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Chapter 9
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1. Introduction

During the last decade, information theory [1] as applied to the basic sciences has taken
two routes in the study of physical and chemical systems, considering both extensivity and
non-extensivity - these concepts are fundamental to the development of new physical theories
that try to describe the behaviour of natural systems. In this sense, non-extensivity is an
important concept that it is necessary to incorporate into the description of atoms, molecules
and chemical processes.

At present, one of the ways to incorporate the concept of non-extensivity is by using
deformed entropies, or Tsallis entropy [2]. This entropy is a generalization of Shannon
entropy and has a dependency of a parameter, usually denoted by “q” and generally
called a ’non-extensivity parameter’, that permits us to perform a modulation between
extensive and non-extensive behaviour. These new kinds of entropies are built using a
new area of mathematics called “q-algebra” , or “deformed algebra” [3–5]. One important
aspect to the use and application of deformed entropy is that the original definition of the
entropy used for building deformed entropy needs to be strictly positive over all space
and dimensionless. As such, in this work we propose a definition that fulfils this. This
entropy uses the electron density obtained by the methods of quantum mechanics - this is
an important point because the electron density is an observable, and so this permits us to
establish a gate between the non-extensivity of classic entropies and the non-extensivity of
quantum entropies. Consequently, this entropy permits us to incorporate the important
concept of non-extensivity in quantum theory. In the same way, it is known that the
chemistry interpretation of the same behaviour of these systems can be enriched by quantum
information theory.

As we will show in this work, it is trivial to obtain some important functionals using
deformed entropies. In this sense, we show how, with simple mathematical manipulations,
it is possible to obtain two of the most important functionals of physics - the kinetic energy
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functional of the Thomas-Fermi [6, 7] model, and the exchange energy functional of Dirac
from deformed entropy. In our opinion, this opens the door to exploring the possibility of
the generation of density functionals based in entropic criteria. Moreover, we will present
a simple chemical process where we show the effect of the non-extensive parameter, and
in the same way we present the general trends of the “q” parameter for the first 54 atoms
of the periodic table. Finally, we might raise a general question that motivates this work,
that is, when does a natural system become extensive or non-extensive? As we mentioned
above, this parameter “q” has a strong relation with deformed algebra - in this algebra, all the
operations have a dependence upon a parameter, “q”, and in general when “q” is different
to that of the unit, this implies that their basic properties are not completely separable and
do not necessary commute. This causes us to raise a general question, namely, can nature be
represented by deformed algebra? In this context, it is necessary to incorporate the concept
of non-extensivity to rewrite many expressions in terms of deformed algebra and investigate
their new properties.

2. Theoretical background

Since the 1980s, when the first applications of Shannon entropy to chemical systems were
made, we might observe two basic definitions of it, namely

S = −

∫
ρ(r) ln ρ(r)dr, (1)

and

S = −

∫
ρ(r)

N
ln

ρ(r)

N
dr, (2)

where ρ(r) is the electron density subject to
∫

ρ(r)dr = N, and N it is the electron number
of the system. However, if we perform a dimensional analysis, we immediately note that
neither definition of Shannon entropy is dimensionless; in addition, and in our opinion, the
more serious deficiency is that neither definition is strictly positive over all space1. Given this
situation, it is evident that we cannot apply these two initial definitions to chemical systems.
Accordingly, we propose a redefinition of Shannon entropy [8], such that

S = −

∫
ρ(r)

N
ln

ρ(r)

ρmax
dr, (3)

where ρmax is the electron density in the nuclei position. In the case of a molecular system
ρmax, it is necessary to take the higher value of the electron density of all the atoms that
constitute the molecule. This definition fulfils the following: it is dimensionless and strictly
positive over all space. In this sense, we suggest the use of the definition (3) for entropy
calculations of chemical systems.

