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1. Introduction

Cellular survival is dependant upon the energy pathways ingrained within them. Their
comprehension is imperative in understanding the role of their component enzymes in type 2
diabetes treatment and the inextricable linkage of a few of them to thiamine. The Glycolytic
pathway is an ancient metabolic, cytosolic pathway that converts glucose into pyruvate under
anaerobic conditions and further into lactate or ethanol. The free energy released from this
forms high energy compounds ATP and NADH.Under aerobic conditions CO2 and substan‐
tially more ATP is produced [1]. The pathway of glycolysis comprises of 2 clear divisions (Fig
1). After glycolysis, further aerobic processing of glucose is conducted through the Kreb Cycle,
synonymous with tricarboxylic acid or citric acid cycle (Fig 2). Intracellularly the mitochondria
serve as site of citric acid cycle and oxidative phosphorylation activities.

The overall chemical reaction of the tricarboxylic acid cycle is:

®+ + 2
i 2 2 2Acetyl-CoA + 3NAD + FAD + GDP + P + 2H O  2CO + 3NADH + FADH + GTP + 2H + HSCoA (1)
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Adapted from Michael W. King, Ph.D / IU School of Medicine / miking at iupui.edu / © 1996–2011.

Figure 1. (A) Phase1 (Priming Phase) of Embden Meyerhoff Pathway; (B) Phase 2 (Energy Yielding Phase) of Embden
Meyerhoff Pathway; A & B: A Schematic Pathway of glycolysis from glucose to pyruvate.and its connection to the re‐
ductive pentose pathway and citric acid cycle.

Figure 2. Krebs cycle (www. library.thinkquest.org)
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2. The mitochondrial catalytic repertoire

The pyruvate dehydrogenase complex: Both prokaryotic and eukaryotic species carry among
others, conglomeration of proteins into a mega, specifically arranged multienzyme structural
complex termed (a "metabolon").

Figure 3. Protein-protein Interactions in the Native human PDC. Adapted from Brautigham (2006)

a. Close-up view of E3BD (ribbons representation) bound to E3 (surface) (Brautigham 2006).
One monomer of E3 is colored orange, and the other is blue. The approximate position of
the dyad axis of the E3 dimer is shown by the black symbol and arrow. Most of E3BD is
colored green, but those residues with atoms that would clash with a second bound E3BD
are shown in purple.

b. Schematic model of the native human PDC. The dodecahedral 60-meric core of the human
PDC is modeled using the structure of the catalytic domain of B. tearothermophilus E2
(Izard 1999). The E2p polypeptides are colored magenta, with E3BP polypeptides colored
green. The E3 dimers are shown in blueand orange, with a single E3BD bound per dimer
of E3 (Brautigham 2006), as indicated by the data. In this model, it is possible for 20 E3
dimers to bind; only 7 are shown for clarity. A single E1p heterotetramer docked to the
E1pBD of E2p is represented, subunits shown in tan and cyan. The structure of the human
versions of E1p bound to E1pBD is unknown; shown here is the structure from B.
stearothermophilus (Frank 2004). The circled E3 has an LBD of E. coli E2p docked to the
active site. E2p and E3BD are therefore noncovalently cross-linked via their mutual
interaction with E3.
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c. Possible arrangement of E2p and E3BP components in a 40/20 core.Shown is a dodecahe‐
dral arrangement of 20 heterotrimers composed of 2 E2p proteins (purple) and one E3BP
(green)(Brautigham 2008). Of these enzyme complexes of the metabolon, the pyruvate
dehydrogenase complex is highly evolutionarily conserved mitochondrial α-ketoacid
dehydrogenase complex, along with the branched-chain α-ketoacid dehydrogenase
complex (BCKDC), and the α-ketoglutarate dehydrogenase complex (KGDC) [4, 5]. The
complex has 3 main components with multiple subunits and multiple names.(Fig 3)

The heterotetramer PDEI p PYRUVATE DEHYDROGENASE (EC1.2.4.1)  comprises of 2
alpha  and  2  beta  subunits  [6].  Its  alpha  1  subunit  is  designated  as  PDE1A-2,(pyruvate
dehydrogenase (lipoamide) alpha2). Its gene PDHA2 is located on chromosome 4 having
length of  1383 bp/460 aa [7,  8]  Whereas the alpha 2 subunit  is  designated asPDH E1-A
type1 (i.e.) synonym PHE1A. Its gene PDHA1 is located on chromosome X which has length
of  15922  bps  [9]  and a  mol.wt  of  160KDa.  The  Pyruvate  dehydrogenase  E1  component
subunit beta, or pyruvate dehydrogenase (lipoamide) beta mitochondrial, synonym, PDE1-
B, has gene located on chromosome 3 having length of 6198 bp [10-12]. The key function
of the complex E1alpha subunit containing the active site is to be the rate limiting enzyme,
unidirectionally funneling intermediate metabolites from glucose breakdown to either the
oxidative metabolic pathways or fatty acid and cholesterol synthesis [13]. PDE2p contains
dihydrolipoyl transacetylase enzyme activity (EC2.3.1.12) encoded by DLAT Dihydrolipoa‐
mide acetyl tranferase gene, present on human chromosome 11 band q23.1. It has mol wt
200 KDa [14].  Interestingly,  this  long arm region of  chromosome 11 often presents with
translocations  in  cellular  genetic  abnormalities  [15].  PDE3/GCSL/LAD/PHE3 (EC 1.8.1.4)
component contains the dihydrolipoyl dehydrogenase activity.  E3 activity is  encoded by
the DLD located on chromosome 7 and length 28799 [16]. It has a mol.wt of 110 KDa. This
protein has four different sites: the flavin adenine dinucleotide binding site, the nicotina‐
mide adenine dinucleotide binding site, the centre site and the interface site. The protein
forms a homodimer with the FAD and NAD binding regions on one unit and the inter‐
face domain of the other unit forming the active centre [17].

