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Introduction

“Water is the principle of all things” Thales of Miletus.

Water quality models are essential tools for the assessment of the impact of ecosystem changes
in response to variable inputs, as well as the interactions occurring within the system [1].
Taking this into account, developed countries have continually been monitoring and classify‐
ing their water. The over-abstraction of fresh water is a problem in certain parts of Europe,
especially in coastal countries and islands in the Mediterranean, leading to the decrease of
groundwater bodies, the deterioration of water quality and the destruction of certain habitats
[2]. Water quality monitoring procedures may be used in decision-making processes for
supporting policy options. For this reason, several European Union (EU) countries have
developed a national water quality system considering the characteristic structures of their
own rivers and have used these types of indicators to evaluate their current water quality
levels. Water quality monitoring is usually conducted using physical and chemical parameters;
nevertheless, biological factors such as algae, especially diatoms, benthic macro invertebrates
and fish, have recently been used for this purpose [3]. Nowadays, the majority of the popula‐
tion in northern and central Europe is connected to wastewater treatment plants that make use
of advanced treatments. This development allows for a decrease in the load of organic matter
and nutrients transported by rivers and subsequently lead to an improvement of the state of
water resources [4].

The management of water resources is regulated by EU directives and their transposition into
national legislation. For instance, in Portugal, the Law nº58/2005 (Law of Water) ensures
implementation into national law the Directive nº2000/60/CE (the Water Framework Directive,
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WFD), which creates the institutional framework for the sustainable management of surface,
interior, transitional, coastal and even groundwater. According to this directive, each member-
state has to project, improve and recover all surface waters in order to achieve the good
qualitative and quantitative status of all water bodies by 2015 [5,6]. The Decree-Law nº 77/2006
complements the WFD by characterizing the waters of a river basin. A regulatory instrument
establishes the status of surface waters and groundwater and their ecological potential.

According to the directive's framework, the monitoring of water resources essentially has two
purposes. The first is the evaluation of water status (surveillance monitoring) and the second
is the implementation of programmes that include measures for identifying water resources
at risk of failing environmental objectives (operational monitoring). If surveillance-monitoring
reveals that the water in question has not reached the necessary "ecological status", a basin
management plan should be implemented for the duration of one year. During this process,
indicative parameters of all elements of biological, hydromorphological and general physico-
chemical quality, as well as significant discharges in the basin containing pollutants, should
be monitored in order to permit the classification of ecological status. In operational monitor‐
ing, measures are implemented and the status of water is evaluated as a result of the imple‐
mentation of such measures [7].

In this context, every European country organizes itself using various entities that monitor
water resources at various levels. The water area in Portugal consists of six large sets of entities:
the trusteeship policy (national and regional), advisory bodies (national and regional), public
water management (national and regional), utilities users and regulators (urban, agricultural,
energy developments and multipurpose), mixed structures and associations and non-
governmental entities.

The Water Portal website aims to respond to the provisions of Chapter VIII of the Water Law,
especially its art. 87º, which empowers the National Water Authority – Institute of Water
(Instituto da Água I.P.) to create a national information system for water and place it at the
disposal "of... entities that have responsibilities [in] exercising public functions or [in] provid‐
ing public services directly or indirectly related to water [to] the technical and scientific
community and the public in general." [8]. The national water resources monitoring system is
supported by a database that stores, prepares and publicize both hydro-meteorological and
water quality (surface and groundwater) data, which have been collected by the monitoring
network of the Ministry of the Environment (through the http://snirh.pt portal system). The
National Information System for Water Resources (Sistema Nacional de Informação de
Recursos Hídricos – SNIRH) was created by the Institute of Water in mid-1995. The monitoring
network consists of automatic and conventional stations, some of which are equipped with
remote transmission. The portal system also publishes monthly thematic syntheses aimed at
characterizing the national water availability, technical reports, the mapping of water resour‐
ces (e.g., flood zones) and maintaining technical documents and photographs related to water
resources [9], following the significant economic support from European funds devoted to
investments in sewage systems. Portugal has had slow growth in the area of wastewater
treatment. The rate of the population connected to public wastewater treatment plants was
about 56% in 2005 and 74% in 2009 (see Figure 1).
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Figure 1. Evolution of the percentage of the population connected to public wastewater treatment plants in mainland
Portugal between 2001 and 2009 [10].

Despite high investments at various levels of Portuguese public administration and those of
economic actors, the economic crisis of recent years has led to a disinvestment in the monitoring
and in the water treatment systems. Undoubtedly, the economic constraints of local authorities
in Portugal have led to a reduction in investments in waste management, which may jeop‐
ardize the quality of surface water in several Portuguese hydrological basins (see Figure 2).

Figure 2. Investments in municipal waste management, in millions of euros, between 1993 and 2012 in Portugal [10].

Surface water-monitoring systems are important tools for analysing environmental processes
and for identifying changes within these processes. In this context, statistical tools and
methodologies are relevant for assessing water quality and for allowing the analysis of
available data yielded by information systems. The temporal evolution analysis of water
quality indicators is an important tool in this context, as the real-time monitoring procedures.
Thus, modern statistical techniques are an integral part of any water monitoring process.

