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1. Introduction

While it is essential for every researcher to obtain data that is highly accurate, complete,
representative and comparable, it is known that missing values, outliers and censored values
are common characteristics of a water quality data-set. Random and systematic errors at
various stages of a monitoring program tend to produce erroneous values, which complicates
statistical analysis. For example, the central tendency statistics, particularly the mean and
standard deviation, are distorted by a single grossly inaccurate data point. An error, which is
initially identified and is later incorporated into a decision making tool, like a water quality
index (WQI) or a model, could subsequently lead to costly consequences to humans and the
environment.

Checking for erroneous and anomalous data points should be routine, and an initial stage of
any data analysis study. However, distinguishing between a data-point and an error requires
experience. For example, outliers may actually be results which might require statistical
attention before a decision can be made to either discard or retain them. Human judgement,
based on knowledge, experience and intuition thus continue to be important in assessing the
integrity and validity of a given data-set. It is therefore essential for water resources practi‐
tioners to be knowledgeable regarding the identification and treatment of errors and anomalies
in water quality data before undertaking an in-depth analysis.

On the other hand, although the advent of computers and various software have made it easy
to analyse large amounts of data, lack of basic statistical knowledge could result in the
application of an inappropriate technique. This could ultimately lead to wrong conclusions
that are costly to humans and the environment [1]. Such necessitate the need for some basic
understanding of data characteristics and statistics methods that are commonly applied in the
water quality sector. This chapter, discusses common anomalies and errors in water quality
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data-sets, methods of their identification and treatment. Knowledge reviewed could assist with
building appropriate and validated data-sets which might suit the statistical method under
consideration for data analysis and/or modelling.

2. Data errors and anomalies

Referring to water quality studies, an error can be defined as a value that does not represent
the true concentration of a variable such as turbidity. These may arise from both human and
technical error during sample collection, preparation, analysis and recording of results [2].
Erroneous values can be recorded even where an organisation has a clearly defined monitoring
protocol. If invalid values are subsequently combined with valid data, the integrity of the latter
is also impaired [1]. Incorporating erroneous values into a management tool like a WQI or
model, could result in wrong conclusions that might be costly to the environment or humans.

Data validation is a rigorous process of reviewing the quality of data. It assists in determining
errors and anomalies that might need attention during analysis. Validation is crucial especially
where a study depends on secondary data as it increases confidence in the integrity of the
obtained data. Without such confidence, further data manipulation is fruitless [3]. Though data
validation is usually performed by a quality control personnel in most organisations, it is
important for any water resource practitioner to understand the common characteristics that
may affect in-depth analysis of a water quality data-sets.

3. Visual scan

Among the common methods of assessing the integrity of a data-set is visual scan. This
approach assists to identify values that are distinct and, which might require attention during
statistical analysis and model building. The ability to visually assess the integrity of data
depends on both the monitoring objectives and experience [4]. Transcription errors, erroneous
values (e.g. a pH value of greater than 14, or a negative reading) and inaccurate sample
information (e.g. units of mg/L for specific conductivity data) are common errors that can be
easily noted by a visual scan. A major source of transcription errors is during data entry or
when converting data from one format to another [5, 6]. This is common when data is trans‐
ferred from a manually recorded spreadsheet to a computer oriented format. The incorrect
positioning of a decimal point during data entry is also a common transcription error [7, 8].

A report by [7] suggested that transcription errors can be reduced by minimising the number
of times that data is copied before a final report is compiled. [9] recommended the read-aloud
technique as an effective way of reducing transcription errors. Data is printed and read-aloud
by one individual, while the second individual simultaneously compares the spoken values
with the ones on the original sheet. Even though the double data-entry method has been
described as an effective method of reducing transcription errors, its main limitation is of being
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laborious [9-11]. [12], however, recommended slow and careful entry of results as an effective
approach of reducing transcription errors.

While it might be easy to detect some of the erroneous values by a general visual scan, more
subtle errors, for example outliers, may only be ascertained by statistical methods [13].
Censored values, missing values, seasonality, serial correlation and outliers are common
characteristics in data-sets that need identification and treatment [14]. The following sections
review the common characteristics in water quality data namely; outliers, missing values and
censored values. Methods of their identification and treatment are discussed.