2.1. Structural association of the 3 units

The human pyruvate dehydrogenase multi enzyme complex (PDC) is a nuclear encoded
mitochondrial  matrix  9.5  megadalton  catalytic  organization  of  copies  of  three  catalytic
components i.e.  heterodimeric pyruvate dehydrogenase (E1p 30copies) (thiamine diphos‐
phate  (ThDPdependant),  homodimeric  dihydrolipoyl  transacetylase  (E2p12  copies)  and
dihydrolipoamide  dehydrogenase  dimer  (E3)  (FAD  containing)  residing  in  the  inner
mitochondrial  membrane  [4](Fig.  3).  The  (E1p)  and  E3subunits  surround  a  60-meric
dodecahedral  core  of  40  copies  of  E2p  and  20  copies  of  a  monomeric  non  catalytic
component, E3-binding protein (E3BP), which specifically tethers E3 dimers to the pyru‐
vate dehydrogenase complex [18]. Each E2p subunit contains two consecutive lipoic acid-
bearing domains (LBDs), termed as L1 and L2, one subunit binding domain (SBDp) which
binds E1p and the inner-core/catalytic domain containing the E2 p active site responsible
for the self assembly of the core which connects with the other independent domains by
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unstructured  linkers  [3](Fig.3).  Similarly,  each  E3BP  subunit  consists  of  a  single  LBD
(referred  to  as  L3),  the  E3-binding  domain  (E3BD)  and  the  noncatalytic  inner  core  do‐
main. It is presumed that the lipoyl bearing domains LBDs (L1, L2, and L3) and 60 subunits
of  the transacetylase  seem to form a free  circulation of  lipoyl  groups among which the
acetyl groups are freely exchanged [18] and shuttle between the active sites of the three
catalytic components of the PDC during the oxidative decarboxylation cycle [19]. Unspeci‐
fied copies  of  each PDC regulatory enzyme pyruvate  dehydrogenase kinases  and pyru‐
vate dehydrogenase phosphatases are also strung non-covalently to the core by the LBD2
[5, 20].

The active site synchronization over a distance of 20 Angstroms via proton wire through an
acidic tunnel in the protein, keeps the active sites in an alternating activation state [22].

Phosphorylation of the heterotetrameric (α2 β2) E1p component is essential for the inactivation
of the human PDC which occurs at 3 serine residues of the alpha subunit. Two of these sites
are located in the conserved phosphorylation loop A [6] which forms one wall of the active
site channel and helps to anchor ThDP to its active site.Site 3 is in the phosphorylation loop B
which provides coordination to magnesium is chelated by the ThDP potassium. Phosphory‐
lation of any of the 3 sites inactivates E1p and drastically reduces the affinity for pyruvate [24].
Disordered loops of E1p arise from phosphorylation and result in downregulation of the PDC
activity. Binding of the cofactor ThDP induces ordering of both the loops which then can
mediate decarboxylation and reductive acetylation of the pyruvate. Phosphorylation of PDC
is crucial in regulating carbohydrate and lipid metabolism [14, 25]. Starvation and diabetes
increase phosphorylation that inactivates PDC, leading to impaired glucose oxidation [26, 27].
On the other hand prevention of PDC phosphorylation by specific PDK inhibitor, dichlorace‐
tate increases reactive oxygen species levels in the mitochondria leading to cellular apoptosis
and the inhibition of tumour growth [28, 29]. Therefore the regulation of PDC flux by reversible
phosphorylation is a potential target for obesity and cancer [30, 31].Finally the expression of
PDK2and PDK4 is down regulated by insulin in the long term [32, 33]. In the animal model,
downregulation of skeletal muscle pyruvate dehydrogenase in the rat model before and after
the onset of diabetes mellitus has been observed [34]. Dephosphorylation/activation of the PDC
is ascribed to two Mg and Ca dependant genetically and biochemically distinct isoforms of
pyruvate dehydrogenase phosphatase PDP heterodimeric (PDP1&PDP2), which are impor‐
tant regulators of PDC activity. PDP1 has both a catalytic (PDPc) subunit bound to the inner
mitochondrial membrane and a regulatory (PDPr) subunit [35]. Both PDP1 components are
targeted by insulin which enhances PDPc activity and lessens PDPr negative control resulting
in enhanced overall PDP1 efficiency.These effects are at the core of insulin signaling of PDH
[36]. PDP2, recently discovered in rat tissues consists of a catalytic subunit insensitive to Ca,
10 fold less sensitive to Mg than PDP c is also considered a target in insulin signaling [37, 38].
In humans too, down regulation of PDP in obese subjects is a malfunction that signals insulin
resistance [39].
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2.2. Diseases produced by defective PDC

