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1. Introduction

Tooth engineering may refer to either dental tissue regeneration or to the reformation of a
complete organ attached to surrounding bone [1–4]. In case of whole tooth organ engineer‐
ing  the  use  of  embryonic  dental  cells  allowed  to  search  for  the  simplest  experimental
protocol to be developed in order to maintain and express odontogenic cell potentialities.
This was achieved after implantation under the skin or in the kidney capsule or in the jaw
of adult mice of cultured re-associations between pellets of dissociated single epithelial and
mesenchymal cells [5–7]. The main points that actually need further research concern the
identification of non dental cells able to engage in whole tooth formation [8–12], anchor‐
ing of the newly formed tooth root to surrounding alveolar bone [3,9,13], and innervation
of the engineered organ [14].

The innervation of dental and peridental tissues has been extensively investigated during tooth
development in the mouse [15–19]. The timing and pattern of tooth innervation are controlled
by diffusible signaling molecules and ultimately by epithelial-mesenchymal interactions
[15,20]. Tooth innervation is particularly important in signaling damage in the crown, but also
may interfere with several functions including the regulation of blood flow, tissue homeostasis,
immune cell function, inflammation, and healing [21,22]. The innervation of engineered tooth
germs does not occur spontaneously after implantation, but requires immunodepressed
conditions: cyclosporin A (CsA) treatment of the host mice or implantation under the skin of
immunocompromised Nude mice [23]. New questions arising from this previous work are
discussed in this chapter. They concern a) the nature of relationships between axons and other
cells in the dental pulp (odontoblasts, glial cells and blood vessels: endothelial cells and
pericytes) in the case of cell re-associations implanted in Nude mice, b) the differential
innervation of the dental and peridental mesenchymes, and c) experimental attempts to avoid
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the use of CsA or related molecules to achieve dental pulp innervation [23]. For this purpose,
specific cell re-associations were designed and analyzed, after in vitro culture and further
implantation in adult mice, by means of histology, transmission electron microscopy and
immunofluorescence. After two weeks of implantation, the cell re-associations reached a stage
corresponding to a first lower molar at post-natal day 4 (PN4), when taking into account the
crown development and stage of matrix deposition and mineralization [24,25]. However,
axons reached the odontoblast layer, which in physiological conditions, occurs at PN7 only
[23]. For this reason, the status of innervation in cell re-associations implanted for two weeks
was compared to the situation in mouse first lower molar at PN7.

2. Cellular network mediating sensory function in the dental mesenchyme

Interactions between axons and other cells have been investigated in the human dental pulp
[26]. The situation in tooth forming from implanted cell re-associations is not known. To
analyze it, re-associations between dissociated dental embryonic epithelial and mesenchymal
cells were cultured for seven days, then trigeminal ganglia were put in contact with the re-
associations and cultured overnight before implantation in Nude mice (for detailed method
and scheme of the protocol, see [23]). This protocol was selected because it allows the devel‐
opment of a whole tooth organ (Figure 1A-E; [24]), in conditions where the cellular heteroge‐
neity in the dental mesenchyme can be maintained as it is in physiological conditions [25]. The
localization of axons and glial cells, their relationships, and also with neighbor cells will be
discussed in three complementary contexts: 1) with odontoblasts (Figures 2 and 4), 2) with
microvessels present in the odontoblast layer (Figure 5) and 3) with blood vessels in the dental
and peridental mesenchymes (Figures 6 and 8). These observations will be compared to what
exists in the mesenchyme of a molar tooth at a similar developmental stage (PN7).

2.1. Innervation in the odontoblast layer

After implantation for two weeks in Nude mice, cell differentiation was achieved in the crown
part of the tooth (Figure 1A-C) as it occurs after implantation in ICR mice (Charles River CD-1,
[24]) or during molar development (Figure 1F-H, J). In implanted cell re-associations as in
molar at PN7, odontoblasts were functional and secreted predentin and dentin constituents in
the crown (compare Figure 1C, E with Figure 1G, H) and root portions (compare Figure 1A,
E with Figure 1J). The cells were elongated with a nucleus in basal position (Figure 1B, G, H).
Odontoblast cell processes were present in the dentinal tubules (Figure 1B, C, G, H). These cell
processes are involved in the secretion and permanent mecanosensing in the matrix (for
review, see [27–29]). The innervation was analyzed using antibodies to peripherin and
neurofilament-200 (NF200) [18,30]. After two weeks of implantation of cell re-associations in
Nude mice, axons positive for peripherin (Figure 2B) reached the layer of odontoblasts, which
are positive for nestin (Figure 2A-E) or vimentin (Figure 2F). The same was observed in the
first molar at PN7 (Figure 2G-L). Similarly, antibodies to NF200 allowed the detection of axons
in the dental mesenchyme and reaching the odontoblasts of teeth forming from implanted cell
re-associations (Figure 2A, C) as in molars at PN7 (Figure 2I). NF200 is a marker for myelinated
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Figure 1. Histology of cultured cell re-associations implanted for two weeks under the skin of Nude mice (A-E) and of
the first lower molar of ICR mice at post-natal day 7 (PN7) (F-J). The protocols for cell dissociation, re-association, cul‐
ture, implantation and innervation have been detailed elsewhere [23]. All procedures were designed in compliance
with the recommendations of the European Union (2010/63/EU) for the care and use of laboratory animals [23]. For
histology, samples were fixed in Bouin-Hollande and demineralized in 15% EDTA before their inclusion in paraffin.
Serial sections (7 μm) were stained with Mallory’s stain. After implantation of cell re-associations for two weeks under
skin, crown was developed and root initiated (A, E), as in the developing molar at PN7 (F, J). Arrowheads showed the
limit between crown and root in implanted cell re-associations (A), as in molar at PN7 (J). In implanted cell re-associa‐
tions as in molars at PN7, blood vessels (BV) were present in the dental pulp (DP) (compare D, E with F, I, J) and
reached the odontoblast (Od) layer (compare B with G). In both cases, odontoblasts were elongated and polarized, as
seen from the position of their nucleus, opposite to the secretory pole (compare B with G, H). These cells were also
functional, secreted predentin (pD) and dentin (A, B, E and H). Dentinal tubules (DT) and odontoblast cell processes
(OP) were observed in the dentin of implanted cell re-associations as in molars at PN7 (compare B, C with G, H). In
both types of samples, ameloblasts (Am) were elongated, polarized and secreted enamel (J, see [23]). Newly formed
bone was present at the periphery of implanted cell re-associations (A, E) corresponding to alveolar bone in molar at
PN7 (F, J). In contact with the external surface of root dentin, cementoblasts (Cb) were observed in implanted cell re-
associations (A). These cells were functional and deposited cementum (Ce) (A, E). Periodontal ligament (PDL) fibers
were attached to the root by cementum and extended until reaching newly formed bone (A, E). AN: Alveolar nerve; B:
Bone; D: Dentin; E: Enamel. Scale bars=80 μm (F); 40 μm (A, D, E, F, G, I, J) and 20 μm (B, C, H).
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A-fibers and previous observations by transmission electron microscopy showed that such
fibers could not be detected in implanted re-associations [23], probably due to the too short
period of implantation. For this reason and despite the positive reaction to anti-NF200
antibodies, all further detections of axons were performed using antibodies to peripherin.

