
Markov Model (HMM) and the Kalman filter are two common state-space models for novelty
detection.

Non-parametric methods do not assume a fixed structure of a model; the model grows in size
as necessary to fit the data and accommodate the data complexity. A common non-parametric
approach for probabilistic density estimation is the kernel density estimator [26], which
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estimates the probability density function with a large number of kernels over the data space.
The kernel density estimator places a kernel (e.g. Gaussian) on each data point and then sums
the contributions from a localized neighborhood of the kernel. This is the so-called Parzen
windows estimator [30], which has been used for novelty detection in a number of applications
including mammographic image analysis [31]. One-class classification based on Gaussian
Processes (GPs) has been developed and used recently [32]. This technique also takes a point-
wise approach to novelty detection, which divides the data space into regions with high and
low supports depending on whether those regions are close to those occupied by “normal”
training data, or not. A related way of detecting novelty is based on the well-established area
of changepoint detection [33], with the goal of determining whether the generative distribution
of a sequence of observations has remained stable or has undergone some abrupt change. Here
in addition to detecting whether a change has occurred or not, another aim is to estimate the
time that the change has occurred. When applied in a batch or online setting, the idea of
changepoint detection to the retrospective problem is identifying a test statistic suitable for
testing the hypothesis that a change has occurred versus the one that no change has occurred.
A likelihood ratio statistic, as well as others [33, 34], would be appropriate.

4.2. Other categories

Distance-based approaches, such as clustering or nearest-neighbor methods [35-37], are
another types of techniques that can be used for classification or for estimating the probability
density function of data. The underlying assumption is that “normal” data are tightly clus‐
tered, while novel data occur far from their nearest neighbors. These methods use well-defined
distance metrics to compute the distance (e.g. similarity measure) between two data points.

Reconstruction-based methods involve training a regression model with the training data [3,
38, 39]. The distance between the test vector and the output of the system (i.e. the reconstruction
error) can be related to the novelty score, which would be high when “abnormal” data occurs.
For instance, neural networks can be used in this way and show many of the same advantages
for novelty detection as they do for typical classification applications. Another type of
reconstruction-based novelty detection is subspace-based techniques. They assume that data
can be projected or embedded into a lower dimensional subspace, which makes better
discrimination of “normal” and “abnormal” data easier.

Domain-based methods often aim to describe a domain that contains “normal” data through
a boundary around the “normal” class following the distribution of the data without explicitly
providing a distribution [40, 41]. These techniques are usually insensitive to the specific
sampling and density of the interested class. The location to the boundary is the criterion for
determining the class membership of unknown data. Novelty detection support vector
machines (SVMs) are the “one-class SVMs”, which set the location of the novelty boundary
only based on the data lying closest to it in the transformed feature space. That is, the novelty
boundary is determined without considering the data that are not support vectors.

Information-theoretic methods calculate the information content of a dataset with measures
such as entropy, relative entropy, and Kolmogorov complexity, etc. [42, 43]. The key idea is
that novel data alter the information content in a dataset significantly. A common procedure
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is: metrics are computed using the entire dataset and then the subset of points whose elimi‐
nation from the dataset causes the largest difference in the metric are identified. The data
contained in this subset is then assumed to be novel data.

5. Robust estimator and outlier detection in high-dimensional medical
imaging

The statistical analysis of medical images is challenging, not only because of the high-dimen‐
sionality and low signal-to-noise ratio of the data, but also due to varieties of errors in the
image acquisition processes, such as scanner instabilities, acquisition artifacts, and issues
associated with the experimental protocol [44]. Furthermore, populations under study
typically present high variability [45, 46], and therefore the corresponding imaging data may
have uncommon though technically correct observations. Such outliers deviating from
normality could be numerous. With emergence of large medical imaging databases, develop‐
ing automated outlier detection methods turns out to be a critical preprocessing step for any
subsequent statistical analysis or group study. In addition, medical imaging data are usually
strongly correlated [47]; outlier detection approaches based on multivariate models are thus
crucial and desirable. Procedures using the classical MCD estimator are not well-suited for
such high-dimensional data.

In [48], several extensions to the classical outlier detection framework are proposed to handle
high-dimensional imaging data. Specifically, the MCD robust estimator were modified so that
it can be used for detecting outliers when the number of observations is small compared to the
number of available features. This is achieved through introducing regularization in the
definition and estimation of the MCD. Three regularization procedures were presented and
compared: l1 regularization (RMCD - l1); l2 regularization or ridge regularization (RMCD - l2);
and random projections (RMCD - RP). The idea of RMCD - RP  is to run the MCD estimator on
datasets of reduced dimensionality, and this dimensionality reduction is done by projecting
to a randomly selected subspace. In addition, the parametric approach of the regularized MCD
estimators is compared to a non-parametric procedure, the One-Class SVM algorithm (see
Section 4). Experimental results on both simulated and real data show that l2 regularization
performs generally well in simulations, but random projections outperform it in practice on
non-Gaussian, and more importantly, on real neuroimaging data. One-Class SVM works well
on unimodal datasets, and it has a strong potential if their parameters can be set correctly.