As the PDC has prime significance in intermediary metabolism, mutations in the genes
encoding for PDCsubunits produce severe clinical phenotypes [40]. Congenital defects in E1p
in the X linked gene lead to lactic acidemias, encephalopathies, neuronal dysfunction in infancy
[40]. Mutations in the E2, E3BP cause primary biliary cirrhosis leading to liver failure [41, 42],
autoimmune hepatitis [43] and neurodegenerative conditions such as Alzheimer's disease.
Combined enzyme deficiencies of α-ketoacid dehydrogenase complexes pyruvate dehydro‐
genase complex, BCKDC and ketoglutarate dehydrogenase complexes have been observed
due to genetic changes in human E3 [44] resulting in lactic acidemias and maple syrup urine
disease [45-47]. Other anamolies of the PDC include autoantibodies leading to paediatric
biliary cirrhosis [47].Additionally, the aberrant down-regulation of pyruvate dehydrogenase
complex activity by reversible phosphorylation has been shown to be contributory to hyper‐
glycemic states observed in type-2 diabetes [25], increasing the chances of pyruvate dehydro‐
genase complex as a therapeutic target for a 150 million people affliction i.e. diabetes). Failure
of functioning of the pyruvate dehydrogenase complex and specially of its E1p subunit due
to lack of thiamine vitamin B1 would therefore inevitably lead to poor handling of glucose and
its substrates and could manifest as deleterious effects in type 2 diabetics. The human 2
ketoglutarate dehydrogenase complex while extensively studied has not yet been reconstruct‐
ed in vitro and reliance on other mammal models persists [5, 48](Fig 4).

Figure 4. Representative Model for Human 2 Ketoglutarate Dehydrogenase Complex: All figures of molecular struc‐
tures were created with the program PyMol (DeLano Scientific, San Carlos, CA). Jun Li. The Journal of Biological
Chemistry, 2007;282, 11904-913.
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2.3. Structure of alphaketoglutarate dehydrogenase complex

This 4 to 10 mega Dalton supramolecular complex is organized around a polyhedral form of
a cubic core of 24/60 lipoate bearing dihydrolipoyl succinyltransferase E2 subunits (8 trimers)
arranged with octahedral (432) symmetry [5] associated with non covalently attached multiple
copies of dihydrolipoamide E1k and dihydrolipoamide E3K individually held via its E1/E3
binding domains which serve as scaffolds for the E2 core. There is also biochemical evidence
of E3 binding to the aminoacid terminal region of E1 terminal allowing for separation of a
stable E1-E3 submolecular complex from the E2 core [49].Also attached are regulatory kinase
and phosphatase units [50]. Further lipoyl bearing domains LBDs of the E2 core are attached
serving as swing arms impart substrate chanelling by sequentially visiting the different active
sites in each of the three E1, E2 and E3 catalytic components [51] to transfer acyl groups to the
active site of E2 leading to oxidative decarboxylation of the alpha ketoacids [51].The complex
has 3 main enzymatic components with multiple subunits & copies and varied names:
oxoglutarate dehydrogenase (lipoamide); EC: 1.2.4.2 (E1k), dihydrolipoamide S-succinyltrans‐
ferase; EC:2.3.1.61 (E2k) and dihydrolipoamide dehydrogenase; EC:1.8.1.4 (E3k) [52].

1. Alpha ketoglutarate dehydrogenase/2 oxoglutarate dehydrogenase E1k heterotetram‐
er (2 alpha and 2 betachains) (53) component has 6 copies (lipoamide) polypeptide enzyme
having mol wt 115.94 kDa (from nucleotide sequence) and sequence length 34160
aminoacids.It is encoded by the OGDHgene localized on chromosome 10, 54290aa & 7 at
p13-p14 [54] containing 22 exons spanning 102483 bpairs [55, 56]. It contains a thiamine
diphosphate cofactor and catalyzes thiamine diphosphate dependant decarboxylation of
2 oxoglutarate and subsequent reductive acylation of the oxidized lipoyl moiety LBD (lip-
LBD-S2) which is covalently bound to the E2 component dihydrolipoamide succinyl
transferase [5]. Thiamine diphosphate is tightly but not covalently bound to the 2-
oxoglutarate dehydrogenase component [57] ThDP remains an essential cofactor and
alphaketoglutarate dehydrogenase complex in the form of homo dimers alpha2, homo
tetramers alpha 4 or heterotetramers alpha 2 beta 2 contain ThDP binding pockets that
constitute two or four active sites for this enzyme which operate independently without
an obligatory alternating mechanism in the E1b component [58] and overall activity is
abolished at 50% phosphorylation (1 of 2 sites) within each active channel similar to PDC
[59].

2. Dihydrolipoamide S-succinyltransferase E2k core has 24 /60 copies containing lipoyl
active site as well as active sites for E1 and E3 subunits based on similar mammalian PDC
structural studies and molecular wt of 64.5 KDa [5]. It is encoded in gene DLST located
on chromosome 14 q24.2-q24.3 with a length of 21815 base pairs [60]. This inner core plays
an essential role in mediating the E1 catalyzed decarboxylation of 2 oxoglutarate and
reductive acylation of the lipoyl moiety and E3 catalyzed reoxidation of the dihydrolipoyl
moiety.