Figure 2. Innervation in the odontoblast layer of cell re-associations implanted for two weeks in Nude mice (A-F), com‐
pared to first lower molar at PN7 (G-L). Odontoblasts (Od) were labeled with anti-nestin (A-E and G-K) or anti-vimen‐
tin antibodies (F, L). Axons were labeled for peripherin (B, G, H) or NF200 (A, C, I) and glial cells using antibodies to
either S100-beta (E, K) or GFAP (F, L). Growth cones were labeled for GAP-43 (D, J). In case of implanted re-associa‐
tions, axons coming from the trigeminal ganglion (TG) entered the dental mesenchyme and reached the odontoblast
layer, as seen after staining for NF200 (A). Similarly, the dental mesenchyme of first lower molar at PN7 was innervat‐
ed by alveolar nerve (AN) as shown after staining for peripherin (G). Higher magnifications showed that axons posi‐
tive for either peripherin or NF200 were present in the odontoblast layer, but did not enter the dentinal tubules, neither
in implanted cell re-associations (B, C), nor in molars at PN7 (H, I). Growth cones were present in the odontoblast layer
of molars at PN7 (J), but not in the case of implanted cell re-associations (D). S100-beta positive glial cells were detect‐
ed in the odontoblast layer of implanted cell re-associations (E), as in intact molars at PN7 (K). The same was observed
for GFAP positive glial cells (compare F with L). DM: dental matrix; DP: dental pulp; PDM: peridental mesenchyme.
Scale bars=80 μm (A, G) and 20 μm (B-F and H-L).
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Axons had not yet reached the odontoblast processes present in predentin/dentin, neither in
cell re-associations implanted for two weeks (Figure 2A-C), nor in the molar at PN7 (Figure
2H, I). In the mouse first lower molar, the presence of axons in dentinal tubules was only
detected at PN10, and still very few were observed there [23]. Nagahama et al., [31] reported
that a subodontoblastic nerve plexus develops at about PN11 in the first molar, and dentinal
innervation still continue to increase in the crown after tooth eruption (PN20). In the crown of
mature human primary teeth, nerve endings terminate in or near the odontoblast layer, with
a small number penetrating into dentin [32]. Odontoblasts and neighbor axons have been
suggested to form a mechanosensory complex (for review see [29]). This raises the question of
who is doing what when axons are also present in dentinal tubules [33]. Although Carda and
Peydró [33] reported the existence of membrane densifications, similar to synapses in between
odontoblast processes and nerve endings, there is a general agreement in the literature that
true synapses do not exist in between the two cell types. Instead, appositions with a narrow
extracellular gap have been reported [34,35]. Such apposition was also observed by transmis‐
sion electron microscopy in implanted re-associations (Figure 3A, arrows in A’) as well as in
molars at PN7 (Figure 3E, arrows in E’). The question on how signals sensed by odontoblasts
are transmitted to axons remains unsolved [29].

GAP-43 is an intracellular growth-associated protein. It was suggested to participate in
neuronal pathfinding and branching during development and regeneration, by integrating
plasma membrane and cytoskeletal responses to extracellular signals [36]. Staining for GAP-43
allows the visualization of growth cone, at the tip of axons [37,38]. More surprisingly, GAP-43
is also expressed by Schwann cells in rat molars [39]. In vitro and in vivo observations showed
that, when related to Schwann cells, GAP-43 was expressed by their precursors and by non-
myelinating mature cells [40]. Double stainings for GAP-43 and nestin did not show the
presence of GAP-43 in the odontoblast layer in implanted re-associations (Figure 2D), while it
was present there in the first molar at PN7 (Figure 2J). GAP-43, in the re-associations, was only
detected in the peridental mesenchyme as discussed below. The reasons for this absence of
GAP-43 in most parts of the dental mesenchyme from implanted cell re-associations will have
to be further investigated. It might have important consequences on later stages of tooth
innervation [41]. It will thus be necessary to go further by looking at the situation when
cultured cell re-associations are implanted in CsA-treated mice. Indeed, CsA can interfere with
GAP-43 expression [42].

