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1. Introduction

In this chapter we review some aspects of the concept of the Fisher information measure in phase

space for two specific systems: the Landau Diamagnetism and the Rigid rotator. The indispensable

tool in this proposal is a quasi probability called Husimi distribution [1], which is frequently

employed to characterize the quantum and classical behavior [2] of systems. Also, it possesses

interesting applications in several areas of physics such as Quantum Mechanics, Quantum Optics,

Information Theory and Nanotechnology [3–10]. Its main properties are: 1) it is definite positive in

all phase space, 2) it possesses no correct marginal properties, 3) it permits to calculate the expectation

values of observables in quantum mechanics similarly to the classical case [11], and 4) it is a special

type of probability that simultaneously approximate location of position and momentum in phase space.

It is important to note that this quasi probability is constructed by definition as the expectation value

of the density operator in a basis of coherent states [12]. Details about the formulation of coherent

states and the obtaining of Husimi distribution from these can be found on our chapter that it can be

read in Ref. [13]. The main propose of this chapter is to present to the reader interesting problems in

physics, such as, the harmonics oscillator [5], the Landau diamagnetism model [8, 14] and, the rigid

rotator [7, 15], analyzed from a point of view of the information measures. In particular, we will put

emphasis in the Fisher Information measure and its construction starting from a well-defined set of

coherent states.

In our previous contribution published in Ref. [13] we research about a special semi-classical measure,

the Wehrl entropy, as an important application of the Husimi distribution. In the present study we

analyze some consequences of obtaining the Husimi distribution; for instance, the Fisher information

for fundamental problems in physics for which the coherent states formulation is well defined.

In physics, great attention has been paid to the Landau diamagnetism which consists in a particle

charged in a uniform magnetic field. For our purpose we will use a complete description of the Husimi

Distributionin three dimensions in order to study such system, so as it was shown in our previous

contributions (see Ref. [13], where we have discussed some limiting cases as high and low temperatures.

From the present analysis, when three dimensions are considered, naturally arises a lower temperature
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bound, whereby it is not possible to work in all finite temperatures. Such discussion is explained with

details in Ref. [13].

The other system, that we take into account here, is the linear rigid rotator and its corresponding 3D

anisotropic version. We analyze phase space delocalization and obtain the concomitant semiclassical

Fisher information measure constructed by using Husimi Distributionconstructed from suitable basis of

coherent states.

In order to facilitate the understanding of this chapter to the reader, we give the following organization:

in section 2 we begin introducing the concepts and methodology that will employ in the rest of the

chapters. In section 3 we focus our attention on the Husimi distribution and the Fisher measure

for the Landau diamagnetism. In section 4 we study the delocalization into phase space, within a

semiclassical context by recourse to the Husimi distribution, for both cases of rigid rotators: linear and

3D−anisotropic instances. Finally, some conclusions and open problems are commented in section 5.

2. Previous concepts

This section provides reference material that we consider relevant to conveniently understand the

development of this chapter. These are i) the Husimi distribution, ii) Wehrl entropy, and iii) Fisher

information measure. In all cases, we refer to the model of the harmonic oscillator in a thermal state.

2.1. Husimi distribution and Wehrl entropy

From the standard statistical mechanics, the thermal density matrix can be represented by

ρ̂ = Z−1e−βĤ , (1)

where β = 1/kBT the inverse temperature T , and kB the Boltzmann constant [16], Ĥ is the Hamiltonian

of the system and Z = Tr(e−βĤ ) is the partition function.

In the current strategy, the expectation value of the density operator in a basis of coherent states is

related to the Husimi distribution as [1]

µ(z) = 〈z|ρ̂|z〉, (2)

where the set {|z〉} denotes the eigenstates of the annihilation operator â, i.e., â|z〉 = z|z〉 defined for

all z ∈ C [12] and they are the coherent states for the system. Therefore, the normalization of the

distribution is given by

∫
d2z

π
µ(z) = 1, (3)

where the integration is over the complex plane z and the element of integration is an area proportional

to phase space element given by d2z = dxdp/2h̄.

The set {En} stands for the spectrum of an arbitrary Hamiltonian Ĥ, where n is a positive integer. With

these elements the Husimi distribution takes the form
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µ(z) =
1

Z
∑
n

e−βEn |〈z|n〉|2, (4)

where the set {|n〉|} represents energy eigenstates with eigenvalues En [4, 5].

A direct application that is additionally a useful measure of localization in phase-space [17, 18] is the

Wehrl entropy, which is suitably defined as

W = −
∫

d2z

π
µ(z) lnµ(z). (5)

As a consequence of the uncertainty principle, Lieb [4] proved the inequality W ≥ 1 which was

previously conjectured by Wehrl [17].

For the Hamiltonian Ĥ = h̄ω[â†â+ 1/2] of the harmonic oscillator, it is obtained a basis {|n〉} and the

spectrum En = h̄ω(n+ 1/2), with n = 0,1, . . . from the complete orthonormal set of eigenstates and

eigenvectors, respectively. The algebra allows us to define the following elementary properties:

1. A set of Glauber coherent states is given by [19]

|z〉= e−|z|2/2
∞

∑
n=0

zn

√
n!

|n〉. (6)

2. The normalization,

〈n|n′〉= δn,n′ (7)

where δn,n′ is the Kronecker delta function.

3. The completeness property is contained in the relation

∞

∑
n=0

|n′〉〈n|= 1̂, (8)

where 1̂ represents the identity operator in the defined space of eigenvectors.