3. Located in the mitochondrial lumen, Dihydrolipoamide dehydrogenase E3k or E3com‐
ponent a flavoprotein (dimer) has 12 copies, a sequence length of 28796 aminoacids and
is 54.15kDa in weight. It is encoded in the DLD gene localized to 7q31-q32 [61], its function
is to catalyze the transfer of electrons from dihydrolipoamide to NAD+and bears close
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structural and functional approximation to the PDE3 component of pyruvate dehydro‐
genase and its full complex contains 6 dimers [5].

The alphaketoglutarate dehydrogenase complex EC 1.2.4.2 also termed as oxoglutarate
dehydrogenase complex, acts on alphaketo-glutarate/2 oxoglutarate a key intermediate in the
krebs cycle converting to succinyl co A, produces NADH and CO2 in an irreversible reaction
[62] KGDHC catalyzes a vital step in the Krebs cycle, which is also a step in the metabolism of
the potentially excitotoxic neurotransmitter glutamate. It allows amino acids to enter the citric
acid cycle and produce energy; this is a reversible reaction in which glucose which enters the
cycle can leave it to make amino acids thus linking amino acid pathways to the citric acid cycle.
It also participates in lysine degredation and tryptophan metabolism. Alpha-KGDH is vital
for maintaining NADH supply to the respiratory chain and is limited only when alpha-KGDH
is also inhibited by ROS. In addition being a key target, it is also able to generate ROS during
its catalytic function which is regulated by the NADH/NAD+ratio [63]. Its cofactors are TPP
bound to E1, lipoic acid covalently bound to lysine on E2 which accepts the hydroxyethyl
carbanion from TPP as an acetyl group, coenzyme A which is substrate for E2 and accepts the
acetyl group from it, FAD bound to the E3 subunit reduced by lipoamide and NAD which is
substrate for E3 and reduced by FADH2 [64]. Basic short term regulation of KGDHC is through
adenosine diphosphate ADP, P (i) and Ca2+; these positive effectors increase manifold the
affinity of ketoglutarate dehydrogenase complex to alpha-ketoglutarate. While KGDHC
inhibitors are NADH, adenosine triphosphate, succinyl-CoA, and thioredoxin protects
KGDHC from self-inactivation during catalysis [65]. Alpha-KGDH is also sensitive to oxidative
stress and a number of metabolites modify the activity of KGDHC, including inactivation by
4-hydroxynonenal. In the human brain, comparison of KGDHC activity to other enzymes of
energy metabolism like aconitase, phospho-fructokinase and the electron transport complexes
shows it to be lower than all of them. Therefore impairment of KGDHC function is likely to
disturb brain energy metabolism and result in brain disease [66]. In Wernickes encephalopathy
there is AKGDH and thiamine deficiency associated with increased oxidative stress markers,
lipid peroxidation resulting in neuronal cell death in pons, thalamus and cerebellum [67, 69].
In general, the clinical manifestations of KGDHC deficiency relate to the severity of the
deficiency. A range of disorders have been recognized: varying from psychomotor retardation
in childhood, to intermittent neuropsychiatric disease with ataxia and other motor disabilities,
such as Friedreich's and other spinocerebellar ataxias [70], as well as neural diseases where
mental deficits are also visible such as Parkinson's disease, and Alzheimer's disease (AD) [70]In
Parkinsons Disease which has been deeply investigated, KGDHC Activity is reduced, coupled
to elevated levels of monoamine oxidase B [71] and cytosolic accumulation of cytochrome c
which inturn activates other pathways, including cell death cascades and enzyme inhibition
which alters Ca2+homeostasis [72] The KGDHC enzyme is further a target for ubiquitination-
dependent degradation in mitochondria by binding of Siah2, the RING finger ubiquitin-
protein isopeptide ligase 2, encoded by gene siah2 [73]. Diabetes mellitus, thiamine dependent
megaloblastic anaemia and sesorineural deafness associated with deficient alpha ketoglutarate
dehydrogenase activity have also been reported [74]. There exist 2 wings,oxidative and
reductive of the pentose phosphate pathway(Fig 5). The oxidation steps, utilizing glucose-6-
phosphate (G6P) as the substrate, occur at the beginning of the pathway and generate 2 moles
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of NADPH. The reactions catalyzed by glucose-6-phosphate dehydrogenase (G6PD) and 6-
phosphogluconate dehydrogenase are essential for the conversion of hexoses to pentoses [75].

 
A) Digrammatic Representation of the Oxidative Stage of Hexose Monophosphate Shunt 

 

B) Reductive or Non Oxidative Stage of the Hexose Monophosphate Shunt 

 

Figure 5. (A): Digrammatic Representation of the Oxidative Stage of Hexose Monophosphate Shunt and (B) Reductive
Stage of the Hexose Monophosphate Shunt

The non-oxidative reactions of the pentose phosphate pathway are mainly functioning to
produce ribose 5 phosphate, and equally significantly to convert dietary 5 carbon sugars into
both 6 (fructose-6-phosphate) and 3 (glyceraldehyde-3-phosphate) carbon sugars which can
then be utilized by the pathways of glycolysis [76].