3.1. Outliers (extreme values)

The presence of values that are far smaller or larger than the usual results is a common feature
of water quality data. An outlier is defined as a value that has a low probability of originating
from the same statistical distribution as the rest of observations in a data-set [15]. Outlying
values should be examined to ascertain if they are possibly erroneous. If erroneous, the value
can be discarded or corrected, where possible. Extreme values may arise from an imprecise
measurement tool, sample contamination, incorrect laboratory analysis technique, mistakes
made during data transfer, incorrect statistical distribution assumption or a novel phenom‐
enon, [15, 16]. Since many ecological phenomena (e.g., floods, storms) are known to produce
extreme values, their removal assumes that the phenomenon did not occur when actually it
did. A decision must thus be made as to whether an outlying datum is an occasional value and
an appropriate member of the data-set or whether it should be amended, or excluded from
subsequent statistical analyses as it might introduce bias [1].

An outlying value should only be objectively rejected as erroneous after a statistical test
indicates that it is not real or when it is desired to make the statistical testing more sensitive
[17]. In figure 1, for example, simple inspection might mean that the two spikes are erroneous,
but in-depth analysis might correlate the spikes to very poor water quality for those two days,
which would make the two observations valid. The model, however, does not pick the extreme
values, which negatively affects the R2 value, and ultimately the accuracy and usefulness of
the model in predicting polymer dosage.

Both observational (graphical) and statistical techniques have been applied to identify outliers.
Among the common observational methods are the box-plots, time series, histogram, ranked
data plots and normal probability plots [18, 19]. These methods basically detect an outlier value
by quantifying how far it lies from the other values. This could be the difference between the
outlier and the mean of all points, between the outlier and the next closest value or between
the outlier and the mean of the remaining values [20].

3.2. Box-plot

The box-plot, a graphical representation of data dispersion, is considered to be a simple
observation method for screening outliers. It has been recommended as a primary exploratory
tool of identifying outlying values in large data-sets (15). Since the technique basically uses the
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median value and not the mean, it poses a greater advantage by allowing data analysis
disregarding its distribution. [21] and [22] categorised potential outliers using the box-plot as:

• data points between 1.5 and 3 times the Inter Quantile Range (IQR) above the 75th percentile
or between 1.5 and 3 times the IQR below the 25th percentile, and

• data points that exceed 3 times the IQR above the 75th percentile or exceed 3 times the IQR
below the 25th percentile.

The limitation of a box plot is that it is basically a descriptive method that does not allow for
hypothesis testing, and thus cannot determine the significance of a potential outlier [15].

3.3. Normal probability plot

The probability plot method identifies outliers as values that do not closely fit a normal
distribution curve. The points located along the probability plot line represent ‘normal’,ob‐
servation, while those at the upper or lower extreme of the line, indicates the suspected outliers
as depicted in Figure 2.

The approach assumes that if an extreme value is removed, the resulting population becomes
normally distributed [21]. If, however, the data still does not appear normally distributed after
the removal of outlying values, a researcher might have to consider normalising it by trans‐
formation techniques, such as using logarithms [21, 23]. However, it should be highlighted
that data transformation tends to shrink large values (see the two extreme values in Figure 1,
before transformation), thus suppressing their effect which might be of interest for further

Figure 1. Data inspection during validation and treatment
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analysis [23, 24]. Data should thus not be simply transformed for the sole purpose of elimi‐
nating or reducing the impact of outliers. Furthermore, since some data transformation
techniques require non-negative values only (e.g. square root function) and a value greater
than zero (e.g. logarithm function), transformation should not be considered as an automatic
way of reducing the effect of outliers [23].

Since observational methods might fail to identify some of the subtle outliers, statistical tests
may be performed to identify a data point as an outlier. However a decision still has to be
made on whether to exclude or retain an outlying data point. The section below describes the
common statistical test for identifying outliers.