Now, a suitable application of the present theoretical characterization [4] comes from certain

calculations of the harmonic oscillator as the Husimi distribution

µHO(z) = (1− e−βh̄ω)e−(1−e−βh̄ω)|z|2 , (9)

and the Wehrl entropy

WHO = 1− ln(1− e−βh̄ω), (10)

which are respectively known and useful analytical expressions [4].
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2.2. Fisher information measure

A pertinent quantifier of information, which possess innumerable applications in several fields of

Physics, is the Fisher information measure [20]. The last years have witnessed a great deal of activity

revolving around physical applications of Fisher information measure [20, 21] providing tools to yield

most of the canonical Lagrangians of theoretical physics [20, 21] related properly to the Boltzmann

entropy [22, 23]. The Fisher information connected with translations of an observable x with the

consistent probability density ρ(x) is given by [24]

F =
∫

dxρ(x)

[

∂ lnρ(x)

∂x

]2

, (11)

and the Cramer–Rao inequality is given by [24]

∆x ≥ F
−1 (12)

where ∆x is the variance for the stochastic variable x which is of the form [24]

∆x2 = 〈x2〉−〈x〉2 =
∫

dxρ(x)x2 −

(∫
dxρ(x)x

)2

. (13)

In particular, it is interesting to study its representation appealing to the semiclassical approach (see, for

example, Ref. [25] and references therein), whose main tool is a distribution function in phase space in

the basis of coherent states. Specially, in this proposal, we pay attention to a particular distribution, the

well-known Q−function or Husimi distribution.

An original, compact expression in phase space is advanced for the “semiclassical" Fisher information

measure, that can be easily derived from the Wehrl-methodology described in Refs. [5] and [6]. The

appearance for this measures reads

F =
1

4

∫
d2z

π
µ(z)

{

∂ lnµ(z)

∂|z|

}2

, (14)

which will be used in the following sections.

Inserting the µ−expression for the harmonic oscillator into Eq. (14) we find its anlytical form

FHO = 1− e−βh̄ω, (15)

leading to the following limits:

for T → 0 one has FHO = 1

for T → ∞ one has FHO = 0, (16)

as it should be expected.
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3. Landau Diamagnetism: Charged particle in a uniform magnetic field

Diamagnetism is a problem firstly appointed by Landau who showed the discreteness of energy levels

for a charged particle in a magnetic field [26]. By the observation of the diverse scenarios in the

framework provided by the Landau diamagnetism we can study some relevant physical properties [27–

29] as the role of the size of systems or the influence of boundaries, also the thermodynamic limit or

quasi-stationary states. The primary motivation even today for several specialists is to find a useful

measure to characterize theoretically every practical consequence of the system and its behavior.

In the past, Feldman and Kahn calculated the proper partition function for this system by appealing to

the concept of Glauber coherent states from a set of basis states [30]. This formulation uses classical

concepts as electron orbits, even though it contains all quantum effects [30]. This approach was

previously used to obtain measures as the Wehrl entropy [17, 18] and Fisher information [31] with

the purpose of studying the thermodynamics of the free spinless charged particle in a uniform magnetic

field [32], this is the Landau diamagnetism problem. As observed, in such contribution the formulation

is not completely consistent because it was necessary to normalize the Husimi distribution in order to

arrive to reliable expressions for semiclassical measures [9, 32, 33].

Certainly, because the relevant effects seem to come only from the transverse motion, several efforts

are made to describe this problem in two dimensions [9, 28, 29, 32–35]. Furthermore, the discovery of

the quantum Hall effect has aroused much interest in understanding the behavior of electrons moving in

a plane perpendicular to the magnetic field [35]. The confinement is possible at the interface typically

between a semiconductor and an insulator, where a quantum well that traps the particles is formed,

allowing their motion just in the direction of the interface plane at low energies, forbidding the motion

in any other directions.

Conversely, we discuss here this problem in three dimensions, the most complete formulation. However,

if the length of the cylindrical geometry of the system is large enough the results are close to those in two

dimensions. Despite this latter, it is suggested that the formulation in two dimensions is not sufficient

to explain the whole problem. As suggested before, electronic devices are based in interfaces. As a

consequence of this line of reasoning, a natural lower temperature bound is theoretically imposed, that

appears from the analysis in three dimensions.

3.1. The model of one charged particle in a magnetic field

We introduce the present application giving the essential ingredients of the well-known Landau model

for diamagnetism: a spinless charged particle in a magnetic field B. Consider the kinetic momentum

−→
π =

−→p +
q

c

−→

A , (17)

where mq is the mass of a particle of charge q, the vector −→p is the linear momentum subject to the

action of
−→

A , the vector potential.

If we follow the presentation of Feldman et al. [30]), the Hamiltonian reads [30]

H =

−→
π ·

−→
π

2mq
, (18)
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and the magnetic field is
−→
B =

−→
∇ ×

−→
A . The vector potential is chosen in the symmetric gauge as

−→
A = (−By/2,Bx/2,0), which corresponds to a uniform magnetic field along the z−direction.