2.4. Functions of the pentose phosphate pathway in normal and diseased conditions

The Pentose phosphate pathway (PPP) is primarily energy forming, and non mitochondrial
with only a cytoplasmic enzymatic presence entrusted to utilizing 6 carbon sugars, and
producing in turn 5 carbon sugars for the synthesis of neucleotides, nucleic acids and reducing
equivalents in the form of NADPH. The pentose phosphate pathway is a metabolic redox
estimator and regulates transcription during the anti-oxidant response, as a shift from primary
carbon metabolism, is fastest in oxidative stress [77]. NADPH cofactor serves as reducing
equivalent in the endoplasmic reticulum lumen for fatty acid and steroid biosynthesis in
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hepatic and, adipose tissue, adrenal cortex [78]. High levels of PPP enzymes are in neutrophils
and macrophages as they utilize NADPH to produce ROS to destroy engulfed microbes in a
process termed as respiratory burst [79]. G6PD deficiency effects red blood cell viability
dependent on PPP generated NADPH, a glutathione reducer, the absence of which results in
hemolysis seen with certain drugs and diseases like malaria which cause oxidative stresss [80].
Cancer cells are known to access successfully the glucose flux in the pentose phosphate
pathway supporting NADPH and reactive oxygen species production and glutathione
reduction [81] responding to both incremental and decremental reactive oxygen species [82].
Electron leakage from the mitochondrial electron transport remains essential (through the
action of ribonucleotide reductase) in generating deoxyribonucleiotides from nucleotides as
well producing ROS in collusion with oncogenes [83] and molecular oxygen [84] promoting
genetic damage in normal cells and therapy resistance in cancerous cells [85].Malignant cells
also use reduced glutathione [81] or NADPH to combat oxidative stress and to support the
oxidation of fatty acids in detached cells [86]. Transketolase is the premier cytosolic enzyme
of the reductive pentose phosphate pathway. Its 3 genes TKT, Transketolase like TKTLI and
Transketolase like TKTL2 encode for proteins with transketolase activity.All of them partici‐
pate in the reductive pentose pathway reactions catalyzing transfer of a 2 carbon fragment
from a ketose donor to an aldose (acceptor substrate) [87].

Adapted from Kochetov2005, Lindquist 1992

Figure 6. Schematic View of Transketolase Dimer Showing its Different Components. The 3 components are colour dif‐
ferentiated: N terminal domain, light blue, middle domain, light brown & C terminal domain yellow.The bound cofac‐
tor ThDP is shown as a CPK model and Ca++ion in green
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Transketolase: synonymous with TKT1 &TK is composed of and encoded by the TKTgene
located on chromosome 3 (30390 bp) [89-91]. Transketolase like protein 1: named as TKT2,
TKR, TK 2, Transketolase 2, Transketolase-related protein has molwt of 60-70 KDaltons
depending on splice variation encoded by the TKTL1 gene located on chromosomeX Length:
25052 bp [92, 93]. Transketolase like protein 2 termed TK is composed of 913 aminoacids
encoded by gene TKTL2 located on chromosome 4 having length of 2742 bp [94].

TKT Structure: Transketolase (TK) is a homodimer [95] (Fig 6) and the least structurally
complicated member of thiamine diphosphate (ThDP)-dependent enzymes group containing
PDHC & OGDHC [96]. Each monomer consists of three distinct regions the N terminal or PP
binding region, the middle or pyrimidine binding region and C terminal region [87]. The first
2 regions are associated with coenzyme binding while the role of the third remains unknown
[85, 97].

Thiamine Binding Site: TKT has two active centres with one THDP molecule attached to a
binding motif [98, 99] and a bivalent cation (Ca affinity more than Mg [100]) tightly bound at
each centre by noncovalent interactions [101]. Thiamine binding site is located within a deep
furrow which allows only the C2 atom of the thiazolium ring to be exposed to the donor
substrate [101]. A highly conserved starter sequence glycine-aspartate-glycine GDG and
concluding sequence asparagine-asparagine (NN) represent this site between residues 154 and
185 [101]. Further the interactions of the non-covalently bound coenzyme ThDP-magnesium
with the protein component are at five critical sites containing arginines (Arg 101, Arg 318,
Arg 395, Arg 401 and Arg 474and Asp155) [101] contribute to dimer formation, stability or
catalytic activity [102, 96]. The dimerization process involves initial binding of magnesium to
the aspartate in the starter sequence which inturn interacts with the pyrophosphate molecule
of the thiamine diphosphate through hydrogen bonding [101], followed by one transketolase
monomer engaging the pyrophosphate moiety and the other with the thiazolium and pyri‐
midine rings of ThDP [88, 97]. The importance of this interaction is reflected in the noticeable
refractoriness in Wernickes encephalopathy to thiamine treatment alone in hypomagnesemic
alcoholics [103]. This enzyme has a 2 stage catalytic cycle central to which is the TPP molecule,
initiated by the deprotonation in its thiazolium ring due to interaction with Glu 418 of
apotransketolase.