1 A more detailed study of this aspect will be presented elsewhere.
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On the other hand, in general the entropy of a composed system is very often equal to the
sum of all its parts. This is fulfilled only when the energy is the sum of the parts and if the
work performed by all the parts is the sum of the work performed by the system. That is,

S(A, B) = S(A) + S(B), (4)

or in general,

S(A, B, C, · · · ) = S(A) + S(B) + S(C) + · · · , (5)

However, this not quite obvious, and in some cases this may not be fulfilled. For example,
consider a system composed of two different homogeneous substances - in this case, it is
only possible to express the energy as the sum of the individual energies if, and only if, we
neglect the interaction energy of the substances or subsystems. However, this energy plays
an important role in the description of natural systems; unfortunately, the mathematical
development of it is, frequently, complicated. One interesting aspect of entropies involves
entropic balances [9], in which is possible to write the joint entropy in terms of the
subsystems’ entropy and conditional entropy,

Sq(A + B) = Sq(A) + Sq(B|A) + (1 − q)Sq(A)Sq(B|A) (6)

where

Sq(A) = −
∫∫

ρ(a, b)

NAB(q − 1)

[

1 −

{

∫

ρ(a, b)

ρA
maxNB

db

}q−1
]

dadb, (7)

Sq(B|A) = −
∫∫

ρ(a, b)

NAB(q − 1)






1 −







∫∫

ρ(a,b)
NA+NB

∫

ρ(a,b)
ρA

max NB
db

dadb







q−1





dadb, (8)

where ρA
max and ρB

max are the maximum density values of the fragments2 A and B,
respectively. NAB is the total electron number and NA and NB are the electron numbers
of the fragments A and B respectively. The marginal densities of the probabilities are defined
as

∫

ρ(a, b)da = ρ(b), (9)

∫

ρ(a, b)db = ρ(a), (10)

and these densities fulfil

2 This implies that it is necessary to select an electron density partition scheme subject to the rules of information
theory. In chemistry, the scheme that fulfils this is the Stock-Holder partition scheme [10, 11].
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∫∫

ρ(a, b)dadb = 1, (11)

∫

ρ(a)da = 1, (12)

∫

ρ(b)db = 1, (13)

In all cases, Sq satisfies the following properties,

i) Sq ≥ 0;

ii) Sq is a continuous function of ρ(a, b), ρ(a) or ρ(b);

iii) Sq increases monotonically with the particle number;

iv) Sq(A, B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B);

From the last paragraph, it is possible to think in terms of the use of linear description; in
this sense, Tsallis proposes a generalization of Boltzmann-Gibbs entropy, using the so-called
’deformed functions’, and substituting the original definitions by the deformed definitions.
In general, two definitions are used, namely the deformed logarithm (or q-logarithm)

lnq x :=
1 − xq−1

q − 1
, (14)

and the deformed exponential (or q-exponential)

expx
q := [1 + (1 − q)x]

1
1−q , (15)

These definitions can be obtained by solving the differential equation
dy
dx = yq, y(0) = 1; q ∈

ℜ, see [12].

Using the deformed logarithm, we can obtain the deformed entropy, which has the following
explicit form

Sq = −

∫

ρ(r)

N
lnq

ρ(r)

ρmax
dr,

= −

∫

ρ(r)

N







1 −
(

ρ(r)
ρmax

)q−1

1 − q






dr,

=
1

1 − q
+

1

N(q − 1)ρ
q−1
max

∫

ρ(r)qdr, (16)
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where q ∈ ℜ, and for a composed system, this entropy is

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), (17)

This implies that the subsystems are correlated, and immediately we can note that for q 6= 1
the entropy of a composed system is non-extensive, though if we select q → 1, then the
definition (16) becomes the definition (3), that is,

lim
q→1

{

1

1 − q
+

1

N(q − 1)ρ
q−1
max

∫

ρ(r)qdr

}

= −

∫

ρ(r)

N
ln

ρ(r)

ρmax
dr, (18)

and recover the extensive behaviour.