3.4. Grubbs test

The Grubb’s test, also known as the Studentised Deviate test, compares outlying data points
with the average and standard deviation of a data-set [25-27]. Before applying the Grubbs test,
one should firstly verify that the data can be reasonably approximated by a normal distribu‐
tion. The test detects and removes one outlier at a time until all are removed. The test is two
sided as shown in the two equations below.

1. To test whether the maximum value is an outlier, the test:

Gmax =
X n -  X mean

S

Figure 2. Normal probability plot showing outliers
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2. To test whether the minimum value is an outlier, the test is:

 Gmin =
X mean -  X i

S

Where X1 or Xn=the suspected single outlier (max or min)

s=standard deviation of the whole data set

X=mean

The main limitation of Grubbs test is of being invalid when data assumes non-normal
distribution [28]. Multiple iterations of data also tends to change the probabilities of detection.
Grubbs test is only recommended for sample sizes of not more than six, since it frequently tags
most of the points as outliers. It suffers from masking, which is failure to identify more than
one outlier in a data-set [28, 29]. For instance, for a data-set consisting of the following points;
3, 5, 7, 13, 15, 150, 153, the identification of 153 (maximum value) as an outlier might fail because
it is not extreme with respect to the next highest value (150). However, it is clear that both
values (150 and 153) are much higher than the rest of the data-set and could jointly be
considered as outliers.

3.5. Dixon test

Dixon’s test is considered an effective technique of identifying an outlier in a data-set con‐
taining not more than 25 values [21, 30]. It is based on the ratio of the ranges of a potential
outlier to the range of the whole data set as shown in equation 1 [31]. The observations are
arranged in ascending order and if the distance between the potential outlier to its nearest
value (Qgap) is large enough, relative to the range of all values (Qrange), the value is considered
an outlier.

Qexp =
Qgap

Qrange
(1)

The calculated Qexp value is then compared to a critical Q-value (Qcrit) found in tables. If
Qexp is greater than the suspect value, the suspected value can be characterised as an outlier.
Since the Dixon test is based on ordered statistics, it tends to counter-act the normality
assumption [15]. The test assumes that if the suspected outlier is removed, the data becomes
normally distributed. However, Dixon’s test also suffers the masking effect when the popu‐
lation contains more than one outlier.

[32] recommended the use of multivariate techniques like Jackknife distance and Mahalanobis
distance [33, 34]. The strength of multivariate methods is on their ability to incorporation of
the correlation or covariance between variables thus making them more correct as compared
to univariate methods. [34] introduced the chi-square plot, which draws the empirical
distribution function of the robust Mahalanobis distances against the chi-square distribution.
A value that is out of distribution tail indicates that it is an outlier [33].
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For an on-going study, an outlier can be ascertained by re-analysis of the sample, if still
available and valid. [28] and [2] advised the practise of triplicate sampling as an effective
method of verifying the unexpected results. When conducting a long-term study, researchers
might consider re-sampling when almost similar conditions prevail again. Nevertheless, this
option might not be feasible when carrying out a retrospective study since it generally depend
on secondary data from past events.

For data intended for trend analysis, studies have recommended the application of nonpara‐
metric techniques such as the Seasonal Kendal test where transformation techniques do not
yield symmetric data [19]. Should a parametric test be preferred on a data-set that includes
outliers, practitioners may evaluate the influence of outliers by performing the test twice, once
using the full data-set (including the outliers) and again on the reduced data-set (excluding
the outliers). If the conclusions are essentially the same, then the suspect datum may be
retained, failing which a nonparametric test is recommended.

4. Missing values

While most statistical methods presumes a complete data-set for analysis, missing values are
frequently encountered problems in water quality studies [35, 36]. Handling missing values
can be a challenge as it requires a careful examination of the data to identify the type and
pattern of missingness, and also have a clear understanding of the most appropriate imputa‐
tion method. Gaps in water quality data-sets may arise due to several reasons, among which
are imperfect data entry, equipment error, loss of sample before analysis and incorrect
measurements [37]. Missing values complicate data analysis, cause loss of statistical efficiency
and reduces statistical estimation power [37-39]. For data intended for time-series analysis and
model building, gaps become a significant obstacle since both generally require continuous
data [40, 41]. Any estimation of missing values should be done in a manner that minimise the
introduction of more bias in order to preserve the structure of original data-set [41, 42].