Different glial cell types have been observed in the dental and peridental mesenchymes in
rodents as in human [43,44]. Glial cells have multiple functions during the development of the
peripheral nervous system (PNS) and in repair process [45]. During early PNS development,
axonal signals are critical for Schwann cell migration, survival and proliferation [46,47]. In the
present study, glial cells were searched for, using antibodies to either S100-beta or glial
fibrillary acidic protein (GFAP) (for review, see [46]). In the implanted re-associations, S100-
beta and GFAP were detected in the odontoblast layer (Figure 4A, B), as in the intact molar at
PN7 (Figure 4F, G). The two antigens showed associations with axons, as seen after double-
stainings using anti-peripherin antibodies, in the re-associations (Figure 4A, B) as in the molar
at PN7 (Figure 4F, G). Furthermore, S100-beta and GFAP positive cells showed only partial
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Figure 3. Transmission electron microscopy of cell re-associations implanted for two weeks in Nude mice (A-D’) and
first lower molar at PN7 (E-G’). Unmyelinated axons (Ax) were present in the odontoblast layer of implanted cell re-
associations (A, A’). Arrows in A’ showed contacts between an axon and an odontoblast (Od). In the dental pulp (DP)
of teeth forming from re-associations, Schwann cells (SC) in contact with or wrapping around axons were seen (B, B’,
C). In the apical part of the pulp (D, D’) unmyelinated axons were present in proximity of blood vessel (BV) and ar‐
rows in D’ showed contacts between axons. In the odontoblast layer of molar at PN7, an axon showed contact with an
endothelial cell (EC) and with an odontoblast (E, arrows in E’). In the dental pulp, axons were in contact with endothe‐
lial cells (F, F’, F”). Also, a contact between two axons was visualized in molar at PN7 (G, G’). Ax and *: unmyelinated
axon; m: mitochondria; NF: neurofilament; OP: odontoblast process; pD: predentin.
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co-distribution in the re-associations (arrowheads in Figure 4C-E), as in the molar at PN7
(arrowheads in Figure 4H-J). More GFAP-positive than S100-beta-positive cells were associ‐
ated with axons. More cells were positive for S100-beta than for GFAP in implanted cell re-
associations (Figure 4E) as in intact molars (Figure 4J). These complementary observations
indicate that several populations of glial cells are present in implanted cell re-associations, as
in a developing molar, in physiological conditions.

Figure 4. Glial cells in the odontoblast layer of cell re-associations implanted for two weeks in Nude mice (A-E), com‐
pared to first lower molars at PN7 (F-J). Axons were visualized with anti-peripherin antibody (A-B and F-G) and glial
cells using antibodies to either S100-beta (B, C, E and G, H, J) or GFAP (A, D, E and F, I, J). In implanted cell re-associa‐
tions as well as in molar at PN7, axons and glial cells were detected in the odontoblast layer (compare A, B with F, G).
In the odontoblast layer of implanted cell re-associations, GFAP positive glial cells were associated with axons (A), as
in the first lower molar at PN7 (F). The same results were observed for S100-beta positive glial cells (compare B with
G). Double stainings for S100-beta and GFAP showed the presence of distinct glial cell types (C-E) as in intact molars at
PN7 (H-J). More cells were positive for S100-beta than for GFAP and the two antigens showed only partial co-distribu‐
tion in implanted cell re-associations (arrowheads in C-E), as in molar at PN7 (arrowheads in H-J). DM: dental matrix.
Scale bars=20 μm (A, C-J) and 8 μm (B).
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2.2. Blood vessels-axons relationships in the odontoblast layer

Microvessels are present in the odontoblast layer in re-associations implanted for two weeks
in either Nude mice (Figure 5; [23]), or in ICR mice [48]. These microvessels in the odontoblast
layer were detected after staining for CD34, collagen type IV or CD146 in implanted cell re-
associations (Figure 5A-H) as in molars at PN7 (Figure 5I-P). All three antigens were found to
co-distribute, as shown after double stainings for CD146 and collagen type IV (Figure 5Q-S)
or for CD34 and collagen type IV (Figure 5T-V). The same was observed in molars at PN7 (data
not shown). CD146, a marker of endothelial cells and pericytes, was detected in microvessels
from the odontoblast layer in implanted re-associations (Figure 5A, D, F, H), as in molars at
PN7 (Figure 5I, L, N, P). However, staining for α-SMA, a marker of smooth muscle cells, was
detected in pericytes associated with large vessels in the apical part of the dental mesenchyme
[25], but not in the odontoblast layer, neither in implanted cell re-associations nor in molars at
PN7 (Figure 6G, K).

The timing of capillaries development and their entering the odontoblast layer (Figure 3E,
E’) has been correlated with the mineral requirement for dentinogenesis [49]. The relative
roles of odontoblasts and capillaries present in this cell layer in the transport of calcium
during dentin mineralization has been discussed previously [50]. In the odontoblast layer,
double stainings for peripherin and either CD34,  or  collagen IV,  or  CD146 showed that
very frequently axons were detected in close proximity with capillaries (Figure 5B-D). Such
neurovascular relationships were also documented in molars at PN7 (Figure 5J-L). Transmis‐
sion electron microscopy confirmed these observations and further showed that there exist
direct  interactions  (Figure  3E,  E’).  Tabata  et  al.,  [51]  suggested  that  the  innervation  of
capillaries  might  be  involved  in  the  regulation  of  blood  flow  as  in  larger  vessels.  Al‐
though most pulp axons are sensory ones, both sensory and sympathetic axons can make
contacts  with  dental  pulp  vessels  [34].  Sympathetic  axons  have  been  detected  in  the
odontoblast layer, although not extending in dentinal tubules [52].