Now, using Eq. (16), if we select that q = 4
3 , we obtain

Sq=4/3 = −3 +
3

Nρ
1/3
max

∫

ρ(r)4/3dr, (19)

In this expression, we can note immediately that the integral has the same form as that of
the exchange functional of Dirac, and if we select that q = 5

3 ,

Sq=5/3 = −
3

2
+

3

2Nρ
2/3
max

∫

ρ(r)5/3dr, (20)

this integral corresponds to the Thomas-Fermi kinetic energy functional. Consequently, it is
trivial to obtain any density functional that involves some of the powers of electron density.
Naturally, it is a simple matter to rewrite both functionals in terms of the deformed entropy -
this allows us to hypothesize that the electronic energy of a system can be rewritten as a linear
combination of deformed entropies. This, of course, implies that the local density functionals
are a particular case of the deformed entropy. This allows us to raise the following question:
for any electron density, to what does the value of q correspond?

The definition (16) can be simplified if we perform a series expansion of the term
(

ρ(r)
ρmax

)q−1
,

(

ρ(r)

ρmax

)q−1

=
ρmax

ρ(r)
+

ρmax

ρ(r)
log

(

ρ(r)

ρmax

)

+

ρmax

2ρ(r)
log

(

ρ(r)

ρmax

)2

+
ρmax

6ρ(r)
log

(

ρ(r)

ρmax

)3

+ · · ·+

ρmax

n!ρ(r)
log

(

ρ(r)

ρmax

)n

, (21)
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and if we suppose that only the first term contributes to the general behaviour and that it is
the most important term,

(

ρ(r)

ρmax

)q−1

∼

(

ρmax

ρ(r)

)

, (22)

Replacing this in Eq. (16), namely

S
approx
q = −

∫

ρ(r)

N





1 −
(

ρmax

ρ(r)

)

1 − q



 dr,

=

[

1

q − 1
+

ρmax

N(1 − q)

]

∫

dr, (23)

this is a good result, because it is possible to perform a simple computational implementation
of S

approx
q and explore the behaviour of those very large systems for which the ab initio

calculations of the electron density are very expensive (for example, for systems constituted
by more than 104 atoms). This definition satisfies the condition of the dimensionless of the
entropy.

3. Characterization of atoms in the basal state

One of the principal questions that emerges in this study is concerned with the parameter
“q”, namely, for an atomic system in a basal state, what is its q value? For this, we calculated
the electron density in the position space using the following functionals, B3LYP, BHandH,
M062x, MP2, MP3 and TPSS, and with the following ab initio methods, CCS, CCSD, CISD,
using a standard quantum chemistry program, Gaussian 09 [13], with the basis set DGDZVP
[14, 15], to obtain the energy value and the corresponding wave function. The electron
density in the position space was calculated with the DGrid program [16] using the wave
function obtained through several methodologies, and for the entropy calculations we used
the integration algorithm designed by Pérez-Jordá et al. [17] with a precision of 1 × 10−5.

In the Figures (1(a) - 1(f)), we show the results of Sq using q = 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, in which
we note that the entropy has no dependence upon the methods, and it is possible to recognize
the periodicity of the elements in the periodic table. Naturally, when the q parameter
changes, the difference is magnified between the different periods of the periodic table;
however, with the atoms that involve d-orbitals, we note a small disruption in this tendency.
In general, we can observe that the Shannon entropy increases with respect to the atomic
number in a natural way, if we appeal to the interpretation of this information measure,
we can specify that the content of the information tends to increase. This assumption is
based on the follow interpretation: if we consider an ideal gas, this system has a uniform
particle distribution; therefore, the entropy is maximum. As such, we expect that the entropy
increases in proportion to the electron number -in principle- and, considering the physics
of the system, when the number of particles increases the Shannon entropy tends to the
Thomas-Fermi limit as a consequence of a decrease in the Wigner-Seitz radii [18]. Thus, the
definition proposed in this work permits us to recover the original idea of the content of
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the information of a system in relation to the physical interactions between the electrons of
systems, such that when the number or particles, N, tends to infinity, q will tend to the unit.