The best way to estimate missing values is to repeat the experiment and produce a complete
data-set. This option is however, not feasible when conducting a retrospective study since it
depend on historical data. Where it is not possible to re-sample, a model or non-model
techniques may be applied to estimate missing values [43].

If the proportion of missing values is relatively small, listwise deletion has been recommended.
This approach, which is considered the easiest and simplest, discards the entire case where
any of the variables are missing. Its major advantage is that it produce a complete data-set,
which in turn allows for the use of standard analysis techniques [44]. The method also does
not require special computational techniques. However, as the proportion of missing data
increases, deletion tends to introduce biasness and inaccuracies in subsequent analyses. This
tends to reduce the power of significance test and is more pronounced particularly if the
pattern of missing data is not completely random. Furthermore, listwise deletion also decreas‐
es the sample size which tends to reduce the ability to detect a true association. For example,
suppose a data-set with 1,000 samples and 20 variables and each of the variables has missing
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data for 5% of the cases, then, one could expect to have complete data for only about 360
individuals, thus discarding the other 640.

On the other hand, pairwise deletion removes incomplete cases on an analysis-by-analysis
basis, such that any given case may contribute to some analyses but not to others [44]. This
approach is considered an improvement over listwise deletion because it minimises the
number of cases discarded in any given analysis. However, it also tend to produce bias if the
data is not completely random.

Several studies have applied imputation techniques to estimate missing values. A common
assumption with these methods is that data should be missing randomly [45]. The most
common and easiest imputation technique is replacing the missing values with an arithmetic
mean for the rest of the data [35, 41]. This is recommended where the frequency distribution
of a variable is reasonably symmetric, or has been made so by data transformation methods.
The advantage of arithmetic mean imputation is generation of unbiased estimates if the data
is completely random because the mean lands on the regression line. Even though the insertion
of mean value does not add information, it tends to improve subsequent analysis. However,
while simple to execute, this method does not take into consideration the subjects patterns of
scores across all the other variables. It changes the distribution of the original data by narrow‐
ing the variance [46]. If the data assumes an asymmetric distribution, the median has been
recommended as a more representative estimate of the central tendency and should be used
instead of the mean.

[47], recommended model-based substitution techniques as more flexible and less ad hoc
approach  of  estimating  missing  values  as  compared  to  non-model  methods.  A  simple
modelling  technique  is  to  regress  the  previous  observations  into  an  equation  which
estimates missing values [35, 48].  The time-series auto-regressive model has been descri‐
bed as an improvement and more accurate method of estimating missing values [25]. Unlike
the arithmetic mean and median replacement methods, regression imputation techniques
estimates missing values of a given variable using data of other parameters. This tends to
reduce the variance problem, which is common with the arithmetic mean imputation and
median replacement methods [41, 49].

On the other hand, the maximum likelihood technique uses all the available complete and
incomplete data to identify the parameter values that have the highest probability of producing
the sample data [44]. It runs a series of data iterations by replacing different values for the
unknown parameters and converges to a single set of parameters with the highest probability
of matching the observed data [41]. The method has been recommended as it tends to give
efficient estimates with correct standard errors. However, just like other imputation methods,
the maximum likelihood estimates can be heavily biased if the sample size is small. In addition,
the technique requires a specialised software which may be expensive, challenging to use and
time consuming.

Some studies have considered the relationship between parameters as an effective approach
of estimating missing values [50]. For instance, missing conductivity values can be calculated
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from the total dissolved solids value (TDS) by a simple linear regression where p-value and r-
value are known to exist and the missing value lies between the two variables. Equation 2,
where a is in the range 1.2-1.8, has been described as an equally important estimator of missing
conductivity values [1, 51].

Conductivity ≈TDS  x a (2)

The constant, a, is high in water of high chloride and low sulphate [51]. [52] estimated missing
potassium values by using a linear relationship between potassium and sodium. The relation‐
ship gave a high correlation coefficient of 0.904 (p<0.001).