This paper presents a set of issues that analysts encounter in the analysis of data that support
decision-making processes. The focus of this work is on contributions to the analysis of time
series of water quality variables. The study of these time series has characteristics related to
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data collection procedures, as well as to several economic and geographic aspects. Some
characteristics of water quality variables pose challenges to their statistical modelling, namely,
seasonality, change-point detection, the existence of outliers, etc. Some of these topics will be
addressed in this chapter. The presentation of these topics is accompanied by the study of
water quality data from the hydrological basin of the Vouga River and the Ria de Aveiro
lagoon. In particular, statistical modelling is performed using data pertaining to the dissolved
oxygen concentration variable (in mg/l) from the Carvoeiro water-monitoring site in the Vouga
River basin. Section 2 discusses the area under study, while Section 3 presents a data descrip‐
tion with an exploratory analysis of the primary monitoring sites of the Vouga basin. Section
4 addresses the analysis of a time series through the decomposition into its main components
and their treatment, while Section 5 presents the modelling of time series through a state space
model approach.

2. The study area

The Vouga River is situated at the centre of Portugal at an altitude of about 930m, near the
geodesic landmark Facho da Lapa in Serra da Lapa, a mountain located in the district of Viseu.
The river flows 148 km before empting into Ria de Aveiro. The watershed of the Vouga (also
referred to as Vouga e Ribeiras Costeiras) is the second largest basin among the watercourses
that run exclusively in Portuguese territory, comprising a total area of 3706 Km2. More
specifically, the Vouga basin is located in the transition zone between the north and south of
Portugal, i.e., between the watersheds of the Douro in the north and the Mondego in the south
(see Figure 3).

Several rivers flow into the Ria de Aveiro estuarine system. The hydrologic regime involves a
summer low flow condition and the dynamics of the coastal lagoon are dominated by tidal
oscillation. Ria de Aveiro is characterized by its rich biodiversity, as well as by increasing
pressure related to anthropogenic activities near its margins, i.e., building and land occupation
and agricultural and industrial activities. This has resulted in a significant change to the
lagoon's morphology and in the constant input of a large volume of anthropogenic nutrients,
as well as contaminant loads, which in turn has had a negative impact on water circulation
and the water quality of the lagoon, [11]. The construction, management and operation of the
multi-municipality system drainage of the Ria de Aveiro is the responsibility of SIMRIA –
Integrated Sanitation of Municipalities of Ria, SA, a private company with a public capital
majority (established by Decree-Law nº 101/97 of 26 April).

Several studies have been developed around this watershed and in particular, around the Ria
de Aveiro lagoon. Some studies focus on the ecological systems related to Ria de Aveiro and
the diversity of its flora and fauna (e.g., [12, 13]. Other studies have examined the biochemical
properties of the region's environmental systems. Still others have studied the hydro-mete‐
orological aspects of the watershed. This diversity and multidisciplinary approach to the Ria
de Aveiro lagoon and its associated watershed was recently formalized by the University of
Aveiro as 'Grupo uariadeaveiro'. The group aims to monitor and contribute to the management
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of the Ria de Aveiro by focusing mainly on knowledge transfer activities; by doing so, it can
also contribute to the enhancement of other activities within the University of Aveiro. Addi‐
tionally, special attention to the activities of the primary entities and relevant stakeholders
associated with the management of the Ria de Aveiro lagoon can in this way be maintained in

Figure 3. Hydrological basin of mainland Portugal [9].
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order to ensure the useful and effective contribution of the University of Aveiro. The University
of Aveiro, through its uariadeaveiro group, is committed to facilitating the provision of scientific
knowledge about this lagoon area and places it at the service of the region. Thus, the University
of Aveiro hopes to contribute to the improvement of the protection, enhancement and
management of the Ria de Aveiro.

The website http://www.ua.pt/riadeaveiro/ (see Figure 4) was established as a mechanism for
the dissemination of knowledge and activities of interest pertaining to the Ria de Aveiro. This
work in progress aims to establish itself as the most important collection of data about the Ria
de Aveiro in the country. It is hoped that this initiative will help to create internal synergies
within the scientific community focused on the Ria de Aveiro and also to strengthen bridges
of communication with regional stakeholders in order to maximize the successful management
of the Ria.

Figure 4. The website http://www.ua.pt/riadeaveiro/ located within the University of Aveiro site (http://www.ua.pt).

The webpage of the uariadeaveiro group includes five menus. The first is dedicated to the
presentation of the group and its goals. The second is dedicated to the library, where access
can be gained to all scientific and non-scientific publications regarding the Ria de Aveiro. The
third page provides spatial information on the Ria de Aveiro and allows for access to other
pages with geographic information of interest regarding the Ria systems. The fourth page is
devoted to the approximation entities and users of the Ria. The fifth page discusses research
projects completed and ongoing, relevant training courses and activities related to the Ria de
Aveiro [14].

The average fresh water flow into the Ria de Aveiro is about 40 m3/s. The Vouga and Antuã
rivers are the main sources of fresh water, with an average annual flow of 24 m3/s and 2.4 m3/s;
both of these rivers are part of the Vouga watershed, [15].