On the other hand, if we consider a system in a basal state and in equilibrium, what is the
value of the parameter q? To address this question, we propose a computational form to find
this value,

qi+1 = qi +
Sqi

Sqi+1

, (24)

This approximation requires that Sqi ≈ Sqi+1 - when this condition occurs, it also satisfies that
(

∂Sqi
∂qi

)

≈
(

Sqi+1

∂qi+1

)

. With this assumption, the slope of Sq tends to zero, and this corresponds

to the zone where q does not change. This will be the q value for the system; moreover, we
can fix the precision with 1 × 103 and the error was calculated as

%Error =

∣

∣

∣

∣

Sqi+1 − Sqi

Sqi+1

∣

∣

∣

∣

, (25)

Given this consideration, we obtain the trends shown in Figure (2), where the general trend
for q was calculated using the functionals B3LYP, TPSS and M062x, and with the wave
function methods CCS, CCSD, MP2, MP3 and CISD with the basis set DGDZVP. In this
figure, we note that only for the block d of the periodic table the tendency of q parameter,
has a breaking of the tendency, this would be attributed to the basis set, but in respect to the
methodologies the general trend of q permanence without considerable changes, this permit
us establish that the q values has not a dependency of the methodologies. It is important
to note that, according to the physics of the system, we expect that when the system sees a
considerable increase in the number of electrons, the general behaviour will be like that of a
Fermi gas, and consequently the system becomes an extensive system. This implies that the
entropy becomes extensive, that is q → 1, and that Eq. (16) becomes as in Eq. (3). From these
results, we also obtain that

lim
q→qop

Sq = 1. (26)

In the Figure (3) we present the general trend of q with CCSD/DGDZVP with dotted-crosses,
and the following polynomial,

f (q) = C1 + C2 exp{−C3Z + C4}+ C5 exp{−C6Z2 + C7}, (27)

with a continuous line, where the coefficients have the values listed in Table (1).

Z denotes the atomic number, and in Table (2) we show the qopt values for the first 54
atoms of the periodic table. Analysing the values of this table, we note that in all cases the
characteristic value of each atom in the basal state is close to the unit when the electron
number increases.
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Figure 1. Effect of the variation of the parameter q for the trends of entropy, using several methodologies of quantum
chemistry with the DGDZVP basis set.
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C1 = 1.0055300
C2 = 0.0526141
C3 = 0.9959850
C4 = 0.2739020
C5 = 0.0738875
C6 = 0.1080680
C7 = 0.3578360

Table 1. Values of the constants of Eq. (27).

Z qopt Z qopt Z qopt Z qopt

1 1.1597116 15 1.0219020 30 1.0123013 44 0.9981021
2 1.1383104 16 1.0207019 31 1.0120013 45 1.0004019
3 1.0920058 17 1.0198019 32 1.0117012 46 1.0087011
4 1.0698041 18 1.0190017 33 1.0113013 47 1.0085011
5 1.0556034 19 1.0178018 34 1.0110012 48 1.0086010
6 1.0470029 20 1.0178016 35 1.0109012 49 1.0083010
7 1.0409027 21 1.0198014 36 1.0107012 50 1.0081010
8 1.0364026 22 1.0037026 37 1.0107012 51 1.0080010
9 1.0332024 23 1.0106020 38 1.0104011 52 1.0079010

10 1.0306023 24 1.0035025 39 1.0036017 53 1.0077009
11 1.0277023 25 1.0016026 40 1.0144007 54 1.0076009
12 1.0268022 26 1.0095018 41 0.9954024
13 1.0246022 28 1.0132014 42 1.0024017
14 1.0228021 29 1.0105015 43 0.9947024

Table 2. Values of qopt using CCSD(full)/DGDZVP.

4. Characterization of a Simple Chemical process

One of the interests of this work is in the study of the effect of the parameter “q” in a
dissociation process. The idea is to study the effect of small interactions when a homonuclear
system is dissociated.

In this case, we select the dissociation of the H2 molecule,

H2 −→ H + H.