Double stainings were performed to compare the distribution of glial cells as visualized after
staining for S100-beta or GFAP, with that of microvessels visualized after staining for CD34
or CD146 (Figure 5). In implanted re-associations, S100-beta positive cells showed more
proximity with microvessels (Figure 5E, F) than GFAP positive glial cells (Figure 5G, H). The
same was observed in molars at PN7 (compare Figure 5M, N with Figure 5O, P). This confirms
the differential patterning of S100-beta versus GFAP-positive glial cells as discussed above.
Furthermore, the stainings for S100-beta in the odontoblast layer of implanted re-associations
or molars at PN7 (Figure 5F, M) are in good agreement with observations made in the dental
pulp of adult human tooth where the S100-beta positive cells were ensheating blood vessels
[26]. Due to the angle of sectioning, several layers of nuclei corresponded to functional
odontoblasts at the tip of the cusps (Figure 1G). Typical Schwann cells were not observed by
transmission electron microscopy in the odontoblast layer of implanted re-associations or
molars at PN7. This fits with previous report showing that in the mouse molar, Schwann cells
were present near the base of the odontoblast layer from PN9 and were not detected in the
odontoblast layer before PN50-60 [53].
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Figure 5. Neurovascular relationships in the odontoblast layer of cell re-associations implanted for two weeks in Nude
mice (A-H and Q-V), compared to first lower molar at PN7 (I-P). Odontoblasts were labeled with an anti-nestin anti‐
body (A, I). Blood vessels were either labeled for CD146 (A, D, F, H, I, L, N, P, Q, S), CD34 (B, E, G, J, M, O, T, V),
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collagen type IV (C, K, R, S, U, V). Axons were labeled with anti-peripherin antibody (B-D, J-L) and glial cells using
either anti-S100-beta (E, F, M, N) or anti-GFAP antibodies (G, H, O, P). Blood vessels were present in the odontoblast
layer in implanted cell re-associations (A), as in the first lower molar at PN7 (I). In both cases also, axons were detected
in the odontoblast layer and showed close proximity with blood vessels (compare B-D with J-L). CD146 (Q) and colla‐
gen type IV (R) were detected in the same blood vessels (S) and the same was observed when comparing the localiza‐
tion of CD34 and collagen type IV (T-V). In the odontoblast layer of implanted cell re-associations, as in molar at PN7,
glial cells were detected after staining for S100-beta (compare E, F with M, N) or for GFAP (compare G, H with O, P).
In both cases, a certain proportion of glial cells were detected next to blood vessels positive with CD34 (compare E, M
with G, O) or CD146 (compare F, N with H, P). DM: dental matrix. Scale bars=20 μm.

2.3. Blood vessels-axons relationships in the central and apical parts of the dental
mesenchyme

The progressive vascularization of the dental mesenchyme has been studied during mouse
molar development [48,54] as well as in implanted cell re-associations [25,48]. The vasculari‐
zation in implanted intact molars or cell re-associations showed similar density but was
slightly retarded in re-associations. The implantation of cell re-associations in GFP mice
showed that all blood vessels in the implant originated from the host [48].

In the developing molar, pericytes positive for α-SMA were detected only from PN4 in the
dental  mesenchyme.  They  were  observed in  association  with  large  blood vessels  at  the
apical  part  of  the  pulp  both  in  the  intact  molar  (Figure  1I;  Figure  6K-N)  as  in  cell  re-
associations  implanted  for  two  weeks  (Figure  1D;  Figure  6G-J;  [25]).  Pericytes  are  in‐
volved in  the  development,  maturation,  stabilization,  and remodeling of  capillaries  and
small vessels [55–57]. These cells are also involved in the regulation of capillary blood flow
[58]. Still pericytes were suggested to possibly act as mesenchymal stem cells (MSCs) [59–
61]. A study performed with mouse incisor as a model showed that pericytes, together with
other MSCs-like cells, could participate in tooth growth and repair, giving rise to odonto‐
blasts and odontoblast-like cells [62].