2.5. Role of transketolase in disease and therapy

Transketolase enzyme genetic variants and depreciated enzyme activities have been noted in
neurodegenerative diseases like Wernickes Korsakoff syndrome and Alzheimers disease [104].
Upregulation of the TKT L1 gene has been found in a number of malignant disorders resulting
in enhanced total transketolase activity and cellular proliferation in human colon cancer [105],
thyroid [106], cervical [107], ovarian cancer [108], nephroblastoma and adenocarcinoma. Its
increased expression is found to be a potential diagnostic biomarker for breast cancer [109]
and prognostic biomarker for nasopharyngeal [110] and laryngeal squamous cell carcinoma
[111]. The reason may lie in the role of tranketolase in the reductive pentose pathway which
remains a source a carbons such as in ribose required for neucleotide synthesis, NADPH and
reduced glutathione in addition to aromatic acids and fatty acids required for cellular growth
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in general and explosive growth in particular. Transketolase has begun to emerge as a target
in the cellular immune response in multiple sclerosis [112]. Human transketolase can be used
in structure-based drug design as target for inhibition in the treatment of cancer [113] and in
the search for new transketolase inhibitors as non permanently charged thiamine ana‐
logs,which are substrates for the thiamine activator thiamine pyrophosphokinase. These
pyrophosphate analogs antagonize the ability of transketolase in vitro [113]. In diabetes
mellitus type 2 experimental model, the role of transketolase in the reductive pentose pathway
and its activation by administration of lipid soluble thiamine derivative benfotiamine is well
documented and undeniable [114] and further clinical research is ongoing.

2.6. Pharmacotherapeutics of type 2 diabetes

Treatment is done using 4 categories of oral antidiabetic drugs.

1. Insulin secretagogues: Sulfonylureas, meglitinides, D-phenylalanine derivatives

2. Those reducing insulin resistance:

i. Biguanides

ii. Thiazolidinediones (glitazones)

3. Those decreasing carbohydrate absorption from the gut: Alpha Glucosidase inhibitors.

2.7. Insulin secretagogues

i. Sulfonylureas:

These act by stimulating insulin release from pancreatic B cells. Sulfonylureas may also act
by  decreasing  hepatic  insulin  clearance  [115].  They  increase  insulin  concentration  often
failing to improve first phase insulin release in response to a glycemic challenge. There is
secondary failure and tachyphylaxis to sulfonylurea therapy following prolonged use. Their
adverse  effects  are  hypoglycaemia,  GIT disturbances,  cholestatic  jaundice,  agranulocyto‐
sis,  aplastic  and  hemolytic  anemia,  generalized  hypersensitivity  and  dermatological
reactions  [116].  There  is  also  a  debate  on  associated  cardiovascular  mortality  –  due  to
blockage  of  KATP channels  of  the  hearts  and vascular  tissues  [117].  Second generation
sulfonylurea glimepiride is useful as single therapy in previously drug naïve patients and
also in combination with non-secretagogue medication [118]. Glimepiride may be linked to
lower incidence of hypoglycaemia [119] and may improve insulin sensitivity [120]. It also
has an insulin sparing action [121].

ii. Meglitinides:

Like the sulfonylureas, meglitinides also stimulate insulin secretion.

iii. D-phenylalanine derivatives:

Netaglinide is the latest insulin secretagogue to become available. It selectively enhances early
insulin release providing excellent meal time glucose control while reducing total insulin
exposure [122]
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iv. Biguanides:

These agents don’t cause hypoglycemia and are thus called euglycemic agents. Current
proposed mechanisms of biguanides include glycolysis simulation in tissues, reducing glucose
absorption from GIT with increased glucose to lactate conversion, reduced hepatic and renal
gluconeogenesis, in the GI tract and reduction of plasma glucagon levels [123]. Most frequent
toxicity are gastrointestinal (anorexia,nausea,vomiting,abdominal discomfort and diarrhea).
It is contra indicated in patients with hepatic disease or in conditions predisposing to tissue
anoxia because of risk of lactic acidosis [124].

v. Thiazolidinediones (glitazones):

They are also considered to be euglycemic and are effective in 70% users. Three drugs have
been used clinically from this group (Troglitazone, Rosiglitazone and Pioglitazone). Troglita‐
zone a severely hepatotoxic and its removal from public use is well known. These are selective
agonists for nuclear peroxisome proliferator – activated receptor – gamma (PPAR GAMMA)
whose activation enhances insulin responsive genes that regulate carbohydrate and protein
metabolism [125]

vi. Alpha Glucosidase Inhibitors:

Competitive inhibitors of intestinal alpha glucosidases namely acarbose and miglitol decrease
the post meal digestion and assimilation of simple and complex carbohydrates such as starch
and disaccharides [126]. These are effective also in prediabetic individuals and successfully
restored β cells function. Therefore, diabetes prevention may be a further indication for their
usage [127].