The calculations were performed with Gaussian 03 [19] with CCSD(full) and the basis set
cc-pVTZ [20]. For the entropy calculations, we used the wave function generated by Gaussian
03 to generate the electron density, while ρmax was calculated in the position of the nuclei of
each atom of the molecular system, in this case by the symmetry ρmax(A) = ρmax(B) = ρmax.
The electron density was calculated with DGrid and the algorithm of integration that we
used was designed by Peréz-Jodá et al. with a precision of 1 × 10−5.

In Figure (4), we present the general trend of this simple chemical process, where we can note
that the internuclear equilibrium distance is 0.754 Å, which corresponds to the minimum
electronic energy; the dissociation process was carried out more than two times the van der
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Figure 2. Trends of the parameter q for the atoms 1 < Z < 54 using several methodologies with the basis set DGZVP;
all calculations were performed in Gaussian 09.
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Figure 3. Trends of the parameter q for the atoms 1 < Z < 54, with CCSD(full)/DGDZVP in Gaussian 09.

Waals radii of the hydrogen atom in the basal state (1.2 Å) to ensure that no weak chemical
interactions were present. With this in mind, in this case it is natural to think that, for an
internuclear distance of 3.0 Å, the electronic energy will be twice that of the electronic energy
of the hydrogen atom in the basal state; however, this does not occur, and the value obtained
with CCSD(full)/cc-pVTZ is -1.0007258069 a.u. Consequently, there exists a difference of
0.0007258069 a.u. (1.9056 kJ/mol) - this energy value is closer to that of hydrogen bonding.
In principle, the explanation of this anomaly can be addressed in the following way: by
definition, the wave function is extended over all space, and by construction the wave
function used in a quantum mechanics calculation is a finite superposition of the basis
set functions, ψ = ∑

n
i χiφi. However, notwithstanding that, in a limit this function will

be exact, the correct description obtained with this wave function will be correct only in
the equilibrium. This condition is not obvious, and how we see is not fulfil, this probable

Selected Topics in Applications of Quantum Mechanics260



permit us talk about of a necessity of a different statistical ensemble for the more adequate
description of the systems, and with this new ensembles possible we can describe of a
more appropriate some phenomena present in the quantum world. The real justification
for proposing (and postulating) the existence of this new set of definitions will reside in their
implications, namely the incompleteness of the descriptions obtained by the actual tools and
theories.

In Table (3), we present the values of the electron energy for the hydrogen molecule at
an internuclear distance of 3.0 Åusing several methodologies of quantum chemistry, and
with the basis sets cc-pvDZ, cc-pvTZ, cc-pvQZ and cc-pv5Z. The basis sets are designed
to converge systematically on the complete basis set, such that this basis set permits us
to analyse the improvement of the electron energy, and we note that the best result that
we can obtain corresponds to CCSD(full)/cc-pvTZ. However, even using this sophisticated
methodology and basis set, there exists an excess energy of 0.0012563951 a.u. (3.2986 kJ/mol).
Here, it is convenient to observe that it is not necessary to make use of a bigger basis set
corresponding to a better description (again, this is in reference to Tables (3) and (4), in
which the best energy value corresponds to CISD/cc-pvTZ and not to cc-pv5Z, which is the
more complete basis set of all those used in this work). In all cases, all the methodologies
and basis sets overestimate the energy over large distances, but in the case of MP2, PBE and
B3LYP, the overestimation it of the order of the energy of a simple covalent bond, such as an
oxygen molecule (145 kJ/mol), or a simple bond of a nitrogen molecule (170 kJ/mol).