Transmission electron microscopy and double immunostainings for peripherin and CD146
showed close proximity between axons and blood vessels in the central part of the dental pulp
of implanted cell re-associations (Figure 3D; Figure 6A), as in intact molars (Figure 3F, F’, F’’;
Figure 6D). Such relationships have also been reported in the case of rat and human teeth by
scanning electron microscopy, which showed a dense network of interactions between axons
and vessels [63,64]. Transmission electron microscopy also showed contacts between axons in
implanted cell re-associations (Figure 3D’) as in molar at PN7 (Figure 3G, G’). Blood vessels
in the dental pulp are innervated by sensory and sympathetic nerve fibers [17,21]. Both sensory
and sympathetic axons would be positive for peripherin. However during development,
sensory nerves enter the dental mesenchyme at PN3-4, while sympathetic nerves penetrate
this tissue much later, at PN9 [17]. Sympathetic axons are mainly detected in the deeper pulp
along the blood vessels [65]. They are involved in vasoregulation [22,66]. Due to their late
entering in the dental mesenchyme in physiological conditions, sympathetic nerves should be
absent from the re-associations implanted for two weeks.
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Figure 6. Neurovascular relationships in the central (A-F) and apical parts (G-N) of the dental mesenchyme of cell re-
associations implanted for two weeks in Nude mice (A-C, G-J), compared to first lower molar at PN7 (D-F, K-N). Blood
vessels were labeled with an anti-CD146 antibody (A-F) in the central part of the dental mesenchyme and with an anti-
α-SMA antibody in its apical part (G-N). Axons were detected with an anti-peripherin antibody (A, D, G, H, K, L) and
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glial cells using antibodies to either S100-beta (B, E, I, M) or GFAP (C, F, J, N). In implanted re-associations, axons orig‐
inating from the trigeminal ganglion (TG) extended in the peridental mesenchyme (arrowheads) and dental pulp (G).
In the central part of the dental mesenchyme, close relationships were observed between axons and blood vessels in
implanted cell re-associations (A) as in the first lower molar at PN7 (D). In both types of samples, more vicinity was
observed between blood vessels and S100-beta positive cells than with GFAP positive glial cells (compare B, E with C,
F). In implanted cell re-associations pericytes positive for α-SMA surrounded large blood vessels and were detected
only in the apical part of the dental mesenchyme (K). In both cases, axons were also detected in close proximity with α-
SMA positive blood vessels (H, L). In implanted cell re-associations as in molars at PN7, some S100-beta positive (com‐
pare I with M), and GFAP positive glial cells (compare J with N) were detected next to pericytes. However, S100-beta
positive cells showed more proximity with pericytes than GFAP positive ones (compare I, M with J, N). AN: alveolar
nerve; DM: dental matrix; DP: dental pulp; Od: odontoblast; PDM: peridental mesenchyme. Scale bars=80 μm (K); 40
μm (G) and 20 μm (A-F, H-J, L-N).

Figure 7. Innervation of cell re-associations implanted for two weeks in ICR mice without cyclosporine A treatment (A,
B). Axons were labeled with anti-peripherin antibody (A, B) and glial cells using antibodies to either S100-beta (A) or
GFAP (B). In such experimental conditions, axons remained at the border between the peridental mesenchyme (PDM)
and dental pulp (DP) but did not enter the dental pulp (A, B). Similarly, GFAP positive glial cells co-localized with
axons, at the limit between the peridental mesenchyme and dental pulp of the forming tooth (B). S100-beta positive
glial cells showed a broader pattern, being present in close proximity with axons in the peridental mesenchyme, as
well in the dental pulp (A). DM: dental matrix. Scale bars=20 μm.

Neurovascular bundles present in the dental mesenchyme have been suggested to represent
a niche for stem cells [59,67]. Immunostainings performed in the human dental pulp showed
that STRO-1 positive cells were present in the walls of blood vessels and perineurium sur‐
rounding the nerve bundles, while absent in the layer of mature odontoblasts [59]. These
authors suggested that the potentialities of this minor stem cell population should be tested
to search for a possible ability to differentiate into functional neuronal-like cells. Recently, this
was supported by cultures of murine dental pulp stem cells (DPSC) under neuroinductive
conditions [68]. Although STRO-1 cannot be searched for in mouse tissues, the immunostain‐
ing for peripherin remained negative when cell re-associations (Figure 7A, B) or even intact
molars at PN4 were implanted for two weeks in ICR mice in the absence of a trigeminal
ganglion [14]. Thus, if dental pulp stem cells can differentiate into neuronal-like cells in vitro,
this potential was neither expressed in implanted intact molars at PN4 [14] nor in teeth forming
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after implantation of cultured cell re-associations [23]. Higuchi et al. [69] have reported the re-
innervation of Embryonic Day (ED)18 rat molar germs after they were implanted under the
skin of adult Wistar rats for eight weeks. Unfortunately, the early stages when the dental pulp
first started to be re-innervated were not analyzed [69]. Nevertheless, these results suggest
that, from a certain stage, immunodepressed conditions may no longer be necessary to allow
dental pulp innervation.

When cell re-associations were implanted in Nude mice, both S100-beta and GFAP positive
cells were detected in the dental pulp, which sometimes could be in close proximity with blood
vessels (Figure 6B, C). The same was observed in molars at PN7 (Figure 6E, F). Both in
implanted re-associations (Figure 6I, J) and in intact molars (Figure 6M, N), S100-beta positive
cells showed more proximity with pericytes than GFAP positive cells. Transmission electron
microscopy showed the presence of Schwann cells in the dental pulp of re-associations
implanted in CsA-treated mice [23]. When cell re-associations were implanted in ICR mice
without CsA treatment, the innervation of the dental mesenchyme was not possible: the dental
mesenchyme remained negative for peripherin (Figure 7A, B; [23]). Nevertheless, glial cells
expressing S100-beta (Figure 7A), but not GFAP (Figure 7B), were present in the dental
mesenchyme. These results agree with previous observations showing that, in human pulp
tissues, S100-beta and GFAP are expressed by different cell types, showing distinct patterns
[26]. The origin of glial cells present in the dental pulp is not known. Implantation experiments
will have to be performed in GFP mice to determine whether S100-beta positive cells have an
endogenous origin, come from the host or have a mixed origin, as already observed for other
dental pulp cells [25]. Glial cells in dental tissues from rodents appeared quite heterogeneous
[43] and in the human dental pulp as well [26]. Schwann cells ensheating axons were observed
in the dental pulp of cell reassociations (Figure 3B, B’, C). Schwann cells are derived from neural
crest cells, and were considered to consist in two types whether myelinating or not, both being
involved in the maintenance of axons [70,71]. Differences were also found when comparing
Schwann cells in the dental and peridental mesenchymes [43]. These cells show a remarkable
plasticity during reparative processes, as being able to dedifferentiate and participate in re-
innervation by directing axonal regrowth and re-myelinisation [45]. Recently, culture condi‐
tions were determined, which allowed human dental pulp stem cells to undergo Schwann-like
cell differentiation and to support neural outgrowth in vitro [72].