3. New drugs for type 2 diabetes

3.1. Currently available

The Incretin hormones released by the gut, gastric inhibitory peptide (GIP) and Glucagon like
peptide1 (GLP-1) (liraglutide) stimulate insulin secretion upon nutrient entry into the gut,
suppression of glucagon release,slow gastric emptying and decrease food intake [128, 129].
Therefore, they have an antidiabetogenic potential. Incretin mimetics e.g. Exenatide LAR from
exendin 4 is currently in use and most resistant to DPP4 degredation. GIP has also been shown
enhancing β cell proliferation and inhibiting apoptosis in islet cell lines [130, 131]. Additionally
functional GIP receptors have been identified on adipocytes and shown to stimulate glucose
transport, accelerating fatty acid synthesis and stimulating lipoprotein lipase activity in animal
models [131, 133, 134]. Several novel GIP analogues have been developed which act as stronger
GIP agonists, showing resistance to degradation by Dipeptidyl Peptidase-4 (DIPP-4) [135] and
demonstrating increased insulinotropic and blood glucose lowering activity [135]. Dipeptidyl
peptidase Inhibitors (vildagliptin & sitagliptin) suppress breakdown of Glucagon like peptide1
(GLP-1) show great potential and are undergoing clinical testing. Antihyperglycemic synthetic
analogs of amylin a hormone which are produced by the pancreas to lower blood sugar levels
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are available in injectable form and require close monitoring. Dapagliflozin a renal glucose
reabsorption inhibitor reduces glycemic reabsorption independent of insulin, promises to be
a new drug for type 2 diabetes treatment [136]. Testosterone replacement therapy in diabetic
hypogonadal men decreases insulin resistance [137] probably by protective effect on pancreatic
beta cells through its action on inflammatory cytokines [138].

3.2. Experimental new drugs

A vanadium and allixin based drug [139] and macrophage migration inhibitory factor MIF
blocking inhibitory synthetic oral drug reducing blood sugar levels was tried in the mouse
model and found to be effective in both the type 1&2 diabetc model [140]. Lisofylline, a fat
metabolism inhibitor which prevents buildup of ceramide a by product of fat metabolism in
mouse skeletal muscle decreased the insulin resistance and thus appears to be a novel new
approach for type 2 diabetes [141]. It also has the ability to protect insulin producing cells by
inhibiting cytokines produced by immune cells leading to apoptosis and cellular dysfunction
and is thus effective in type1 diabetes [142]. LXR agonists have shown potential and require
further testing in human and model systems [143]. Growth factors and protein kinase C
inhibitors may act as innovative therapies for diabetic retinopathy [144].

3.3. Surgical interventions

Recently a type of gastric bypass surgery has been successful in normalizing blood sugar in a
small number of normal to moderately obese type 2 diabetics [145, 146]. This surgery may
possibly reduce death rate by 40% from all causes in morbidly obese people [147].

3.4. Micronutrient approaches to treatment of diabetic complications

People with diabetes have reduced antioxidant capacity which lays the basis for usage of
antioxidant vitamins such as β carotene or vitamin C or E. A reduced level of ascorbic acid
(Vitamin C) leaves the body more at mercy of the detrimental effects of aldose reductase, an
enzyme responsible for many diabetic complications, such as cataracts and peripheral
neuropathy [148]. Quercetin is another powerful aldose reductase inhibitor. It has been shown
to inhibit aldose reductase by upto 50% [149]. Vitamin E is a free radical scavenger. It may play
a preventive role in diabetic retinopathy by decreasing DAG levels, normalizing protein kinase
C activation, normalizing blood flow in retinal and renal microvasculature and restoring NO
mediated endothelium dependent relaxation [150, 151]. Renal and retinal vascular flows and
responses were normalized in individuals who had diabetes of less than 10 years duration
with high dose oral vitamin E therapy given for short periods while unchanged glycaemic
control was observed [152].

Magnesium and chromium deficiency have been associated with poor diabetic control, insulin
resistance, macro vascular disease and hypertension [153] and decreased glucose tolerance
respectively [154]. Reduction of neuronal damage in diabetics by inhibiting glutamate
dehydrogenase via vitamin B6 therapy has also been observed [155].N-Reduced glutathione
precursor NAcetyl Cysteine is a gene expression and cellular metabolism modulating antiox‐
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idant and its role in prevention of β cell oxidatory damage by acting as NFKB (a genetic
regulator) inhibitor and subsequent deintensification of inflammatory responses is well
documented [156]. Trace element vanadyl sulfate that behaves like insulin normalized
hyperglycemic levels in diabetic animals and decreased the insulin need by upto 75% [157]. In
human with Type 2 diabetes, low doses of vanadyl sulfate enhanced insulin responsive glucose
uptake, glycogen production and decreased endogenous glucose formation. This resulted in
reduced lipid oxidation and plasma free fatty acids levels [158]. Alpha lipoic Acid has powerful
antioxidant activity, insulinomimetic action and provides protection from insulin resistance
linked diabetic stress while improving glucose utilization [159]. Hyperglycemia reduction in
diabetic rats was observed along with improvement in GSH levels with selenium therapy
[160].Calcium AEP has benefited both type 1 and type 2 diabetics as it is alpha cell membrane
integrity factor required for cellular membrane function. The hormone dehydroepiandroster‐
one (DHEA) undergoes a decrease in levels with aging that many researchers have linked to
impair glucose metabolism. It was found to be as effective in reducing body fats and main‐
taining insulin responsiveness as exercise [161]. Thiamine is also now showing potential as
therapy for type 2 diabetes.