On the other side, and continuing our discussion, in Figure (4) we observe that the system
can be additive but not necessarily extensive. To explain this in the Figures (6(a)-6(f)), we
present a comparison of the electron energy and the deformed entropy using several q values,
where we note that for different q values the minimum of the entropy change of the position,
for q = −4.1,−2.8, 0.3, 1.5, 1.8 and a distance greater than of 2.0 Å, the slope of tendency
it is zero, that is, the entropy is constant and consequently it is additive, but not extensive,
because for a this values, Sq is constant, now if we consider that this system its constituted
by identical subsystems we have, Sq(A, B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) and by the
system characteristics Sq(A) = Sq(B) so we have Sq(A, B) = 2Sq(A) + (1 − q)[Sq(A)]2. This
opens the door to an interesting question: in physical systems, it is the same additive that
extensive? In our opinion, they are different concepts and it is probable that the use of these
concepts as synonyms is a result of the historical background. It is interesting to note that,
for q = −2.8 = −14/5, the minimum of the entropy corresponds to the minimum of the
energy (see Figure (6(b))); consequently, if we find the appropriate q value for the system, it
is possible to reproduce the electron energy behaviour. The interesting aspect of this is that
the deformed entropy, that it is a local functional (because has not dependency of external
potential), that we can found the same tendencies of the energy in which are present the
effects of an external potential. Another notable characteristic of this tendency is presented
in Figure (6(c)), where in the final state of the system the slope again tends to zero but the
total entropy is greater than the initial content. This implies that the term (1 − q)Sq(A)2

is greater than 2Sq(A), and if we retake the interpretation of the term (1 − q)Sq(A)2 then,
like the degree of non-separability, we can conclude that the representation of the system
with q = 0.3 is non-extensive over all processes, even if the internuclear distance implies
that the system has no physical interactions. This is consistent with the interpretation that
the wave function is extended over all space - if we accept this, probably we can establish a
link between non-extensivity and quantum entanglement [21]. Consequently, it is possible to
build a bridge between quantum information theory and non-extensive statistical mechanics
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and reclaim the idea that we can improve our understanding of nature by not only analysing
behaviour exclusively in terms of matter and energy (even at the level of elementary
particles), but also that study using the techniques and methods of modern physics and
chemistry integrate concepts and tools that allow us to comprehensively investigate the
behaviour of natural systems in order to deepen our understanding of them to incorporate
information measures that take into account concepts such as entanglement, known since
the early days of Quantum Mechanics, for which, however, there are no measures in many
modern theories, at a more fundamental level, it has become clear that an Information Theory
based on the principles of Quantum Mechanics, expands and complements the Classical
Information Theory [22]. In addition to the quantum generalizations of classical notions
such as sources, channels and codes, this new theory includes two complementary types of
quantifiable data: classical information and quantum entanglement.
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Basis CCSD CISD MP3
set

cc-pVDZ -0.99955061881 -0.99955059355 -0.98767847037
cc-pVTZ -1.0007258067 -1.0007257401 -0.98174230596
cc-pVQZ -1.0010904704 -1.0010905136 -0.97990255011
cc-pV5Z -1.0012563951 -1.0012563405 -0.97874184183

Basis MP2 PBE B3LYP
set

cc-pVDZ -0.92566086120519 -0.937015225619 -0.933130505886
cc-pVTZ -0.92835582370175 -0.939927619001 -0.936467455835
cc-pVQZ -0.92932919850342 -0.940569300858 -0.937152190049
cc-pV5Z -0.92968788957241 -0.940901783377 -0.937514589740

Table 3. Values of the electron energy for H2 at an internuclear distance of 3Å(in a.u.). The energy calculations were
performed in Gaussian 09.

Basis CCSD CISD MP3
set

cc-pVDZ 1.179850 1.179916 32.350176
cc-pVTZ 1.833750 1.905430 47.935576
cc-pVQZ 2.863030 2.863143 52.765854
cc-pV5Z 3.298665 3.298521 55.813294

Basis MP2 PBE B3LYP
set

cc-pVDZ 195.17740 165.36652 175.56585
cc-pVTZ 188.10178 157.72003 166.80469
cc-pVQZ 185.54618 156.03530 165.00692
cc-pV5Z 184.60444 155.16236 164.05544

Table 4. Absolute difference of values between the electron energy of H2 at 3.0 Å, and 2H with several methodologies
and with the cc-pvTZ basis set. All values are kJ/mol.