By using the formulation of the step-ladder operators [30], one needs to define the step operators as

follows [30]

π̂± = p̂x ± ip̂y ±
ih̄

2ℓ2
B

(x̂± iŷ), (19)

where the length

ℓB = (h̄c/qB)1/2 (20)

is the classical radius of the ground-state Landau orbit [30]. Motion along the z−axis is free [30]. For

the transverse motion, the Hamiltonian specializes to [30]

Ĥt =
π̂+π̂−

2mq
+

1

2
h̄Ω1̂, (21)

where an important quantity characterizes the problem, namely,

Ω = qB/mqc, (22)

the cyclotron frequency [36]. The set of eigenstates {|N,m〉} is characterized by two quantum numbers:

N related to the energy and m wuth the z− projection of the angular momentum. They are consequentely

eigenstates of both Ĥt , the Hamilronian, and L̂z, the angular momentum operator [30], thus

Ĥt |N,m〉=

(

N +
1

2

)

h̄Ω |N,m〉= EN |N,m〉 (23)

and

L̂z|N,m〉= mh̄|N,m〉. (24)

The eigenvalues of L̂z are not bounded by below, because m takes the values −∞, . . . ,−1,0,1, . . . ,N [30].

This fact agrees with the energies (N + 1/2)h̄Ω that are infinitely degenerate [36]. As seen below, for

estimation purposes, the physical relevance of phase-space localization is diminished by this fact. In

addition, Lz is not an independent constant of the motion [36].
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There exists a analogous formulation of an charged particle in a magnetic field by Kowalski that takes

into account the geometry of a circle [33] (and for a comparison with the Feldman formulation see

Ref. [9]), but at this point, we choose the Feldman formulation to work because the measure is easily

defined and the normalization condition and other semiclassical measures are well described.

3.2. Husimi distribution and Wehrl entropy

We will start our present endeavor defining the Hamiltonian Ĥ = Ĥt + Ĥl where Ĥt = h̄Ω(N̂ + 1/2)
to describe the transverse motion, being Ω the cyclotron frequency as defined by the Eq. (22) and N̂

the number operator; the Hamiltonian Ĥl = p̂2
z /2mq to represent the longitudinal one-dimensional free

motion, for a particle of mass mq and charge q in a magnetic field B. A possible way to define the

Husimi function η is given by

η(x, px;y, py; pz) = 〈α,ξ,kz|ρ̂|α,ξ,kz〉, (25)

where ρ̂ is the thermal density operator and the set {|α,ξ,kz〉} stands for the coherent states for

the description in three dimensions. By the direct product |α,ξ,kz〉 ≡ |α,ξ〉
⊗

|kz〉, the set {|α,ξ〉}
corresponds to the coherent states of the transverse motion and {|kz〉} to the longitudinal motion.

Therefore, the thermal density operator is given by

ρ̂ =
1

Z
e−β(Ĥl+Ĥt ), (26)

where β = 1/kBT , T is the temperature and kB the Boltzmann constant. In addition, Z is the partition

function for motion in three dimensions of the particle. Now, if Z can be separated by using Zt (the

contribution for the transverse motion) and Zl (the contribution for the one-dimensional free motion),

then the partition function could be written as Z = ZlZt . Thus, the Husimi function [1] is expressed as

η =
e−βp2

z /2mq

ZlZt
∑
n,m

e−βh̄Ω(n+1/2)|〈n,m|α,ξ〉|2. (27)

where

Zl = (L/h)(2πmqkBT )1/2 and (28)

Zt = AmqΩ/(4πh̄sinh(βh̄Ω/2)), (29)

being L the length of the cylinder, A = πR2 the area for cylindrical geometry [30]. In addition, the

matrix element |〈n,m|α,ξ〉|2 describes the probability of finding the particle in the coherent state |α,ξ〉.
Its expression was defined previously [37].

The distribution η is written as:

η = ηl(pz)ηt(x, px;y, py), (30)
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where η has been separated as a function of two distributions, namely, ηl = ηl(pz) and ηt =
ηt(x, px;y, py). The explicit form of the Hamiltonian Ĥl makes to miss the dependence on the variable

z. Therefore, summing in Eq. (27) we solve

ηl =
e−βp2

z /2mq

Zl

, (31)

ηt =
2πh̄

AmqΩ
(1− e−βh̄Ω)e−(1−e−βh̄Ω)|α|2/2ℓ2

B , (32)

where the length ℓB is defined by the Eq. (20). From expressions (31) and (32), we emphasize again

that ηl(pz) describes the free motion of the particle in the magnetic field direction and ηt(x, px;y, py)
the Landau levels due to the circular motion in a transverse plane to the magnetic field, similar to the

harmonic oscillator of Eq. (9) since |z|2 → |α|2/2ℓ2
B. Consequently Eqs. (30), (31) and (32) together

contain the complete description of the system. We noticed both distributions are naturally normalized

in a standard form, i.e.,

∫
dzdpz

h
ηl(pz) = 1, (33)

and

∫
d2αd2ξ

4π2ℓ4
B

ηt(x, px;y, py) = 1. (34)

In consequence, both Eqs. (31) and (32), under conditions (33) and (34), allow us to get a close form

for the Wehrl entropy. Furthermore, using one of the most basic property of the entropy, the additivity,

we can state Wtotal =Wl +Wt . Hence,

Wl = −
∫

dzdpz

h
ηl(pz) lnηl(pz), (35)

Wt = −
∫

d2αd2ξ

4π2ℓ4
B

ηt(x,px;y,py) lnηt(x,px;y,py), (36)

again, the subindexes t and l represent respectively the transverse and longitudinal motions.

As a consequence of solving the integrals (35) and (36) we can identify the two entropies, they are

Wl =
1

2
+ ln

(

L

λ

)

, (37)

Wt = 1− ln
(

1− e−βh̄Ω

)

+ ln (g) , (38)

where λ = h/(2πmqkBT )1/2 represents the mean thermal length of the particle and g = A/2πℓ2
B the

degeneracy of a Landau level [38].
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3.3. Semiclassical behavior

In fact, the classical entropy for a free particle in one dimension and Eq. (37) are coincident.