3. Innervation of the periodontium

As a component of the periodontium, the periodontal ligament mediates the attachment of the
tooth to surrounding alveolar bone (Figure 1J). The periodontal ligament fibers are the main
constituent of the ligament. This tissue is also vascularized (Figure 1J), innervated (Figure 8G)
and contains a dense network of mechanoreceptors [73,74]. The periodontal ligament develops
in parallel with root formation [75]. During development, the vascularization of the dental sac
(prospective peridental mesenchyme) largely precedes the vascularization of the dental
mesenchyme [48]. Similarly, nerves come close to the condensing dental mesenchyme long
before the periodontium differentiates and becomes innervated [15,76,77].
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In the mesenchyme surrounding the forming tooth in implanted re-associations, blood vessels
and axons were detected, but showed only a limited degree of associations (Figure 8A, B). The
same was observed in molars at PN7 (Figure 8F, G). In implanted re-associations, S100-beta
positive and also GFAP-positive cells were detected in association with axons (Figure 8D,E),
as in molars at PN7 (Figure 8I, J). In implanted re-associations, there were co-localizations of
peripherin and GAP-43 in the peridental mesenchyme, but not in the dental pulp (Figure
8C). However the situation was different in the molar at PN7, where such co-localizations were
found in the peridental and dental mesenchymes (Figure 8H).

Figure 8. Innervation of the peridental mesenchyme of cell re-associations implanted for two weeks in Nude mice (A-
E), compared to first lower molars at PN7 (F-J). Axons were visualized using an antibody to peripherin (B-E, G-J) and
their growth cones with an anti-GAP-43 antibody (C, H). Glial cells were labeled using antibodies to either S100-beta
(D, I) or GFAP (E, J). Blood vessels were labeled with an anti-CD31 antibody (B, G). Newly formed bone was detected
at the periphery of implanted cell re-associations (A, B), analogous to the alveolar bone surrounding the molar at PN7
(F, G). In both cases, axons and blood vessels were observed in the peridental mesenchyme (PDM) between bone and
dental tissues (compare B with G). Also, growth cones were detected, which co-distributed with axons in the periden‐
tal mesenchyme of implanted cell re-associations (C), as in intact molar at PN7 (H). GAP-43 and peripherin also co-
distributed in the dental pulp of molar at PN7 (H). However, GAP-43 was not detected in the dental pulp (DP) of tooth
forming from implanted cell re-associations (C). In the peridental mesenchyme of implanted cell re-associations as well
as in molars at PN7, different glial cell types were detected after staining for S100-beta (compare D with I) or GFAP
(compare E with J). In both cases, these different glial cell types were observed next to axons in the peridental mesen‐
chyme (compare D, E with I, J). AN: alveolar nerve; B: bone; D: dentin; DM: dental matrix; E: enamel; pD: predentin.
Scale bars=40 μm (A-C and E-J) and 20 μm (D).

Besides sensory axons, the periodontal ligament also contains sympathetic neurons, which are
involved in bone remodeling [78,79]. However, this could not be investigated in the present
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experimental design. Implantation of cell re-associations would have to be performed in the
jaw, which still raises major difficulties to correctly position the implant, with prospective roots
having a correct orientation in the jaw [48]. When cell re-associations had been cultured for
eight days, the crown morphology of the forming teeth is well visible (Figure 10B). However,
the shape of the material to be implanted is more or less spherical (Figure 10B). It is thus very
difficult to avoid a rotation of the samples during their implantation [2], although in some
instances, it could be very well achieved [9].

The engineering of tooth root and periodontium (Figure 1E) is now considered as the main
point in tooth engineering [80]. Indeed, complementary approaches to address this question
are in progress [81–83]. The presence of axons in the peridental mesenchyme of engineered
teeth has been observed after implantation in ICR mice i.e. in conditions where the dental
mesenchyme cannot be innervated [23]. This indicates that not only the kinetics but also the
conditions allowing innervation (immunodepressed conditions) are different in the dental and
peridental mesenchymes.

4. Attempts to replace cyclosporin A treatment by using stem cells

The entering of axons in the dental mesenchyme of cell re-associations implanted under the
skin of adult mice requires an artificially created immunodepression: treatment of host mice
with CsA or implantation in Nude mice [23]. This requirement is not a consequence of a
possible change in the mesenchymal cell heterogeneity/behavior during tissue and cell
dissociation steps prior to re-association, culture, and implantation. Indeed, the same was
observed when implanting intact PN4 molars [14]. The importance of immunomodulation, as
observed for the re-innervation in the clinical context of face transplantation [84], has also been
reported in a reparative process [85]. The next question was: how to avoid the use of CsA,
which actually represents a heavy constraint in view of clinical application [23]?