Outlier detection methods described above can serve as a statistical control on subject inclusion
in neuroimaging. However, sometimes it is controversial regarding whether or not outliers
should be discarded, and, if so, what tolerance to use. An alternative strategy is to utilize
outlier-resistant techniques for statistical inference, which would also compensate for inexact
hypotheses including data normality and homogeneous dataset. Robust techniques are
especially useful when a large number of regressions are tested and assumptions cannot be
evaluated for each individual regression, as with neuroimaging data.

Both individual subject and group analyses are required in neuroimaging. At a typical single
subject level, a multiple regression model is used for the time series data at each voxel [49,
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50], and outliers (or other assumption violations) in the time series would impact the model
fitness. Robust regression can minimize the influence of these outliers. At the group level, after
spatial normalization, a common strategy is to first save the regression parameters for each
subject at each voxel and then perform a test on the parameter values. Robust regression used
at this level can minimize the influence of outlying subjects. Wager et al. [51] used simulations
to evaluate several robust techniques against ordinary least squares regression, and apply
robust regression to second-level group analyses in three real fMRI datasets. Experimental
results demonstrate that robust Iteratively Reweighted Least Squares (IRLS) at the second level
is computationally efficient; it increases statistical power and decreases false positive rates
when outliers are present. Without the presence of outliers, IRLS controls false positive rates
at an appropriate level. In summary, IRLS shows significant advantages in group data analysis
and in the hemodynamic response shape estimation for fMRI time series data.

6. Conclusions

Outlier and novelty detection is a primary step in many data mining and analysis applications,
including healthcare and medical research. In this chapter, statistical and machine learning
methods for outlier and novelty detection, and robust approaches for handling outliers in data
and imaging sciences were introduced and reviewed. Particularly, we also presented our new
method for outlier detection in time series data based on the Voronoi diagram (i.e. MVOD).
There are several key advantages of our method. First, it copes with outliers in a multivariate
framework by accounting for multivariate structure in the data. Second, it is flexible in
extracting valid features for differentiating outliers from non-outliers, in the sense that we have
the option of using or not using a parametric model. Lastly, Voronoi diagrams capture the
geometric relationship embedded in the data points. Initial experimental results show that our
MVOD method can lead to accurate, sensitive, and robust identification of outliers in multi‐
variate time series.

It is often difficult to reach a precise definition of outlier or novelty, and suggesting an optimal
approach for outlier or novelty detection is even more challenging. The variety of practical
and theoretical considerations arising in real-world datasets lead to the variety of techniques
utilized [52]. Therefore, there is no single universally applicable detection method due to the
large variety of considerations, which could include the application domain, the type of data
such as dimension, and the availability of training data, etc. Based on the application and the
nature of the associated data, developing suitable computational methods that can robustly
and efficiently extract useful quantitative information from big data is still a current challenge
and gaining increasing interest in data and imaging sciences.

Acknowledgements

This work is supported in part by a grant from the National Institute of Health, K25AG033725.

Advances in Bioengineering332



Author details

Michelle Yongmei Wang1,2,3,4* and Chris E. Zwilling2

*Address all correspondence to: ymw@illinois.edu

1 Department of Statistics, University of Illinois at Urbana-Champaign, USA

2 Department of Psychology, University of Illinois at Urbana-Champaign, USA

3 Department of Bioengineering, University of Illinois at Urbana-Champaign, USA

4 Beckman Institute, University of Illinois at Urbana-Champaign, USA

References

[1] Aggarwal CC. Outlier Analysis. New York: Springer Science + Business Media; 2013.

[2] Markou M, Singh S. Novelty detection: a review---part 1: statistical approaches. Sig‐
nal Processing 2003a; 83(12): 2481-2497.

[3] Markou M, Singh S. Novelty detection: a review---part 2: neural network based ap‐
proaches. Signal Processing 2003b; 83(12): 2499-2521.

[4] Zwilling CE, Wang MY. Multivariate Voronoi outlier detection for time series. In:
Proc. IEEE Healthcare Innovation Point-Of-Care Technologies Conference 2014; in
press.