Furthermore, the Eq. (38) is the Wehrl entropy for the transverse motion and possesses a form close to

the harmonic oscillator entropy given by the Eq. (10), with the exception of a term associated with the

degeneracy. Some properties of entropies that can be directly derived from Eqs. (37) and (38) are:

1. As commented before, Wl and the classical entropy for the free motion in one dimension coincide

between them. Furthermore, this part of the entropy has to be nonnegative at all temperatures, this

is Wl ≥ 0. This condition imposes a minimum to the temperature, given by

T0 =
h2

2πmqekBL2
, (39)

where e = 2.718281828. Due to this basic property of Wl , the system is forced to take high values of

temperature, being T > T0, where the behavior of the system is classical. Equivalently, it is possible

to assure that, if T /T0 ≥ 1, the length of a thermal wave λ lower than the average of the spacing

among particles and quantum considerations are not relevant [39]. In addition, T0 does not depend

on external or internal physical parameters related to the system, as the transverse area, external

magnetic field, charge of the particle, etc, practically depends only on the size of the system. If

the system is large enough, the minimum temperature is low. However, modern electronic systems

possess junctions where L can be considered almost zero. Thus, minimum temperature required to

make applicable the present description is enough high [40].

2. The Wehrl entropy that is associated with transverse motion satisfies Wt ≥ 1 + ln(g) for all

temperatures of the system, which is very nearly the Lieb condition in one dimension [41] with an

additional term given by the logarithm of g, the degeneracy. The transverse motion is approximately

bi-dimensional, but the Landau approach reduces the quantum motion of the particle in a magnetic

field to a degenerate spectrum in one dimension essentially recovering the physics of the missing

dimension. Therefore, the discussion about the behavior of the Wehrl entropy in light of the Lieb

condition does not increase any applicability of the present treatment because the latter is always

satisfied. The main problem that appears from the emphasis on the transverse motion is the restricted

vision that is obtained of the behavior of the system. [9, 30, 32, 33], which represents the main

difference with other contributions that discuss this topic. The combination of reasoning including

both motions has sense when the imposition over the temperature is satisfied. For values of the

temperature lower than T0, the behavior is essentially anomalous, thus this proposal is not applicable.

Additionally, the total entropy is expressed simply as follows

Wtotal =
3

2
− ln(1− e−βh̄Ω)+ ln (g)+ ln

(

L

λ

)

. (40)

Now, we can discuss some approximate and limiting cases.

In first order of approximation, for kBT ≫ h̄Ω, we have ln(g/(1− e−βh̄Ω)) ≈ ln(AT /T0L2). If we

write the thermal wave length in terms of the temperature T0, as λ = L(eT0/T )1/2 and considering that

V = AL , the entropy (40) is rephrased as follows
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W
(1)
total =

3

2
+ ln

(

V

λ3

)

. (41)

This is a particular expression for the entropy of a free particle in three dimensions related to the motion

of a charged particle into a region of the magnetic field making mention of some geometrical properties

of the system.

In second order of approximation, considering the special condition A ∼L2, Wehrl entropy is expressed

as follows

W
(2)
total ≈W

(1)
total +

T0

T
g. (42)

As explained before, the Wehrl entropy takes values that are permitted by the Lieb condition, namely,

W ≥ 1. According to Eq. (42) the slope decreases as temperature increases. This fact also illustrates

why the disorder increases as the magnetic field increases too.

The lower bound of temperature is related to values of T greater than T0, because this approach does

not consider any temperature less than T0. In addition to this, the behavior of the total Wehrl entropy is

reduced to the logarithm of the magnetic field. In order to see what occurs in the limiting case of the

lowest temperature, according to Eq. (39), we take systems with L → ∞; thus the transverse entropy of

Eq. (38) is rewritten as follows

W T→0+

t = 1+ ln (g) . (43)

As aforementioned, the Wehrl entropy is similar to the entropy of the harmonic oscillator and the lowest

temperature comes being greater than the bound temperature, thus W ≥ 1 [41] as it was conjectured

by Wehrl and shown by Lieb. From this condition, it must arrive to the following inequality for the

magnetic field

g ≥ 1, (44)

where g = qAB/hc also accounts for the ratio between the flux of the magnetic field AB and the

quantum of the magnetic flux given by hc/q = 4.14×10−7[gauss cm2] [14]. Then the inequality (44)

adopts the form

B ≥
1

A

hc

q
= B0. (45)

Moreover, the magnetic field B0 = hc/Aq becomes to take a bound limiting value representing a

minimum value for the external magnetic field. If A → ∞, we can study what occurs to the system

when the magnetic field close to zero.

Now, we add two comments about the quantum description of particles in magnetic field close to

limiting values of temperatures and magnetic fields, respectively:
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1. The quantum Hall effect is observed in two-dimensional electron systems subjected to low

temperatures and strong magnetic fields and emerges from the Landau quantization [42, 43] which

corresponds to a quantum version of the Hall effect [35]. The degeneracy is given by [14]

φ = νφ0, (46)

where φ0 = hc/q is the minimum quantity (or quantum) of the magnetic flux. The factor ν takes

integer values as ν = 1, 2, 3, . . . and it is related to the “filling factor" and simply with the conductivity

quantization as σ = νq2/h. The subsequent discovery of the fractional quantum Hall effect [34]

expand the values ν to rational fractions as ν = 1/3, 1/5, 5/2, 12/5, . . . . Thus the fractional quantum

Hall effect relies on other phenomena associated with interactions. In any case, the degeneracy is ν
greater than 1 due to the inequality (44), as before, the transverse entropy always satisfies the Lieb

bound for all temperatures and large enough systems, obtaining an infinite family of Wehrl entropies

Wt = 1− ln(1− eβh̄Ω)+ lnν. (47)

The limiting value of ν provides a good descriptor for the integer quantum Hall effect. Conversely,

for the fractional values of ν less than 1 are left out the present approach.