The main tributaries of the Vouga River are, from upstream to downstream, the River Mel, the
Sul River, the Varoso, the River Teixeira, the River Arões, the River Mau and the Caima River
on the right bank; on its left bank, the River Ribamá, the MarneI and the River Águeda with
its major tributary, the Alfusqueiro. Officially, the catchment of the River Vouga consists in
the rivers that dewater into the Ria de Aveiro with the exception of Vala da Fervença, in the
Mira area, which flows to the southern end of the Ria de Aveiro [16].

A set of water monitoring sites (see Figure 5), where several variables pertaining to water
quality can be collected, is available in the hydrological basin of the Vouga River. However,
some problems have arisen in the context of statistical modelling, i.e., some water monitoring
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sites and variables yield little data and/or have missing values. Furthermore, due to a lack of
economic resources and other factors, data collection was discontinued at some sites.

Within the SNIRH system, 78 water-monitoring sites are registered within the hydrological
basin of the Vouga River. However, data collection is not continuous and some stations had
been deactivated somewhere in time. Relative to the DO concentration, 26 stations showed a
significant data set, with data up to May 2013 (the last month available in the system). Hence,
the statistical analysis will be focus mainly on this data set.

Figure 5. Water monitoring sites locations (red – inactive in the present; black – actives in the present; green – hydro‐
logical basin geographical boundaries), [9].
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3. Data set description

The statistical analysis was performed using a data set related to the dissolved oxygen
concentration in a large set of water monitoring sites located in the hydrological basin of the
River Vouga, a basin associated with the Ria de Aveiro lagoon. The analysis focused on the
DO concentration because it is one of the most important variables in the evaluation of a river's
water quality [6] and because of its continuity in terms of measurements taken at all selected
water quality monitoring sites under analysis.

The DO variable is widely recognized as one of the most relevant for the monitoring of water
quality. DO concentration is controlled by several physical processes such as the rate of
production of oxygen by algae, the nitrogen cycle and other biochemical processes [17]. At the
same time, available oxygen is the primary factor affecting aquatic life in rivers. A good level
of dissolved oxygen is essential for aquatic life. Oxygen concentration is therefore, the most
important parameter for aquatic life and ecological states in estuaries [11]. Dissolved oxygen
analysis measures the amount of gaseous oxygen dissolved in an aqueous solution. Oxygen
gets into water by diffusion from the surrounding air, by aeration and as a waste product of
photosynthesis. Adequate dissolved oxygen is necessary for good water quality and is a
necessary element to all forms of life. Natural stream purification processes require adequate
oxygen levels in order to provide for aerobic life forms. When dissolved oxygen levels in water
drop below 5 mg/l, aquatic life is put under stress. With a decrease in oxygen concentration
the stress on life forms increases. Oxygen levels that remain below 1-2 mg/l for a few hours
can result in large numbers of fish deaths [18].

The SNIRH system holds data regarding the DO concentration of 78 water-monitoring sites
between April 1989 and May 2013. However, among them several sites hold little or exhibit
several missing values, which are associated with large gaps between measurements. Thus,
the statistical descriptive analysis will be performed primarily on the largest time series. A
significant number of locations had less than 23 observations for all time periods. These time
series will not be considered in the descriptive analysis. On the one hand, only 26 water-
monitoring sites had at least 100 observations and these will be considered in the exploratory
analysis. On the other hand, only between January 2002 and May 2013 are consistent data sets
available for all locations. Thus, the main data set that will be considered consist of these 26
time series during this period.

Data collection was not equally distributed during all time periods. Sometimes there was more
than one measurement in a month. Therefore, in order to not lose information, we took the
average of all measurements if there was more than one observation in a month. Table 1
presents descriptive statistics for the 26 time series between January 2002 and May 2013 (137
months) and Figure 6 shows the 26 time series representations. The graphical representation
clearly shows that time series exhibited seasonal behaviour, as was expected due to the nature
of the data.
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Site Code Abbrev. N. obs. Min Max Average St dev Skew Kurtosis