Stem cells have been suggested to facilitate pulp innervation, possibly by chemoattraction [86].
Before stem cells were taken into account, dental pulp cells were known to interfere with
neuron survival and differentiation in vitro, which was correlated with their expressing a wide
range of neurotrophic factors [87,88]. These included Nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), and chemo‐
kine ligand (CXCL)12 [88]. Other studies led to propose a potential role of mesenchymal stem
cells (MSCs) in immunomodulation, by exerting an immunosuppressive effect on cells from
both innate and acquired immunity systems [89–91]. Dental and peridental MSCs also showed
such properties [92–95]. Some of these MSCs might originate from pericytes [96], although
other origins have also been suspected [62]. The number of pericytes as visualized using
antibodies to α-SMA was very limited in re-associations implanted for two weeks (Figure
6G). MSCs from different origins have been shown to stimulate axonal sprouting and tissue
innervation [97]. Bone marrow also contains mesenchymal stem cells (BM-MSCs) exhibiting
immunomodulatory and regulatory properties [98,99]. BM-MSCs have been shown to
stimulate neurite outgrowth, probably due to their expressing NGF and BDNF under specific
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experimental conditions [100]. Since bone marrow cells can be easily prepared in large
quantities, they were tested for their possible effect in stimulating dental pulp innervation, to
possibly avoid the use of CsA.

For this purpose, bone marrow derived cells (BMDCs) [8] were used at passage two [101]. Re-
associations between mixed BMDCs/dental mesenchymal cells and an intact dental epithelium
from the cap stage at ED14 (Figure 9G) were cultured for eight days in vitro (Figure 9H, I)
and analyzed for tissue organization and cell differentiation (Figure 10A, C). BMDCs were
prepared from GFP mice (Figure 9D) in order to follow their fate in cultured re-associations
(Figure 11). Histology of cultured re-associations demonstrated that teeth could develop in
vitro when mixed BMDCs/mesenchymal cells at a ratio of 50% were re-associated with an ED14
competent dental epithelium and cultured for 8 days (Figure 10A-C), as in the absence of
BMDCs (Figure 11F; [24]). Although initially mixed with dental mesenchymal cells, GFP-
labeled BMDCs were only detected in the dental mesenchyme and at the periphery of the
forming tooth after 6 days of culture (Figure 11A). After 8 days, all BMDCs were located at the
periphery of the forming tooth (Figure 11B). This suggests that, in these experimental condi‐
tions, BMDCs do not directly participate in the late stages of tooth formation (i.e. odontoblast
differentiation). This is further supported by histology showing rather small teeth forming,
which can be related to the lower number of dental mesenchymal cells used for the re-
associations, when mixed 50:50 with BMDCs (Figure 10D).

To investigate the possible re-innervation of such re-associations, a trigeminal ganglion (TG)
was deposited on top of cells/tissue re-associations cultured for 7 days (Figure 9I), and
maintained in vitro overnight prior to implantation under the skin of ICR mice (Figure 9J).
Implants were maintained for two weeks in order to allow direct comparison with previous
results obtained after implantation in CsA-treated mice or Nude mice [23]. Histology showed
the presence of functional odontoblasts secreting predentin/dentin (Figure 10G) and thus
inducing the differentiation of functional ameloblasts secteting enamel (Figure 10E, F). Double
stainings for CD31 and peripherin showed the presence of blood vessels in the dental and
peridental mesenchymes (Figure 11C, D, 7:7 samples (100%)). Few axons only were detected
in the dental mesenchyme (Figure 11E, 3:7 samples (42%)), while the control re-associations
without BMDCs remained negative for peripherin (Figure 11F). However, in these preliminary
experiments, axons did not reach the odontoblast layer (Figure 11E).

From the literature, several mechanisms have been proposed to try to explain how exogenous
stem cells might stimulate innervation. They include cell replacement, neurotrophic support
or immunomodulation and may vary with different target tissues. In the experimental
conditions reported here, the possibility of differentiation towards neural cells can be rejected
since, already before implantation, bone marrow cells no longer remained present in the dental
mesenchyme, which developed during the in vitro culture of the re-associations (Figure 11B).
Furthermore, the axons present in the dental mesenchyme remained GFP negative (Figure
11E). Nevertheless, these preliminary experiments will have to be completed a) by increasing
their number, b) by further testing BMDCs at different passages, and c) by testing sub-
populations of these BMDCs.
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Figure 9. Schematic representation of the experimental procedures to test the effects of bone marrow derived cells on
the innervation of implanted cells/tissue re-associations. The mandibular first molars were dissected from ICR em‐
bryos at ED14 (A). The dental epithelium and ecto-mesenchyme were dissociated by enzymatic treatment (B). Then
dental ecto-mesenchyme was dissociated into single cells (C) and mixed with bone marrow derived cells (50:50) (G).
For this purpose, bone marrow derived cells were prepared from femur and tibia bones (D), dissected from adult GFP
positive mice (C57BL/6 from the IGBMC, Illkirch, France). The bone marrow derived cells (BDMCs) were cultured in
vitro and used at passage 2 (E). After trypsinization, BDMCs single cells (F) were mixed with the dental mesenchymal
single cells and put in contact with an ED14 intact dental epithelium (G). These re-associations were cultured for 7
days in vitro (H) and then a trigeminal ganglion was put on the top of each re-association for a further co-culture over‐
night (I). These re-associations were implanted between the skin and muscles behind the ears in adult ICR mice and
maintained for two weeks (J).
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Figure 10. Histology of re-associations between an enamel organ and mixed dental mesenchymal cells and bone mar‐
row derived cells prior to implantation (A-C) and implanted for two weeks under the skin of ICR mice (D-G). Re-asso‐
ciations between mixed BMDCs/dental mesenchymal cells (50:50) and an intact dental epithelium from the cap stage at
embryonic days 14 (ED14) were cultured before implantation for two weeks under the skin of ICR mice. After eight
days in culture, cells/tissue re-associations showed a characteristic dental epithelial histogenesis, with the presence of
the inner (IDE) and outer dental epithelium (ODE) (A,C), the stellate reticulum (SR) (A) and the stratum intermedium
(SI) (C). Odontoblasts (Od) were differentiated and induced the differentiation of ameloblasts, which elongated in the
IDE (A). Odontoblasts secreted predentin (pD) (A, C). After implantation (D-G), crown (D) and root (E) were devel‐
oped and newly formed bone (B) was present next to the tooth (E). Ameloblasts (Am) were elongated, polarized and
secreted enamel (F). Ameloblasts were in contact with the stratum intermedium (F). Odontoblasts were elongated and
polarized with their nucleus opposite to the secretory pole (G). They were functional, secreting predentin/dentin and
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dentinal tubules were visible (G). CL: cervical loop; D: dentin; DP: dental pulp; E: enamel; PDM: peridental mesen‐
chyme. Scale bars = 80 μm (B); 40 μm (A, D); 20 μm (C, E) and 8 μm (F, G).