2. The Haas-van Alphen effect is other phenomenon that we can discuss. It is observed at low enough

values of temperatures, describing oscillations in the magnetization, because the particles tend to

occupy the lowest energy states. In the present description it is manifest for finite values of A and B

lower than B0. Whereas if the value of the magnetic field decreases a less number of particles can be

in the lowest state due to degeneracy is directly proportional to B [38]. Then, the transverse Wehrl

entropy Wt is well defined for values of the magnetic field over B0, this is B/B0 ≥ 1 and/or g → 1+.

3.4. Fisher Information Measure versus degeneracy

In the present subsection we propose a compact expression for the transverse Fisher information

measure, taking into account a special way formerly developed in Ref. [6], which is given by

Ft =
∫

d2αd2ξ

4π2ℓ4
H

ηt(α)

(

∂ lnηt(α)

∂α

)2

. (48)

After introducing the known expression for ηt , we arrive to

Ft =
2

ℓ2
H

(1− e−βh̄Ω). (49)

Fisher measure Ft has space dimension (L)−2 and quantifies the ability for estimating the parameter α
[44]. This parameter corresponds to the radio of a circular orbit of coherent states. By combining Eqs.

(49) and (46) with the definition of ℓH we obtain

Ft =
4πν

A
(1− e−βh̄Ω), (50)
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which represents the linear dependence of the measure Ft with the magnetic field through the constant

ℓ
2
H at low temperature.

The inverse exponential dependence on the temperature, of the Fisher information, is clear from Eq.

(50). Further, the initial value directly depends on the factor ν.

Now, to complete the description of the movement, we consider the Fisher information measure for the

longitudinal motion, this is

Fl =
∫

dzd pz

h
ηl(pz)

(

∂ lnηl(pz)

∂pz

)2

, (51)

where pz is the variable that we contain in the present discussion, which was previously ignored [32],

making a great difference when the results are compared. The function ηl is included into the above

equation to get

Fl =
β

m
. (52)

As seen before, the Fisher measure in one dimension coincides with the classical one for the free

particle [45]. As expected, the total Fisher measure is constructed multiplying Eqs. (50) and (52).

3.5. Additional appointments and consequences

The Wehrl entropy, which we obtain here, depends on multiple parameters, for instance, the degeneracy

g, and the ratio between the cylinder and thermal lengths, i.e., L and λ. The combination of these

parameters can effectively give some interesting results. Therefore, in a especial perspective we can see

that the harmonic oscillator is behaved as a particular case of the charged particle in a magnetic field.

Thus, we can consider, for example, the following relation among parameters:

g =
λ

L
exp

(

1

2

)

, (53)

which leads the Wehrl entropy from the Landau diamagnetism to the one-dimensional harmonic

oscillator (15). This is a nontrivial approach because the nature of problems are radically different.

For instance, the harmonic oscillator, that we use here, is a one-dimensional system, but the Landau

diamagnetism is three-dimensional. Consequently, phase spaces are not coincident and measures are

not the same.

Besides, we know g ≥ 1. But, if we consider the minimum value g = 1, we can obtain the bound value

of the temperature T0, given by Eq. (39), above this value, the present approach is valid. Afterward,

we obtain a relationship between both lengths involved into the problem, this is a bound value for the

length of the cylinder, L ≥ λ/e. Thus, for values where this condition is violated, this approach is not

valid.

The comparison between the Fisher information measures, for both cited problems, is also possible.

Hence, in the same previous line we can propose a comparison of the Fisher information measures,

considering measures dimensionally compatible. Originally, the classical Fisher information (11)

accounts the localization of the corresponding probability density ρ(x), which is approached by
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Cramer-Rao inequality (12), where ∆x is the variance for the stochastic variable x. However, the

variation of the definition (11) takes into account the localization, not in the variable x or any other

coordinate, but the localization into phase space. This is well defined for the transverse motion.

Moreover, the longitudinal motion is classical, not quantized, and any coherent state formulation is

proposed. The quantum counterpart can be defined as a problem of continuous spectrum [46], and

a suitable formulation of coherent states is still unknown; for the time, this continues being an open

problem. Thus, the classical formulation is used and we have decided to advance evaluating the classical

distribution for the longitudinal motion.

In addition, with the purpose of describing the complete motion, we consider now the Fisher information

measure for the movement, this is

F
′ =

λ2

ℓ2
H

(1− e−βh̄Ω). (54)

where F ′ is defined as F ′ = h2It Il/4π in order to compare the trend of this Fisher measure with

corresponding one of the harmonic oscillator. These cases are comparable with the harmonic oscillator

only if λ2 = ℓ
2
H and are depicted with red-solid-line in Fig. 1.

4. Description of the molecular rotation: Rigid rotator

There are few physical systems whose spectrum is analytically known, aside from the previous one

we have the anisotropic rigid rotator, which is a system of a single particle that can rotate in several

ways. Thermodynamic properties can be analytically described [47]. It is expected that this treatment

can characterize important features of molecular systems [48] to apply such concepts to several aspects

related to materials [49].