Agadão 10H/03 AGA 111 5.8 11.0 8.74 1.26 -.35 -.25

Carvoeiro 09G/03 CAR 112 6.2 11.0 8.79 1.18 -.15 -.40

Alombada 09G/04 ALO 113 6.1 11.0 8.90 1.08 -.51 .41

Captação Burgães 08G/03 BUR 122 6.5 12.6 9.40 1.16 -.15 -.18

Captação Rio Ínsua 08G/02 INS 122 6.4 12.4 9.31 1.05 -.33 .65

Ponte Redonda 10G/05 RED 112 4.6 11.5 8.88 1.22 -.47 .70

Frossos 09F/04 FRO 110 4.5 11.0 8.17 1.22 -.16 -.24

Pampilhosa 11G/02 PAM 100 4.3 12.0 7.95 1.68 .03 -.35

Ponte São João de Loure 10F/04 LOU 112 5.4 11.0 8.24 1.25 -.02 .01

Ponte Vale Maior 09G/01 MAI 112 6.2 12.0 8.62 1.12 -.05 -.05

Ponte Águeda 10G/02 AGU 111 5.1 11.0 8.39 1.20 -.34 -.18

São Tomé 11E/01 TOM 118 5.0 11.0 7.88 1.16 -.07 -.37

Aç. Maeira 09K/01 MAE 115 5.6 11.0 8.50 1.20 -.16 -.41

Aç. Rio Alfusqueiro 09H/05 ALF 113 2.9 12.0 7.80 1.75 -.31 -.01

Pindelo Milagres 09J/03 MIL 110 4.6 12.0 8.16 1.42 -.14 -.09

Ponte Antim 09I/05 ANT 113 0.8 12.0 7.38 2.05 -.68 .14

Ponte Pouves 09I/03 POU 115 2.6 11.0 8.27 1.46 -.67 1.30

Ponte Vouzela 09I/02 VOZ 109 1.8 13.0 8.10 1.91 -.84 1.32

São João Serra 09H/04 SER 115 6.0 12.0 8.70 1.18 .01 -.08

São Miguel Mato 09I/06 MAT 111 4.3 12.0 8.44 1.53 -.41 .03

Vouguinha 09J/04 VOG 114 5.4 11.0 8.42 1.35 -.26 -.52

Estarreja 09F/05 EST 114 3.4 11.0 7.62 1.32 -.71 1.02

Perrães 10G/07 PER 111 4.6 9.8 7.19 1.17 .14 -.53

Ponte Canha (Vouga) 10G/06 CAN 114 2.6 10.1 6.89 1.92 -.26 -.96

Ponte Minhoteira 09F/01 MIN 112 0.7 10.0 7.73 1.50 -1.10 3.60

Ponte Requeixo 10F/03 REQ 111 3.9 11.0 7.13 1.52 .33 -.09

Table 1. Descriptive statistics for dissolved oxygen concentration between January 2002 and May 2013.
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Figure 6. Time series for dissolved oxygen concentration in the 26 water-monitoring sites from January 2002 to May
2013.

An exploratory analysis showed that, in general, observations were not normally distributed.
Indeed, in some locations, the distribution of observations is skewed or leptokurtic. This fact
must be considered in the modelling procedures, since Gaussian distribution is a usual
assumption in several statistical analyses. Figure 7 represents box-plots for DO concentrations.
Boxplots are able to identify several moderate outliers in many locations. However, due to
existence of temporal correlation structure in the measurements, the analyses of outliers must
be carefully considered.

Figure 7. Boxplots for dissolved oxygen concentration from January 2002 to May 2013.

As DO concentration exhibits seasonal behaviour, it is necessary to analyse the monthly
averages. Figure 8 shows the monthly averages of DO concentration during the analysed
period for the 26 water-monitoring sites. These results indicated that DO concentration was
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greater in the winter months and presented lower values in the summer months. This fact is
directly related to hydro-meteorological conditions, since DO concentration is influenced
primarily by precipitation amounts and temperature. The monthly standard deviations
presented in Figure 9 exhibit a diffuse pattern. Although it is difficult to identify a common
pattern for all sites, a graphic representation indicates that in several locations there was larger
variability during the months of January, September, October and November. The lower
variability of the monthly DO concentration measures in December may be justified by the
reduced observations typically collected during this month.

Figure 8. Monthly averages of DO concentration for the 26 water-monitoring sites between January 2002 and May
2013.

Figure 9. Monthly standard deviations in DO concentration for the 26 water-monitoring sites between January 2002
and May 2013.

4. Time series analysis

This section addresses several issues in the statistical modelling of time series water quality
variables. Water quality variables present characteristics that pose some challenges to model‐
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ling procedures. By their nature, these variables have properties that must be incorporated in
order for statistical techniques to yield good performance.

There are different ways of dealing with these features based on different approaches. One
way of modelling a time series with components as either a trend or a seasonal/stochastic
behaviour is by employing the time series decomposition method. This method consists of
sequentially and individually modelling each component so that trends and/or seasonal
components can be estimated and subtracted from the data to generate a noise sequence.

In the present work, we present, from a practical point of view, the most common methodol‐
ogies applied to the time series of DO concentration in the Carvoeiro water-monitoring site.
The choice of this monitoring site is related to its location in the main river, in the middle
section, near to a point of abstraction of water for human consumption. Furthermore, the time
series data in this location is long – the data is available between April 1989 and September
2012 – and it will used to apply the statistical procedures.

4.1. Heteroscedasticity and trend modelling

Generally, environmental time series can be non-stationary in a variety of ways. The most
common case occurs when data present a trend and/or heteroscedasticity. When data has
variance in terms of  time,  i.e.,  var(Y t)=σt

2,  the most  commonly applied procedure is  the
application of data transformation.

In several areas there are models that accommodate heteroscedasticity within their structure.
For example, in econometrics, ARCH models are commonly employed in the modelling of
financial time series that exhibit time-varying volatility. When an autoregressive moving
average model (ARMA) is assumed for the error variance, the model is a generalized autore‐
gressive conditional heteroscedasticity [19] model.