In the Figure (5), we show the general trend of qopt compared with the electron energy, in
which the tendency of qopt has a maximum in approximately 0.529 Å, plotted as a vertical
continuous black line, this value correspond at the first Bohr radii for the Hydrogen atom, this
is an interesting point because it is possible talk about a non-extensive radii of the systems,
where the non-extensivity it is maximum and the point of this is that the we can associate the
q parameter at a physical property like the distances between the subsystems, so we suspect
that the non-extensive behaviour is closely related at two characteristics; the distance and the
particle number.
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Figure 6. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
dissociation process of a H2 molecule.
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5. Characterization of the Chemical Reaction H2 + H−

In this section, we present the results of the reaction H2 + H− → H2 + H−. This
reaction is one of the more studied reactions and it is very well-characterized [23–25].
The IRC calculation was performed with MP2(full)/6-311G, and the singles points with
CISD/6-311++G**, both in Gaussian 03. This reaction is symmetric, has a maximum in
the transition state (which has an energy of -1.6501559031 a.u.) and an internuclear distance
of 0.93236 Åbetween each hydrogen atom. Naturally, the electron energy in the reactants is
the same as in their products (-1.6680093713 a.u). In the Figures (7(a))-(8(f)), we present the
tendency of the deformed entropy using several values of the q parameter, with q = −10.0,
Figure (7(a)). The entropy has a maximum value at RX = 0.0 and a possible local minimum
in RX = −2 and RX = 2. However, is not very clear how to determine whether this q value
is associated with the changes of the entropy for some other parameters related at changes
physical or chemical, when we use the q = −4.6, Figure (7(b)), the entropy tendency has
a maximum value at RX = 0.0 and it is similar at the tendency of the energy. The more
interesting aspects of the changes in the entropy are in the interval −1.1 ≤ q ≤ 1.6, in
Figure (7(c)); with q = −1.1, the entropy has a minimum in RX = −1 and RX = 1, and
these minimums are associated at a zone where the process of the breaking and forming
of the chemical bonds occurs. This zone corresponds to a zone where the normal modes
of vibration have negative frequencies. In Figure (9(a)), we show this comparison, and in
the same way we compare this tendency with the distances of the hydrogen’s involved in
the process, we labeled the atoms like like Hin for the Hydrogen that will be form the new
bond and Hout for the Hydrogen that gonna be break the bond, in this case, the critic region
where the physical changes occurs is −0.5 ≤ RX ≤ 0.5, see the Figure (9(b)), this only can
be observed in the same zone of the entropy where has a small change in their slope, in this
sense, it is possible that changing the value of q or increase the precision we can observe
with more detail the changes that occurs in this zone. Figure (9(c)) presents a comparison
of Sq, q = −0.7 with the Dipolar Moment, how occurs in the case of the frequencies this
parameter has a maximums in RX = −0.85 and RX = 0.85, is it in this zone where the most
important changes of the electron density occurs. In general, we can say that the changes in
the deformed entropy permit us to discover some zones where the most important changes
of the electron density of a system occurs; however, it is not yet known how to select the
appropriate value of q, for example, when we use a value of q = −0.7, the tendency of the
entropy has minimums in RX ∼ −0.9 and RX ∼ 0.9. We can say that this tendency is related
to the change of the electron density, but in the case of Sq, q = −0.1 the entropy behaves like
a specular image of the energy (see Figures (8(a)) and (8(c))). With this evidence, we believe
that it is possible to derive some density functionals in which a combination of different
entropic terms can be expressed, not only the deformed entropy with the form of Eq. (16),
but also a contribution of a deformed Fisher entropy (for this, it will be necessary to write
the gradient of the electron density in terms of deformed algebra). That is,

E[ρ] = ∑
i

xiSq + xi Iq, (28)

where

Iq =
∫

̺(r)|∇ lnq ̺(r)|2dr, (29)
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Figure 7. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
reaction H2 + H− .