4.1. Linear rigid rotator

We begin exploring the linear rigid rotator based on the excellent discussion made in Ref. [50] about

the coherent states for angular momenta. The Hamiltonian of this simple system is [16]

Ĥ =
L̂2

2Ixy
, (55)

where the operator L̂2 is associated with the angular momentum and the parameter Ixy is the

corresponding inertia momentum. The set {|IK〉} is the set of eigenstates of the Hamiltonian, where we

can verify the following relations

L̂2|IK〉 = I(I + 1)h̄2|IK〉
L̂z|IK〉 = Kh̄|IK〉, (56)

with I = 0,1,2 . . . , for −I ≤ K ≤ I. Additionally, the energy spectrum is given by eigenstates of the

operator H

εI =
I(I + 1)h̄2

2Ixy
. (57)
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A suitable construction of coherent states is found in Ref. [51, 52] for the lineal rigid rotator, using

Schwinger oscillator model of angular momentum, in the fashion

|IK〉=
(â†

+)
I+K(â†

−)
I−K

√

(I +K)!(I −K)!
|0〉, (58)

where â+, â− are the corresponding creation and annihilation operators, respectively, and they show

the following basic properties

1. The vacuum state

|0〉 ≡ |0,0〉

.

2. Orthogonality is satisfied by

〈I
′

K
′

|IK〉= δ
I
′
,IδK

′
,K ,

3. The completeness property is contained in the relation

∞

∑
I=0

I

∑
K=−I

|IK〉〈IK|= 1̂.

Due to we are interested in two degrees of freedom, the resulting coherent states come from the tensor

product of |z1〉 and |z2〉 [50, 53], where

|z1z2〉= |z1〉⊗ |z2〉, (59)

and

â+|z1z2〉= z1|z1z2〉, (60)

â−|z1z2〉= z2|z1z2〉. (61)

Therefore, |z1z2〉 is the coherent state written [50] as

|z1z2〉= e
− |z|2

2 e
z1â

†
+e

z2â
†
− |0〉, (62)

with

|z1〉 = e
−

|z1 |
2

2 e
z1â

†
+ |0〉, (63)

|z2〉 = e
−

|z2 |
2

2 e
z2â

†
− |0〉. (64)
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We need to introduce the suitable notation

|z|2 = |z1|2 + |z2|2. (65)

Using Eqs. (58) and (62) we easily calculate |z1z2〉 and, after a bit of algebra, find

|z1z2〉= e−
|z|2

2 ∑
n+ ,n−

z
n+
1√
n+!

z
n−
2√
n−!

|IK〉, (66)

where n+ = I +K and n− = I −K. Thus, the probability of obtaining the state |IK〉 in the coherent

state |z1z2〉 is of the form

|〈IK|z1z2〉|2 = e−|z|2 |z1|2n+

n+!

|z2|2n−

n−!
. (67)

The present coherent states satisfy resolution of unity

∫
d2z1

π

d2z2

π
|z1z2〉〈z1z2|= 1. (68)

Furthermore, z1 and z2 are continuous variables.

The procedure developed by Anderson et al. [4] is easily followed and used to assess the Husimi

distribution [1]. In our approach this is defined, from Eq. (4), as

µ(z1,z2) = 〈z1,z2|ρ̂|z1,z2〉, (69)

where the density operator is

ρ̂ = Z−1
2D exp (−βĤ). (70)

The concomitant rotational partition function Z2D is given in Ref. [16]

Z2D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T , (71)

with Θ = h̄2/(2IxykB). We emphasize that in the present context the performing of the sum Tr ≡
∑∞

I=0 ∑I
K=−I corresponds to the “operation trace" . Using now the completeness property into Eq. (69)

and theEq. (67), we fobtain the Husimi distribution in the form

µ(z1,z2) = e−|z|2 ∑∞
I=0

|z|4I

(2I)!
e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)e−I(I+1) Θ

T

. (72)
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It is easy to show that this distribution is normalized to unity

∫
d2z1

π

d2z2

π
µ(z1,z2) = 1, (73)

where z1 and z2 are given by Eqs. (60), (61), and (65). We must employ the binomial expression

(|z1|2 + |z2|2)4I and then integrate over the whole complex plane in two dimensions to verify the

normalization condition. The differential element of area in the z1(z2) plane is d2z1 = dxdpx/2h̄

(d2z2 = dydpy/2h̄) [19]. Moreover, we have the phase-space relationships

|z1|2 =
1

4

(

x2

σ2
x

+
p2

x

σ2
px

)

, (74)

|z2|2 =
1

4

(

y2

σ2
y

+
p2

y

σ2
py

)

, (75)

where σx ≡ σy =
√

h̄/2mω and σpx
≡ σpy

=
√

mωh̄/2.

The profile of the Husimi function is similar to that of a Gaussian distribution.

As before, a semiclassical measure of localization is the Wehrl entropy [17], and the Fisher [5] as well.

For the present model in two dimensions, the Wehrl entropy reads

W = −
∫

d2z1

π

d2z2

π
µ(z1,z2) lnµ(z1,z2), (76)

where µ(z1,z2) is given by Eq. (72).

4.1.1. Fisher information measure

The Fisher measure [5, 20, 21] regards as a semiclassical counterpart of Wehrl entropy [5]. Now,

extending the ideas developed in Ref. [5] for the case of the harmonic oscillator in one dimension to the

present case in two dimensions, we can define the shift invariant Fisher measure in the fashion

F2D =
1

4

∫
d2z1

π

d2z2

π
µ(z1,z2)

(

∂ lnµ(z1,z2)

∂|z|

)2

. (77)

From Eq. (72) it is easy to prove that

η(z1,z2) =
1

2

∂ lnµ(z1,z2)

∂|z| =
∑∞

I=0

[

|z|4I−1

(2I−1)!
− |z|4I+1

(2I)!