Heteroscedasticity in an environmental time series is commonly treated using the Box-Cox
transformation [20]

* 1yy
l

l

-
=

l

which is indexed by λ, where yλ
* is the transformation of the original observation y. Note that

for λ =0, the transformation is the natural logarithm of y. On the one hand, the Box-Cox
transformation is not suitable for all heteroscedasticity types. On the other hand, this trans‐
formation, among others, changes the data magnitude hindering the interpretation of the
model.

As will be shown later, this work considers a class of models (state space models) that is able
to incorporate some types of heteroscedasticity and does not require data transformation. A
time series frequently has a trend, i.e., it is not an observed process with a constant mean. In
general, the trend is modelled using a deterministic function  f (t), usually a polynomial
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function, power function or logarithmic function. The adjustment of the function f (t) to data
is generally performed using the least square method:

( ) 2
min .t

t

y f té ù-ë ûå

Nevertheless, the most common function is of the type f (t)=α + βt. However, the simplicity of
this function is not always appropriate to model real data, see for instance Figure 10. The DO
concentration data for the Carvoeiro water-monitoring site represented in Figure 10 corre‐
sponds to an extended period of time. The graphical representation clearly indicates that the
time series is not stationary in mean and the variability does not follow a monotonic function
in time. Furthermore, there is no unique function among those referred above that globally fit
the time series in order to model the trend. Thus, we can identify a trend function for the time
series defined by sub-periods of time.

Figure 10 suggests that there is a time where the trend function changes its expression, possibly
with a non-linear function prior to that time and a linear form following it. For simplicity and
according to the exploratory analysis, we considered the most suitable function to the first part
of the series to be a quadratic function and for the second part, a constant.

After fitting a regression model with a quadratic trend up to a certain time t0, to all possible
times t0 and a constant after that instant, we chose the value of t0 with the smallest residual
sum of squares [21]. This procedure led to t0 = 139, i.e., October 2000 and the estimated trend
was:

20.0014 0.01986 6.8991 if 139T
9.128 if 139.

ˆ
t

t t t
t

ì- + + £ï= í
>ïî

Figure 10. Monthly DO concentration in the Carvoeiro water-monitoring site from April 1989 to September 2012.
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Figure 11 presents the series resulting from the subtraction of the adjusted trend to the original
data, Y t − T̂ t . As is shown, this new series does not present a deterministic trend; however, as
is the norm for monthly environmental data, seasonal behaviour is present.

Figure 11. Residual series from the trend adjustment to the Carvoeiro DO concentration time series.

The easiest way to handle seasonality is to subtract from January’s data the overall January
average, from February’s data the overall February average, etc. [22]. An alternative method
involves estimating both trend and seasonality coefficients together. In this case, it is necessary
to define a set of dummy variables as,

( )1 if 1 , for  1,...,
0, otherwiseti

t j P i some j n
x

ì = - + =ï= í
ïî

where P  is the period (in our case P =12). If the trend component is polynomial, as previously
considered, the model shows unique representation through a linear regression model. As it
is generally appropriate that the sum of the seasonal coefficients must be zero, the linear model
should be re-parameterized in order to overcome the linear dependence of variables xti. Thus,
the model can be presented as:

2
1 2

1

...
p

q
t q ti i t

i

Y t t t x s
=

= b + b + + b + + eå

where εt  is white noise. The vector of coefficients (β1, β2,  ...,  βq, s1,  s2, ..., sP) is estimated by
the least squares method. In order to facilitate the interpretation of results, we can consider
the model with a constant parameter β0, which leads to the following transformations:
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0   , 1,2,...,i is and s s s i Pb = = - =

In general, these two approaches produce similar estimates. The first method is easier to
implement and less laborious than the second. Furthermore, the regression model provides
optimal estimates in certain conditions that assume that the errors εt  are not time correlated,
an assumption that is not valid for the data in the current analysis. Hence, for simplicity and
considering the data characteristics, we adopted the first method, that is, the decomposition
procedure that estimates trends and seasonal separately. Table 2 presents the estimates for the
seasonal coefficients of the Carvoeiro data after the subtraction of the adjusted trend compo‐
nent.

Month Seasonal coefficient

Jan 2.23

Feb 1.50

Mar 1.03

Apr 0.31

May -0.24

Jun -0.92

Jul -1.01

Aug -1.05

Sep -1.40

Oct -0.41

Nov 0.31

Dec 1.24

Table 2. Estimates for seasonal coefficients.

As expected, from the DO perspective, the water quality was better in the winter months and
worse during the summer months. The DO concentration is associated with weather condi‐
tions, particularly with precipitation amounts [23].

The Box-Cox transformation is associated, for example, with multiplicative models where the
time series components are multiplicative as Y t =T t ⋅St ⋅εt . However, there are also other types
of heterocedasticity. Figure 12 shows for each month both the overall monthly averages and
standard deviations of the DO concentration in Carvoeiro. This analysis indicated that
variability had not been constant throughout the year. Indeed, the linear correlation coefficient
between averages and standard deviations was 0.44, which showed that when the monthly
average was large, the standard deviation tended to be large as well. This type of heterosce‐
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dasticity will be taken into account in the modelling procedure via the state space model
approach.

Figure 12. Monthly averages and standard deviation of DO concentration, subtracted according to trend, in the Car‐
voeiro water-monitoring site from April 1989 to September 2012.