As of late, research has explored the application of artificial intelligence (AI) techniques to
handle missing values in the water  quality sector.  Among the major AI techniques that
have  been  applied  is  the  Artificial  Neural  Networks  (ANN)  and  Hybrid  Evolutionary
Algorithms (HEA) (48, 53, 54). Nevertheless, it should also be highlighted that all techni‐
ques for estimating missing values invariably affect the results. This is more pronounced
when missing values characterise a significant proportion of the data being analysed. A
research  should  thus  consider  the  sample  size  when  choosing  the  most  appropriate
imputation method.

5. Scientific facts

The integrity of water quality data can also be assessed by checking whether the results are
inline with known scientific facts. To ascertain that, a researcher must have some scientific
knowledge regarding the characteristics of water quality variables. Below are some scientific
facts that can be used to assess data integrity [1].

1. Presence of nitrate in the absence of dissolved oxygen may indicate an error since nitrate
is rapidly reduced in the absence of oxygen. The dissolved oxygen meter might have
malfunctioned or oxygen might have escaped from the sample before analysis.

2. Component parts of a water-quality variable must not be greater than the total variable.
For example:

3. Total phosphorus ≥Total dissolved phosphorus>Ortho-phosphate.

4. Total Kjeldahl nitrogen ≥Total dissolved Kjeldahl nitrogen>ammonia.

5. Total organic carbon ≥Dissolved organic carbon.

6. Species in a water body should be described correctly with regards to original pH of the
water sample. For example, carbonate species will normally exist as HCO3 -while CO3 2-

cannot co-exist with H2CO3.
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6. Censored data

A common problem faced by researchers analysing environmental data is the presence of
observations reported to have non-detectable levels of a contaminant. Data which are either
less than the lower detection limit, or greater than the upper detection limit of the analytical
method applied are normally artificially curtailed at the end of a distribution, and are termed
“censored values” [14]. Multiple censored results may be recorded when the laboratory has
changed levels of detection, possibly as a result of an instrument having gained more accuracy,
or the laboratory protocol having established new limits. If the values are below the detection
limit, they are abbreviated as BDL, and when above the limit, as ADL [55, 56].

Various methods of treating censored values have been developed to reduce the complication
generally brought about by censored values [57]. The application of an incorrect method may
introduce bias especially when estimating the mean and variance of data distribution [58]. This
may consequently distort the regression coefficients and their standard errors, and further
reduce the hypothesis testing power. A researcher must thus decide on the most appropriate
method to analyse censored values. One might reason that since these values are extra
ordinarly small, they are not important and discard them while some might be tempted to
remove them inorder to ease statistical analysis. Deletion has however been described as the
worst practise as it tends to introduce a strong upward bias of the central tendency which lead
to inaccurate interpretation of data [19, 59-62].

The relatively easiest and most common method of handling censored values is to replace them
with a real number value so that they conform to the rest of data. The United State Environ‐
mental Agency suggested substitution if censored data is less than 15% of the total data-set
(63, 64). [8], BDL, for example x < 1.1, were multiplied by the factor 0.75 to give 0.825. ADL
values, for example 500 < x, were recorded as one magnitude higher than the limit values to

give 501. [65] recommended substituting with 1 
2  DL or 1

2
 DL if the sample size is less than

20 and contains less than 45% of its data as censored values. [66] suggested substitution by
1
√ 2 DLif the data are not highly skewed and substitution by 1

2  DL otherwise. [67], however,
criticised the substitution approach and illustrated how the practice could produces poor
estimates of correlation coefficients and regression slopes. [68] further explained that substi‐
tution is not suitable if the data has multiple detection limits [68, 69].