]

e−I(I+1)Θ/T

∑∞
I=0

|z|4I

(2I)!
e−I(I+1)Θ/T

. (78)
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Therefore, the corresponding Fisher measure acquires the simpler appearance

F2D =
∫

d2z1

π

d2z2

π
µ(z1,z2) η(z1,z2)

2, (79)

i.e.,

F2D ≡ 〈η(z1,z2)
2〉, (80)

where with the notation

〈G〉=
∫

d2z1

π

d2z2

π
µ(z)G , (81)

we refer to the semi-classical expectation value of G . In Fig. 1 we plot the Fisher information and the

Wehrl entropy as a function of the temperature (black-dashed-line), which we compare with the same

measures for the transverse Landau diamagnetism (blue-solid-line). At low temperatures, the Fisher

information measure describes the inverse-delocalization and takes its maximum value when the Wehrl

entropy is minimum. This behavior is reversed for high temperatures. Every curve can be compared

with the respective counterpart shown for the harmonic oscillator in one dimension (red-solid-line).
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Figure 1. Trends of Fisher Information and Wehrl entropy for the rotator (black-dashed-line) in two dimensions is compared

with the transverse Landau diamagnetism (blue-solid-line), the horizontal axis is the normalized temperature τ = kT (2Ixy)/h̄2

and τ = kT /h̄Ω, respectively. Additionally, we show a case where the Landau diamagnetism dimensionally coincides with the

one-dimensional harmonic oscillator (red-solid-line). The Wehrl entropy starts in W=1. If the normalized temperature increases, the

Fisher information decreases while Wehrl entropy increases.

4.2. Rigid rotator in three dimensions

In the present section we consider a more general problem, the model of the rigid rotator in three

dimensions, whose Hamiltonian writes [54]

Ĥ =
L̂2

x

2Ix
+

L̂2
y

2Iy
+

L̂2
z

2Iz
, (82)
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where the parameters Ix, Iy, and Iz are the inertia momenta. The set {|IMK〉} corresponds to a complete

set of eigenvectors of the operator Ĥ. The following relations are additionally applied

L̂2|IMK〉 = I(I + 1)h̄2|IMK〉

L̂z|IMK〉 = Kh̄|IMK〉 (83)

Ĵz|IMK〉 = Mh̄|IMK〉,

with −I ≤ K ≤ I and −I ≤ M ≤ I, where I = 0, . . . ,∞,. The elements of set {|IMK〉} satisfy

orthogonality and completeness property [54]

〈I
′

M
′

K
′

|IMK〉= δI
′
,IδM

′
,MδK

′
,K (84)

∞

∑
I=0

I

∑
M=−I

I

∑
K=−I

|IMK〉〈IMK|= 1̂. (85)

If we take L̂2 = L̂2
x + L̂2

y + L̂2
z and assume axial symmetry, i.e., Ixy ≡ Ix = Iy, we can recast the

Hamiltonian as

Ĥ =
1

2Ixy

[

L̂2 +

(

Ixy

Iz
−1

)

L̂2
z

]

, (86)

where the operator L̂z represents the projection on the rotation axis z of the L̂2, which is the angular

momentum operator. The concomitant spectrum of energy becomes

εI,K =
h̄2

2Ixy

[

I(I + 1)+

(

Ixy

Iz
−1

)

K2

]

, (87)

where the number I is integer and non-negative and it stands for the eigenvalue of the operator L̂2, the

angular momentum. The range of the other quantum number −I ≤ m ≤ I represents the projections on

the intrinsic rotation axis of the rotator. Every state has a degeneracy (2I+1). The inertia momenta are

quantified by the parameters Ix = Iy ≡ Ixy and Iz. The ratio Ixy/Iz characterizes different “geometrical"

issues. For instance, some typical values of Ixy/Iz are 1, 1/2 and ∞, which correspond to the spherical,

the extremely oblate and prolate cases, respectively.

4.2.1. Construction of coherent states

Again, we cite the work of Morales et al. where they construct a suitable set of coherent states for the

rigid rotator in Ref. [54] and kindly discuss their mathematical foundations. First, they start introducing

the auxiliary quantity

XI,M,K =
√

I!(I +M)!(I −M)!(I +K)!(I −K)! (88)
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to obtain [54]

|z1z2z3〉= e−
|u|2

2 ∑
IMK

[(2I)!]2z
(I+M)
1 zI

2z
(I+K)
3

XI,M,K
|IMK〉, (89)

where Morales et al. introduced the following supplementary variable

|u|2 = |z2|
2(1+ |z1|

2)2(1+ |z3|
2)2. (90)

These coherent states comply at least two requirements: continuity of labeling and resolution of unity.

In relation to this latter property, we add

∫
dΓ|z1z2z3〉〈z1z2z3|= 1, (91)

where the measure of integration dΓ is given by [54]

dΓ = dτ

{

4[(1+ |z1|
2)(1+ |z3|

2)]4|z2|
4 −8[(1+ |z1|

2)(1+ |z3|
2)]2|z2|

2 + 1

}

(92)

with

dτ =
d2z1

π

d2z2

π

d2z3

π
. (93)

In accordance with this requirement on coherent states, we can assert that the present formulation satisfy

the weaker version, because the measure is non-positive definite [54].