[5] Barnett V, Lewis T. Outliers in Statistical Data. John Wiley and Sons; 1994.

[6] Tarassenko L, Clifton DA, Bannister PR, King S, King D. Novelty Detection. In: Boller
C, Chang F-K, Fujino Y (eds.) Encyclopedia of Structural Health Monitoring. 2009.
Chapter 35.

[7] Davies L, Gather U. The identification of multiple outliers. Journal of American Stat‐
istical Association 1993; 88(423): 782-792.

[8] Rousseeuw P. Multivariate estimation with high breakdown point. In: W. Gross‐
mann et al. (eds.) Mathematical Statistics and Applications. Budapest: Akademiai‐
Kiado; 1985. Vol. B, p283-297.

[9] Ben-Gal I. Outlier detection. In: Maimon O, Rockach L (eds.) Data Mining and
Knowledge Discovery Handbook: A Complete Guide for Practitioners and Research‐
ers. Kluwer Academic Publishers; 2005. Chapter 1.

[10] Becker C, Fried R, Kuhnt S, editors. Robustness and Complex Data Structures. Berlin
Heidelberg: Springer-Verlag; 2013.

Multivariate Computing and Robust Estimating for Outlier and Novelty in Data and Imaging Sciences
http://dx.doi.org/10.5772/59750

333



[11] Huber PJ, Ronchetti EM. Robust Statistics. John Wiley & Sons, Inc.; 2009.

[12] Rousseeuw PJ. Least median of squares regression. Journal of the American Statisti‐
cal Association 1984; 79: 871-880.

[13] Hubert M, Debruyne M. Minimum covariance determinant. Wiley interdisciplinary
reviews: Computational statistics 2010; 2: 36-43.

[14] Croux C, Haesbroeck G. Influence function and efficiency of the Minimum Cova‐
riance Determinant. Journal of Multivariate Analysis 1999; 71: 161-190.

[15] Lopuhaa HP, Rousseeuw PJ. Breakdown points of affine equivariant estimators of
multivariate location and covariance matrices. Annals of Statistics 1991; 19: 229-248.

[16] Lopuhaa HP. Asymptotics of reweighted estimators of multivariate location and
scatter. Annals of Statistics 1999; 27: 1638-1665.

[17] Liebscher S, Kirschstein, Becker C. RDELA –--A Delaunay-triangulation-based, loca‐
tion and covariance estimator with high breakdown point. Statistics and Computing
2013; 23: 677-688.

[18] Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determi‐
nant estimator. Technometrics 1999; 41(3): 212-223.

[19] Rousseeuw PT, Aelst SV, Driessen KV, Agullo J. Robust multivariate regression.
Technometrics 2004; 46(3): 293-305.

[20] Agullo J, Croux C, Aelst SV. The multivariate least-trimmed squares estimator. Jour‐
nal of Multivariate Analysis 2008; 99: 311-338.

[21] Croux C, Joossens K. Robust estimation of the vector autoregressive model by a least
trimmed squares procedure. In: Proceedings in Computational Statistics 2008;
p489-501.

[22] Preparata FP, Shamos MI. Computational Geometry-An Introduction. Springer; 1985.

[23] Pearson, RK. Exploring Data in Engineering, the Sciences and Medicine. Oxford Uni‐
versity Press; 2011.

[24] Qu J. Outlier detection based on Voronoi diagram. In: Proceedings of the ADMA In‐
ternational Conference on Advanced Data Mining and Applications 2008; p516-523.

[25] Neumaier A, Schneider T. Algorithm 808: ARfit-A Matlab package for the estimation
of parameters and eigenmodes of multivariate autoregressive models. ACM Transac‐
tions Mathematical Software 2001; 27: 58-65.

[26] Bishop CM. Pattern Recognition and Machine Learning. Springer, New York; 2006.

[27] Carvalho A, Tanner M. Modelling nonlinear count time series with local mixtures of
poisson autoregressions. Comput. Stat. Data Anal. 2007; 51(11): 5266–5294.

Advances in Bioengineering334



[28] Hoare S, Asbridge D, Beatty P. On-line novelty detection for artefact identification in
automatic anaesthesia record keeping. Med. Eng. Phys. 2002; 24(10): 673–681.

[29] Quinn J, Williams C. Known unknowns: novelty detection in condition monitoring.
In: Marti J et al. (eds.) Pattern Recognition and Image Analysis, LNCS 4477. 2007. p1–
6.

[30] Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat.
1962; 33(3): 1065–1076.

[31] Tarassenko L, Hayton P, Cerneaz N, Brady M. Novelty detection for the identifica‐
tion of masses in mammograms. In: Proceedings of the 4th International Conference
on Artificial Neural Networks, IET. 1995. p442–447.