4.2. Temporal dependence

It is well known that there exists a certain level of persistence in the behaviour of nature [22].
Indeed, environmental data is influenced by meteorological conditions that may persist from
one month to another [21]. The series of residuals pertaining to the DO concentration in
Carvoeiro does not have the characteristics of white noise. Figure 12 shows that there is a
significant temporal autocorrelation according to an autoregressive process of order 1, an
AR(1). Thus, stochastic modelling of residuals is needed in order to accommodate the serial
correlation.
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Figure 13. Sample autocorrelation function (ACF – left) and sample partial autocorrelation function (PACF – right) of
the residuals.

When modelling a time series using the decomposition method approach, the procedure
that is generally adopted for finding the best fit of an ARIMA model to past values of a
time series is the Box-Jenkins methodology (for more details, see [24]. The modelling of the
dependence of environmental data significantly influences decisions in the application of
other modelling statistical procedures such as, for example, the existence of non-stationar‐

Research and Practices in Water Quality164



ities in a series or in change point detection procedures. Therefore, in section 5, we consider
a  class  of  models  that  allows  for  incorporating  several  components  as  the  temporal
dependence in a  dynamic manner and which will  be used to model  the DO concentra‐
tion in the water-monitoring of Carvoeiro.

5. Time series modelling

State space models are a class of extremely versatile time series models. Their popularity is
mainly due to the Kalman filter. This algorithm, [25], has been used in many different areas to
describe dynamic systems evolution. The primary goal of the Kalman filter algorithm is to find
estimates of unobservable variables based on observable variables related through a set of
equations designated by a state space model (SSM).

In general, such models are defined by the following equations:

1

 
Φ

t t t t

t t t

Y H e

-

= b +
b = b + e

The first equation is the measurement equation and relates the n ×1 vector of observable
variables, Y t , with the m ×1 vector of unobservable variables, βt , referred to as states. The n ×m
matrix H t  is a matrix of known coefficients and et  is a white noise n  ×1 vector, called the
measurement error, with covariance matrix E (etet

')=Σe.

Furthermore, the vector of states βt  varies in time according to the second equation, the state
equation, where  Φ is a m ×m matrix of autoregressive coefficients and εt  is a white noise m ×1
vector with covariance matrix E (εtεt

')=Σε. The disturbances et  and εt  are assumed to be
uncorrelated, that is, E (etεs

')=0 for all t  and s.

A subclass of these models with a particular interest arises when the state vector is a stationary
process with mean  μ, E (βt)=μ. In this case, to ensure that the state process and the state
equation follows a stationary VAR(1) with a mean  μ, it is assumed that the eigenvalues of the
autoregressive matrix Φ are inside the unit circle. For more details, see [26].

5.1. A brief description of the Kalman filter algorithm

As the state  βt  is unobservable, it is necessary to obtain its predictions. The Kalman filter
algorithm uses an orthogonal projection of the state based on the available information up to
the moment. Assuming that the parameters of a state space models are known, the Kalman
filter recursions provide the best linear predictors for filtering and forecasting the vector of
states.
Let β̂t|t−1 represent the predictor of βt  based on the information up to time t −1 and Pt|t−1 be
its mean square error (MSE). As the orthogonal projection is a linear estimator, the predictor
for the observable variable, Y t , is given by
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When at time t , Y t  is available, the prediction error or innovation, ηt =Y t − Ŷ t, is used to update
the prediction of βt , the filter prediction, through the equation

| | 1
ˆ ˆ

t t t t t tK-b = b + h

where Kt = Pt|t−1H t
'(H t Pt|t−1H t

' + Σe)
−1 is called the Kalman gain matrix. Furthermore, the MSE

of the update predictor β̂t|t  verifies the relation Pt|t = Pt|t−1−Kt H t Pt|t−1. In turn, at time t , the
forecast for the state vector βt+1 is given by the equation

1| |
ˆ ˆΦt t t t+b = b

with MSE matrix Pt+1|t =ΦPt|tΦ
' + Σε.

When the disturbances are Gaussian, the Kalman filter provides the minimum mean square
estimate for  βt .

5.2. Parameter estimation

The application of the Kalman filter to predict the unknown variables requires the estimation
of the model’s parameters.

The vector of parameters Θ= {Φ, Σe,  Σε} and the mean vector μ if the state is stationary must
be estimated from the data. When the Gaussian distribution is suitable to the disturbances et

and εt  the conditional log-likelihood of a sample Y1, Y2..., Yn is given by:
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where Ωt = H t Pt|t−1H t
' + Σe. The maximum likelihood estimates are obtained by maximizing the

log-likelihood, i.e.,

( )1 2Θ arg maxln Θ; , ,...,ˆ .ML nL Y Y Y=
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The state space model’s parameters are estimated by the maximum likelihood via numerical
procedures.,The Newton-Raphson method can be adopted or, more often, it is employed the
EM algorithm [24].

If the Gaussian distribution is not appropriate or the optimal properties are not required in the
modelling procedure, other estimators can be considered. For example, distribution-free
estimators can be adopted, which do not assume any distribution for the disturbances (see [27,
23]).