4.2.2. Husimi function, Wehrl entropy

In order to get a valid expression for the Husimi distribution and the Wehrl entropy, a proper formulation
of coherent states is essential. Using now Eq. (89) we find

|〈IMK|z1z2z3〉|
2 =

e−|u|2

X2
I,M,K

[(2I)!]2|z1|
2(I+M)|z2|

2I |z3|
2(I+K). (94)

Therefore, the rotational partition function is given by

Z3D =
∞

∑
I=0

I

∑
K=−I

I

∑
M=−I

e−βεI,K , (95)
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i.e.,

Z3D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ

T

I

∑
K=−I

e
−
(

Ixy

Iz
−1

)

K2 Θ

T . (96)

We see that Z2D is recovered from Z3D for the limiting case defined as the extremely prolate. The

Husimi distribution yields

µ(z1,z2,z3) =
e−|u|2

Z3D

∞

∑
I=0

(2I)!

I!
|v|2I e−I(I+1) Θ

T ×g(I), (97)

where

g(I) =
I

∑
K=−I

|z3|
2(I+K)

(I +K)!(I −K)!
e
−
(

Ixy

Iz
−1

)

K2 Θ

T , (98)

with

|v|2 = (1+ |z1|
2)2|z2|

2, (99)

|u|2 = |v|2(1+ |z3|
2)2. (100)

Other relevant property that it is easily verified for µ(z1,z2,z3) is normalization in the fashion

∫
dΓµ(z1,z2,z3) = 1. (101)

Now, we obtain the Wehrl entropy in the form

W =
∫

dΓµ(z1,z2,z3) lnµ(z1,z2,z3). (102)

The spherical rotator, that corresponds to another special case, we explicitly obtain

µ(z1,z2,z3) = e−|u|2 ∑
∞
I=0

|u|2I

I!
e−I(I+1) Θ

T

∑
∞
I=0 (2I + 1)2 e−I(I+1) Θ

T

. (103)

Having the Husimi functions the Wehrl entropy is straightforwardly computed.

In order to emphasize some special cases associated to possible applications we consider several

possibilities.

1. The spherical rotator Ixy = Ix = Iy = Iz, which corresponds to Ixy/Iz = 1 (e.g. CH4).

2. The oblate rotator Ixy = Ix = Iy < Iz, being 1/2 ≤ Ixy/Iz < 1 (e.g. C6H6).

3. The prolate rotator Ixy = Ix = Iy > Iz, thus Ixy/Iz > 1 (e.g. PCl5).

4. The extremely prolate rotator is equivalent to the linear case (all diatomic molecules, Iz = 0, this is

Ixy/Iz → ∞ (e.g. CO2, C2H2).
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4.2.3. Fisher information measure

In this circumstance we define the shift invariant Fisher measure in 3D−dimensions as

F3D =
1

4

∫
dΓµ(z1,z2,z3)

(

∂ lnµ(z1,z2,z3)

∂|u|

)2

. (104)

Thus, from Eq. (97) we get

ϕ(z1,z2) =
1

2

∂ lnµ(z1,z2)

∂|u|
=

∑∞
I=0

[

|u|2I−1

(I−1)!
−

|u|2I+1

(I)!

]

e−I(I+1)Θ/T

∑∞
I=0

|u|2I

(I)!
e−I(I+1)Θ/T

, (105)

and, the corresponding Fisher measure can be expressed as

F3D =
∫

dΓµ(z1,z2) ϕ(z1,z2,z3)
2 = 〈ϕ(z1,z2,z3)

2〉. (106)

5. Final remarks

In this chapter, we have described some elements to motivate possible and future applications in

condensed matter and information theory. Our fundamental discussion is devoted to two interesting

systems, those are: the Landau diamagnetism and the rigid rotator in three dimensions. We choose

these systems because the quantum mechanics is analytically solved. Specifically, the spectrum and a

suitable formulation of coherent states are known without approximations.

In general, quantum distributions as the Husimi distribution, have long been seen as powerful tools

for studying the quantum-classical correspondence and semi-classical aspects of quantum mechanics.

Then, a crucial starting point in the present strategy, to evaluate some theoretical measures, is to get

the Husimi distribution. This is made evoking a convenient set of coherent states in every system.

As introduced by Gazeau and Klauder in the context of the harmonic oscillator, we use the same

formal perspective of general requirements for formulations of coherent states that we use in the current

contribution. Additionally, we have included some mathematical and practical details of the the present

formalisms in order to make it instructive in courses of quantum mechanics (for graduates) and easy to

apply to specific calculations of theoretical measures.

The present derivation of Husimi distributions is based on the evaluation of the mean value of the density

operator in the basis of a single-particle coherent state. Then, after defining the Husimi distribution we

are ready to make a possible semiclassical description evaluating (i) the semiclassical Wehrl entropy

and (ii) the phase-space location via measures as Fisher information.

Furthermore, we evaluate the probability of observing a quantum state in a coherent state, by projecting

the quantum states over the coherent states, as a function of a variable related to the coherent states. We

see that the localization of probability and correspondingly the Husimi distribution in the phase space

decreases as temperature increases.

As known, while the coherent states are independent-particle states, the Husimi function

takes into account collective and environmental effects being necessary many wave packets of
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independent-particle states to represent them. Furthermore, the thermodynamics of particles in systems

does not depend on any coherent states formulation.

Finally, we remark, all results presented here were kindly obtained in an analytical fashion. We show

some instances where the Landau diamagnetism is equivalent to the harmonic oscillator and, in the other

example, where the linear rigid rotator is reobtained as a particular instance of the formulation in three

dimensions. Some indications given in the present work lead to the conclusion that Fisher measure is a

better indicator of the delocalization than Wehrl entropy.
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