Figure 11. Vascularization and innervation of re-associations between mixed dental cells and bone marrow derived
cells and an intact dental epithelium cultured for six days (A), or eight days (B), or cultured and implanted for two
weeks with a trigeminal ganglion (C-E), and control re-associations without bone marrow-derived cells (F). Implanta‐
tions were performed under the skin of ICR mice. The epithelial-mesenchymal junction was labeled with an antibody
against collagen type IV (A, B). Blood vessels were labeled with an antibody to CD31 (C, D, F) and axons with an anti‐
body to peripherin (E, F). GFP positive bone marrow derived cells (BMDCs) were labeled with a specific antibody to
GFP (A-E). After six days in culture, BMDCs were present in the dental mesenchyme (DM) and at the periphery of the
forming tooth (A). After eight days in culture, GFP-positive BMDCs were only detected at the periphery of the forming
tooth (B). After two weeks of implantation, blood vessels were present in the peridental tissues and could enter the
dental pulp (DP) in cell re-associations with BMDCs (C, D), as in cell re-associations without BMDCs (F). In implanted
cell re-associations with BMDCs, axons from the trigeminal ganglion (TG) were detected in the dental pulp (E), while
in control re-associations (without BMDCs) axons were observed only at the limit between the peridental mesenchyme
(PDM) and dental pulp (F). After implantation for two weeks, GFP positive BMDCs were detected only in the periph‐
ery of the forming tooth and not in the dental pulp (C-E). Ep: epithelium; PDM. Scale bars=40 μm (A-C, E, F) and 20
μm (D).
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5. Conclusions and prospects

All together, the results presented here show how far it is possible to reproduce the innervation
of the dental and peridental mesenchymes in teeth forming from cultured and implanted cell
re-associations, as it may occur during odontogenesis. As long as immunodepressed condi‐
tions can be maintained (implantation in Nude mice), it is possible within two weeks of
implantation to reproduce the innervation of the dental mesenchyme, with axons reaching
odontoblasts. Glial cells were present as well, although further work will be necessary to
determine their origin. Still some differences exist when comparing the situation in implanted
re-associations with developing molars. It will be necessary to determine how far these might
result from differences in the kinetic of innervation in the two conditions and whether this
would have further consequences after longer implantation period. Longer implantations
would also allow determining whether myelinisation can be achieved. Using a method
described by Honda et al., [102], implantation in the jaw, next to the alveolar nerve, will have
to be tested to try to better approach the physiological situation and see whether tooth
innervation can occur in these conditions. At the same time, this might allow the sympathetic
innervation of the tooth, thus avoiding parallel experiments where cell re-associations would
have to be grown in contact with a superior cervical ganglion.

The method used here will have to be adjusted when new non-dental mesenchymal cell sources
will become available to engage in whole tooth engineering. Indeed, dental embryonic cells
represent a very convenient tool to design and try to simplify experimental conditions for tooth
organ engineering. However, such cells would not be available in a clinical context, so that
several other cell sources are being tested (for review see [2,80,103]). Dental embryonic cells
were also a convenient model to investigate the rapid loss of odontogenic potentialities with
aging and after in vitro culture [104]. Despite the presence of a morphogenetic center, the
primary enamel knot, the enamel organ at the cap stage has no more odontogenic potential
[105]. Previous studies offered the possibility to use younger epithelial sources, when still
retaining odontogenic inductive potential as tested for tooth engineering [8]. Obviously the
odontogenic potentialities of dental pulp cells rapidly decrease during development and are
quite poor in adult tissues. This can be seen from reparative processes, which are quite limited
physiologically and lead to osteodentin instead of tubular dentin in most experimental
conditions [62,106]. For this reason, the design of experimental conditions where non dental
cells can be induced to give rise to odontoblasts secreting tubular dentin [8,59] or to ameloblasts
secreting enamel may require important technical adjustments [107–109]. Investigating the
innervation of the mesenchyme and more specifically of the odontoblast layer forming in these
conditions will be a future challenge.
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α-SMA: alpha smooth muscle actin; BDNF: brain-derived neurotrophic factor; BM-MSC: bone
marrow mesenchymal stem cell; BMDC: bone marrow derived cell; CD34: cluster of differen‐
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tiation 34; CsA: cyclosporin A; CXCL: chemokine ligand; DPSC: dental pulp stem cell; ED:
embryonic day; GAP-43: growth-associated protein-43; GDNF: glial-derived neurotrophic
factor; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; MSC: mesenchymal
stem cell; NF200: neurofilament 200; NGF: nerve growth factor; PN: post-natal; PNS: periph‐
eral nervous system; TEM: transmission electron microscopy; TG: trigeminal ganglion.
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