5.3. A mixed-effect state space model

In order to incorporate the temporal correlation and to accommodate the heterogeneity of the
variances of the sub-series of each month in terms of DO concentration in Carvoeiro, we
adopted a mixed-effect state-space model. The model is defined as:

( )
( )1

t t t t t

t t t

Y T S e

-

= + b +

b = m + f b - m + e

where T t  is the trend component, St  is a periodic function with 12 averages as previously
mentioned, the process {βt} is a stationary AR(1) with mean μ and Gaussian errors εt  and et  is
the measurement error, assumed to be a Gaussian white noise process.

The model has two primary components: a regression structure, which incorporates both the
trend and the seasonality, and an unobservable process {βt}, the state. It is assumed that the
state process will calibrate the deterministic structure T t + St  previously estimated by T̂ t  and
Ŝ t  in presented in Table 2.

Another important feature of the model is that by its own formulation, it allows the existence
of heterogeneity of variances previously identified. That is, the stochastic calibrator factor
allows for the dynamic modelling of the heteroscedasticity during the year and incorporates
the time dependence identified through the ACF and PACF functions in Figure 12.

Table 3 presents the maximum likelihood estimates of Θ= {μ, ϕ, σε
2, σe

2} and their respective
standard errors. As expected, the mean of the calibration factor was close to 1. This meant that
the deterministic component T t + St  represented the global behaviour of data. On the other
hand, the calibration factor followed a stationary autoregressive process AR(1) process since
| ϕ̂ | <1.

μ̂ ϕ̂ σ̂ε
2 σ̂e

2

1.00077 0.43001 0.01790 0.24292

(0.00085) (0.00503) (0.00024) (0.01854)

Table 3. Maximum likelihood estimates of the mixed-effect state space model (standard errors in brackets).
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Once the model had been well identified, the Kalman filter was run in order to obtain the
forecasts and filtered predictions of the states βt . The Kalman filter provided predictions to the
states and their respective MSE estimates. Figure 13 represents the filtered predictions β̂t|t  of
the calibration factors for each month and their respective empirical confidence intervals at a
95% level obtained by:

| |1.96ˆ .ˆ
t t t t tPb = b ±

Figure 14. Representation of filtered predictions β̂t|t  and their respective empirical confidence intervals.

In order to assess the adjustment of the model, one step-ahead forecasts were computed with
respective confidence intervals at 95% (see Figure 14):

·
| 1| 1 1.ˆ 96 .t tt t tY Y MSE --= ±

where MSÊ t|t−1 = (T̂ t + Ŝ t)2P̂ t|t−1 + σ̂e
2.

The percentage of observations outside of the respective empirical confidence interval was
6.36%. The residuals analysis showed that there were some outliers; the biggest residual
occurred in January 1992.

Normality was rejected at a 5% significant level, considering the Kolmogorov-Smirnov test,
since the p-value was 2.8%. However, the Gaussian distribution was not rejected (K-S p-
value=20.0%) when the largest outliers were not considered. As state space models are
associated to the Kalman filter, in general, the impact of the outliers turns out not to be
significant, since they are attenuated through the filtering procedure.

As can be seen in Figure 14, a large proportion of the observations outside the respective
empirical confidence interval belonged to the first years of the series. This may indicate the
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existence of different structures in the observable variables, which can be found through the
analysis of change points in the state variables. This issue is discussed in the following section.

Figure 15. Dissolved oxygen concentration and the step-ahead forecast with respective confidence intervals at 95%.

5.4. Change point detection

The detection of structural changes in environmental data is one of the most interest issues in
the applied statistical analysis. In the past decade, there has been significant progress within
change point detection. However, these methodologies still require more complex statistical
procedures or computational requirements. For example, in [28], a simple BIC-like multiple
change point penalty is proposed that is based on the total number of change points. For further
recent developments regarding change point detection in environmental applications, [29,30].

The state space modelling approach adopted in this work allows for applying standard change
point detection procedures, since this model incorporates several data characteristics. Thus,
as these properties of environmental data are taking into account in the modelling procedure,
simple change-point detection techniques can be applied if adequately chosen.

This subsection deals with change point detection in the state process instead of the observed
process Y t .   This detection is made through the filtered predictions of the calibration factors,
β̂t|t , obtained in the filter procedure. It is reasonable to investigate changes in the structure of
βt  that may be relevant to the water-monitoring process. For this purpose, the filtered predic‐
tions of the state process can be analysed in relation to the existence of one change (or more)
in its mean as the best prediction of an AR(1) process.

To do so, we used maximum type test statistics, referred in [31], alongside their correct
adaptation to an autoregressive process. The basic test evaluates the existence of a change point
in the mean of independent and identically distributed Gaussian variables in an unknown
time.

The hypotheses of the basic test are:
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H0 :β1, β2, ...,  βn are independent and distributed according to the same Gaussian distribution
N (μ, σ 2)

vs.

H0 :∃k∈ {1, ..., n −1} :  β1, ...,  βk  are distributed according to N (μ1, σ 2) and βk +1, ...,  βn are
distributed according to N (μ2, σ 2), with μ1≠μ2.