[32] Kemmler M, Rodner E, Denzler J, One-class classification with Gaussian processes.
In: Asian Conference on Computer Vision (ACCV), vol. 6493. 2011. p489–500.

[33] Basseville M, Nikiforov IV. Detection of Abrupt Changes: Theory and Application.
Prentice Hall, Englewood Cliffs; 1993.

[34] Reeves J, Chen J, Wang XL, Lund R, Lu QQ. A review and comparison of change‐
point detection techniques for climate data. J. Appl. Meteorol. Climatol. 2007; 46(6):
900–915.

[35] Pires A, Santos-Pereira, C. Using clustering and robust estimators to detect outliers in
multivariate data. In: Proceedings of the International Conference on Robust Statis‐
tics. 2005.

[36] Yong S, Deng J, Purvis M, Wildlife video key-frame extraction based on novelty de‐
tection in semantic context. Multimed. Tools Appl. 2013; 62(2): 359–376.

[37] Hautamaki V, Karkkainen I, Franti P. Outlier detection using k-nearest neighbor
graph. In: Proceedings of the 17th International Conference on Pattern Recognition,
vol. 3. 2004. p430–433.

[38] Kit D, Sullivan B, Ballard D. Novelty detection using growing neural gas for visuo-
spatial memory. In: Proceedings of the IEEE/RSJ International Conference on Intelli‐
gent Robots and Systems. 2011, p1194–1200.

[39] Xiao Y, Wang H, Xu W, Zhou J. L1 norm based KPCA for novelty detection. Pattern
Recognit. 2013; 46(1): 389–396.

[40] Schölkopf B, Williamson R, Smola A, Shawe-Taylor J, Platt J. Support vector method
for novelty detection. Adv. Neural Inf. Process. Syst. 2000; 12(3): 582–588.

[41] Le T, Tran D, Ma W, Sharma D. Multiple distribution data description learning algo‐
rithm for novelty detection. Adv. Knowl. Discov. Data Min. 6635. 2011. p246–257.

[42] He Z, Deng S, Xu X, Huang J. A fast greedy algorithm for outlier mining. Adv.
Knowl. Discov. Data Min. 3918. 2006. p567–576.

Multivariate Computing and Robust Estimating for Outlier and Novelty in Data and Imaging Sciences
http://dx.doi.org/10.5772/59750

335



[43] Filippone M, Sanguinetti G. Information theoretic novelty detection. Pattern Recogni‐
tion 2010; 43(3): 805–814.

[44] Wang MY, Zhou C, Xia J. Statistical analysis for recovery of structure and function
from brain images. In: Komorowska MA, Olsztynska-Janus S (eds.) Biomedical Engi‐
neering, Trends, Researches and Technologies. 2011. p169-190.

[45] Chen G, Fedorenko E, Kanwisher NG, Golland P. Deformation-invariant sparse cod‐
ing for modeling spatial variability of functional patterns in the brain. In: Proc. Neu‐
ral Information Processing Systems Workshop on Machine Learning and
Interpretation in Neuroimaging, LNAI 7263. 2012. p68-75.

[46] Staib LH, Wang YM. Methods for nonrigid image registration. In: Bayro-Corrochano
E (ed.) Handbook of Goemetric Computing: Applications in Pattern Recognition,
Computer Vision, Neuralcomputing, and Robotics. Springer-Verlag; 2005. p571-602.

[47] Wang MY, Xia J. Unified framework for robust estimation of brain networks from
fMRI using temporal and spatial correlation analyses. IEEE Trans. on Medical Imag‐
ing 2009; 28(8): 1296-1307.

[48] Fritsch V, Varoquaux G, Thyreau B, Poline J-B, Thirion B. Detecting outliers in high-
dimensional neuroimaging datasets with robust covariance estimators. Medical Im‐
age Analysis 2012; 16(7): 1359-1370.

[49] Worsley KJ, Friston KJ. Analysis of fMRI time-series revisited — Again. NeuroImage
1995; 2(3): 173 – 181.

[50] Worsley KJ, Poline JB, Friston KJ, Evans AC. Characterizing the response of PET and
fMRI data using multivariate linear models. NeuroImage 1997; 6(4): 305–319.

[51] Wager TD, Keller MC, Lacey SC, Jonides J. Increased sensitivity in neuroimaging
analyses using robust regression. NeuroImage 2005; 26: 99-113.

[52] Singh K, Upadhyaya S. Outlier detection: applications and techniques. International
Journal of Computer Science Issues 2012; 9(1): 307-323.

Advances in Bioengineering336