A second approach for handling censored values is the maximum likelihood estimation (MLE).
It is recommended for a large data-set which assumes normality and contains censored results
[38, 65, 70, 71]. This approach basically uses the statistical properties of non-censored portion
of the data-set, and an iterative process to determine the means and variance. The MLE
technique generates an equation that calculates mean and standard deviation from values
assumed to represent both the detects and non-detect results [69]. The equation can be used
to estimate values that can replace censored values. However, the technique is reportedly
ineffective for a small data-set that has fewer than 50 BDLs [69].
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When data assumes an independent distribution and contain censored values, non-parametric
methods like the Kaplan-Meir method, can be considered for analysis [59]. The Kaplan-Meir
method creates an estimate of the population mean and standard deviation, which is adjusted
for data censoring, based on the fitted distribution model. Just like any non-parametric
techniques for analysing censored data, the Kaplan-Meier is only applicable to right-censored
results (i.e. greater than) [72]. To use Kaplan-Meier on left-censored values, the censored values
must be converted to right-censored by flipping them over to the largest observed value [65,
71, 72]. To ease the process, [73] have developed a computer program that does the conversion.
[71], however, found the Kaplan-Meier method to be effective when summarising a data-set
containing up to 70% of censored results.

In between the parametric and non-parametric methods is a robust technique called Regression
on Order Statistics (ROS) [38]. It treats BDLs based on the probability plot of detects. The
technique is applicable where the response variable (concentration) is a linear function of the
explanatory variable (the normal quartiles) and if the error variance of the model is constant.
It also assumes that all censoring thresholds are left-censored and is effective for a data-set
which contains up to 80% censored values [59]. The ROS technique uses data plots on a
modelling distribution to predict censored values. [59] and [68] evaluated ROS as a reliable
method for summarising multiply censored data. Helsel and Cohn (38) also described ROS as
a better estimator of the mean and standard deviation as compared to MLE, when the sample
size is less than 50 and contains censored values.

7. Statistical methods

The success of an analysis of water quality data primarily depends on the selection of the right
statistical method which considers common data characteristics such as normality, seasonality,
outliers, missing values, censoring, etc., [74]. If the data assumes an understandable and
describable distribution, parametric methods can be used [14]. However, non-parametric
techniques are slowly replacing parametric techniques mainly because the latter are sensitive
to common water characteristics like outliers, missing values and censored value [75].

7.1. Computer application in data treatment

The increase in various computer programs has made it easy to detect and treat erroneous
data. Computers now provide flexibility and speedy methods of data analysis, tabulation,
graph preparation or running models, among others. Various software such as Microsoft Excel,
Minitab, Stata and MATLAB have become indispensable tools for analysing environmental
data. These software perform various computations associated with checking assumptions
about statistical distributions, error detection and their treatment. However, the major problem
encountered by researchers, is lack of guidance regarding selection of the most appropriate
software. Computer-aided statistical analysis should be undertaken with some understanding
of the techniques being used. For example, some statistical software packages might replace
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missing values with the means of the variable, or prompt the user for case-wise deletion of
analytical data, both of which might be considered undesirable [52].

Lately, machine learning algorithms like the artificial neural networks (ANNs) [67, 76-78], and
genetic algorithms (GA) [76, 79] have gained momentum in water quality monitoring studies.
[41] pointed out that these technique generally yields the best parameter estimates in the data
set with the least amount of missing data. Nevertheless, as the percentage of missing data
increases, the performance of ANN which is generally measured by the errors in the parameter
estimates, decreases and may reach performance levels similar to those obtained by the general
substitution methods. However, in all cases the effectiveness of these methods lies on the user’s
ability to manipulate and display data correctly.

8. Conclusion

This chapter discussed the common data characteristics which tend to affect statistical analysis.
It is recommended that practitioners should explore for outliers, missing values and censored
values in a data-set before undertaking in-depth analysis. Although an analyst might not be
able to establish the causal of such characteristic, eliminate or overcome some of the errors,
having knowledge of their existence assists in establishing some level of confidence in drawing
meaningful conclusions. It is recommended that water quality monitoring programs should
strive to collect data of high quality. Common methods of ascertaining data quality are
practising duplicate samples, using blanks or reference samples, and running performance
audits. If a researcher is not sure of how to treat a characteristic of interest, a non-parametric
method like Seasonal Kendal test could provide a better alternative since it is insensitive to
common water quality data characteristics like outliers.
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