The test for the existence of the change point k  can be performed by a statistic test known as
the maximum type. Since the variance is generally unknown, this approach consists of a
sequence of t tests and the analysis of the significance of their maximums. Thus, the test statistic
is given by:
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The null hypothesis is rejected if the statistics Tn are larger than a corresponding critical value.
However, the calculation of the exact critical value is not easy, due to the test statistic being
the maximum of the sequence T1, T2,..., Tn−1. Nevertheless, approximated critical values can
be obtained by different methods, namely:

i. the Bonferroni inequality and its improvement;

ii. asymptotic distribution;

iii. through simulation.

Table 4 replicates the approximated critical values obtained through simulation and presented
in [22]. However, these critical values assume that the observations are uncorrelated and
according to [32], it is necessary to correct them. Thus, in order to obtain the corrected critical
value that takes into account the time correlation of an AR(1), the initial critical value must be
multiplied by (1 + ϕ̂) / (1− ϕ̂) 1/2.

The simplest method for detecting multiple change points is through binary segmentation.

The first work to propose binary segmentation within a stochastic process setting was [33].
Binary segmentation is a generic technique for multiple change-point detection in which,
initially, the entire dataset is searched for one change-point, typically using a CUSUM-like
procedure. When a change-point is detected, the data are split into two (hence, ‘binary’) sub-
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segments, defined by the detected change-point. A similar search is then performed on each
sub-segment, possibly resulting in further splits. The recursion on a given segment continues
until a certain criterion is satisfied [34].

n 5% critical value 1% critical value

50 3.15 3.76

100 3.16 3.71

200 3.19 3.72

300 3.21 3.73

500 3.24 3.73

Table 4. Approximated critical values obtained by simulation.

In order to apply the change point detection procedure to the state filtered prediction of
Carvoeiro, it was necessary to interpolate the critical value at 5% to n =283, which is 3.207.
Taking into account the autoregressive parameter estimate presented in Table 3, the corrected
critical value at 5% was noted as 5.079. Figure 15 represents the observed values of the statistics
Tk , 1≤k <283, as well as both corrected and uncorrected critical values at 5% in the first step of
the binary segmentation procedure. As can be seen, the null hypothesis is rejected, i.e., a
statistically significant change point that can be identified as April 1990.

Figure 16. Observed values of the statistic  Tk , 1≤k <283 ; horizontal lines represent both critical values at 5% cor‐
rected and uncorrected to an AR(1).

Table 5 presents the results from the complete binary segmentation procedure, which ended
when the observed value of the test statistics was less than the respective corrected critical
value (the critical value was obtained by interpolation according to the sub-sample size). This
procedure identified two change points: April 1990 and December 1991. Note that in the final
step of the binary segmentation procedure, the largest value of the statistic tests was 3.202,
which would lead to the detection of another change point if the correction to the AR(1) process
had not been considered, since the uncorrected critical value was 3.200. However, considering
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the AR(1) correction, the critical value was 5.069, i.e., the observed statistic test was not
statistically significant.

ni T (ni)obs Month/Year Critical value Critical value

uncorrected corrected

283 5.1893 April 1990 3.2066 5.0790

270 5.7600 December 1991 3.2040 5.0749

Table 5. Results from the binary segmentation procedure.

The complete binary segmentation procedure identified two significant change points that
corresponded to three different levels for the mean of the process {βt}. In chronological order,
the mean levels of the process {βt} were 1.190, 0.835 and 1.005. This means that during the first
period of time, the DO variable was on average 19% higher than those predicted by the
regression component. In the second period of time, the observations were on average 16.5%
lower, while in the last period of time, observations were on average close to the regression
model's predictions.

The identification of statistically significant change points provides information that can be
useful to environmental investigators or technicians. Nevertheless, from a statistical point of
view, this information allows for obtaining more accurate models with better adjustments.
Thus, we must consider the state space model defined in subsection 5.3, but only where the
state process {βt} has three average levels, one for each sub-series identified in the change point
procedure.

Thus, taking three means μ1 =1.190, μ2 =0.835 and μ3 =1.005 according to the identified change
points of April 1990 and December 1991, the percentage of observations outside of the
respective empirical confidence interval, at 95% level, for the forecasted one step-ahead of the
DO concentration in the new model is 5.30% instead of 6.36% in the first model. On the other
hand, the final model exhibited a determination coefficient equal to R 2 =0.711 instead of
R 2 =0.689 in the first model.

Figure 17. Representation of change points and the three mean levels of the state process.
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6. Conclusions

The statistical analysis of water quality data is a relevant tool for the monitoring of ecosystems
and water systems for human consumption. The information contained in water variable time
series allows studying the past but also enables monitoring the present and planning the future.
Biochemical analyses of water must be accompanied by statistical studies in order to identify
patterns and analyse the evolution of water quality in its different forms.

This work presented a characterization of the River Vouga Basin in Portugal and focused
primarily on the dissolved oxygen concentration variable. The complexity of databases renders
more difficult to perform consistent statistical analyses of water quality. Statistical issues were
presented and discussed in this paper to make their implementation easier for other research‐
ers. Several problems were discussed and some solutions were provided, always keeping
simplicity and practical relevance in mind.
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