and ̺(r) is the shape factor, defined as ̺(r) =
ρ(r)
N .
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Figure 8. Comparison between the trends of the Sq entropy using several q values and the electron energy for the
reaction H2 + H− .
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6. Entropic profiles of atoms

In this section, we present the results of the entropic profiles from hydrogen to neon. The

density was calculated with a precision of 1 × 10−5 with CCSD(full)/DGDZVP obtained in

Gaussian 09. It is our particular interest to characterize the hydrogen atom, because the

simplicity of this system permits us to determine and - as far as possible - try to find some

periodic properties. In this sense, in the Figure (10(a)), we present the entropic profile for

this system, in which we note that the maximum present is in R ≈ 1a.u., that is, the first

Bohr radii. It is possible to speculate that it is at this distance when the system exhibits the

maximum degree of non-extensivity. In the case of He, the maximum value of the entropy is

displaced close to the nucleus, R = 0.545a.u., Figure (10(b)). For the second period (lithium to

neon, Figures (11(a)-12(b))), the maximum of the entropy coincides with the first maximum

of the electron density, and the minimum of the electron density coincides with the inflection

point of the entropy trend; subsequently, in the region of the maximum density the entropy

there is a small change in their slope. Finally, the electron density and the entropy tends

to zero. In general, we also propose verifying the changes of the entropy tendency using

several values of q in the interval 0 ≤ q ≤ 10 with a step size of 0.1, though we cannot observe

significant changes. In this sense, it is possible that the critical points of the deformed entropy

are in relation to the chemical reactivity parameters, such as the Fukui function [26–28],

hardness, softness [29], [30], chemical potential, inter alia, [31]. However, it will be necessary

to perform studies of the relation between the q parameter and these chemical descriptors.

We consider that it will be important to carry this concepts into the field of deformed algebra.
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Figure 10. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for hydrogen and
helium.
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Figure 11. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for lithium to
oxygen.
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Figure 12. Comparison between the trends of the Sq entropy with q = 0.2 and the electron density for fluorine and
neon.

7. Conclusion

In this work, we applied the fundamental idea of Tsallis of entropy generalization and we
propose a definition of deformed entropy that is applied to the description of the first 54
atoms in the basal state of the periodic table, showing that each chemical system has a
characteristic q value. Furthermore, we show that the characteristic q value can be related
to the first Bohr radii, in which we suppose that there corresponds a distance where the
non-extensive behaviour of the system is dominant. In the same way, we show the numerical
tendencies of the deformed entropy compared to the variation of the electron density for the
first 10 atoms in the basal state and observe that the changes of the deformed entropy are in
relation to the significant changes in the electron density.

This has allowed us to start a new line of investigation, and with some of these results we
continue with the study of the formalisms for the construction of a functional based in a
principles of physics and information theory. In addition, we intend to continue with the
development of models that permit us to find a direct relation between electron energy and
chemical reactivity concepts with deformed entropy.

On the other hand, the application of the concepts of information theory permit us form a
description that is more accurate than that based on energetic criteria alone; we speculate
that it is possible to define or find a form that derives the Density Functional Theory from
some fundamental expression.

Finally, with these examples we have tried to link information from a system that is subjected
to a process with physical and chemical changes. Thus, we have linked the concept of
information, which is an epistemological concept completely with ontological concepts and
the interpretation of the results allows us feedback these concepts in ontological terms,
according to the authors, is probable that today do not exist a orthodoxical definition of what
actually is the information, beyond that presented by Shannon and its guidelines, criteria,
characterization of it, among other things, the interpretation and the relationship with other
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concepts, such as energy, electron density, chemical reactivity parameters and many others
need be discussed to try of establisha formal relation between concepts.

Is it clear that information concept and the model itself is interdisciplinary or
transdisciplinary. The concept of information and -moreover- the model itself promote a
systematic relation with causal analogies and parallelism with scientific knowledge, which
transcends the framework of the source domain and extends in various directions, thus
making the knowledge acquire an unusual resonance. Accordingly, we believe it is feasible
to complement the explanations of natural processes and natural systems.
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