Figure 7. Structure of thiamine diphosphate molecule.

Thiamine (termed aneurin or antineuritic vitamin initially) was the premier discovery of the
B vitamins and thus ranked vitamin B1(Fig 7). It has relative temperature, acid stability and
water solubility containing a pyrimidine ring and a thiazole nucleus linked with a methylene
bridge. Thiamine is an essential micronutrient with a dietary reference intake (DRI) for normal
healthy subjects of 1.1 mg/day for females and 1.3 mg/day for males [162]. Found in range of
foodstuffs such as cereal grains. Its rich sources are brown rice, bran, oat meal, flax, poultry,
egg yolks, beef, pork, liver, nuts, fruits and vegetables such as oranges, asparagus, kale,
cauliflower, potatoes [163].UK law demands compulsary fortification of flour with thiamin of
not less than 0.24mg/100g flour to replace losses during milling. In Pakistan no compulsory
fortification is done and the general public consumes milled white flour which is easily
available and probably thiamine deficient. Thiamine is naturally found in 4 forms in varying
degrees of phosphorylation in TMP thiamine monophosphate, TPP thiamine pyrophosphate
or diphosphate and TTP=thiamine triphosphate. It is commercially available as salt in its
mononitrate HCl (also natural byproduct) and relatively inaccessible semi lipid soluble form
S-acyl derivative benfotiamine and truly lipid soluble thiamine disulphide derivatives

Thiamine and the Cellular Energy Cycles — A Novel Perspective on Type 2 Diabetes Treatment
http://dx.doi.org/10.5772/59224

37



sulbutiamine and fursultiamine. Out of these, Thiamine HCl is the water soluble, easily
accessible and commonly used vitamin supplement available with the trade name Benerva.

3.5. Pharmacokinetics

3.5.1. Thiamine absorption in normal conditions

Thiamine is released from its administered form by phosphatase and pyrophosphatase in the
proximal part of the small intestine, following which absorption occurs mainly from this site
with some from the stomach and the colon; thiamine absorbed in the colon may originate from
intestinal microflora. Its absorption is hindered by alcohol consumption and folic acid
deficiency [164].High affinity organic anion transporters THTR1 [165], THR2 for thiamine and
reduced folate transporter RFC-1 transports both folic acid thiamine monophosphate (TMP)
intracellularly [166, 168] at normal physiological concentrations. At high expression levels
RFC1 also transports TPP out of the cells [167]. At higher concentrations thiamine crosses cell
membranes in its open unionized form of the thiazolium ring even by passive diffusion.THTR2
is placed on the luminal surface of the gastrointestinal epithelial cells and THTR1 is on the
basolateral surface mainly but not exclusively [169]. THTRI is expressed widely in human
tisseues with particular high expression in skeletal muscles, placenta, heart liver and kidney
[168, 170].Mutations in the SLC19A2 (D93H, S143F and G172D) cause malfunctioning of the
thiamine transporter THTR1, thiamine deficiency and thiamine responsive megaloblastic
anaemia (TRMA) [171, 172]. THTR2 is widely expressed most abundantly in placenta, kidney
and liver [173]. Also highly expressed RFC-1, is in human tissues including mitochondrial
membranes [168, 174]. It has affinities for TMP and TPP of 26µM and 32µM respectively [167,
168]. Cellular efflux is the probable reason for the presence of thiamine in plasma and cere‐
brospinal fluid [175-177].Thiamine in the glomerular filtrate is reabsorbed by the renal brush
border membrane high affinity transporters where influx is increased by an outward directed
H+gradient [178] RFC-1 is expressed on the apical and basolateral surface of the proximal
tubular epithelial cells [179]; it may mediate the reuptake of TMP and provide a solution to
the normal absence of TMP in the urine. Proton antiport membrane transport may operate in
both intestinal and renal proximal tubular thiamine uptake [180]

3.5.2. Assessment of thiamine status

Erythrocytes contain approximately 90% of total thiamine in the blood and therefore conven‐
tionally their transketolase levels have generally been considered to be the measure of thiamine
status in the body [181].Thiamine deficiency is assessed conventionally by measuring the
percentage below complete saturation of the thiamine dependant enzyme transketolase (TK)
in RBCs-“thiamine effect”. The normal value of the thiamine effect in human subjects is in the
range 0-15%, mild deficiency is 15-25% and severe thiamine deficiency >25% [182]. Latest
research has however questioned its reliability as thiamine transporters THTR1 and RFC1 in
erythrocytes are upregulated in thiamine deficieny and RBC TK levels are not decreased in
tandem [183]. Furthermore it doesn’t account for changes in TK expression in RBC and other
precursor cells. The expression of TK is decreased in thiamine deficiency [184]. Currently
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assessment of mononuclear TK activity and plasma thiamine concentration determination
using HPLC flourimetric determination with respect to normal healthy controls gives greater
insight into thiamine status [185-187]. More recently in capillary enzyme reaction and capillary
electrophoresis methods are emerging as potential alternative monitoring and determining
techniques for thiamine in samples [188].

3.5.3. Thiamine metabolism within the cells

When TMP enters cells by RFC-1 it is hydrolyzed to thiamine by phosphatases [168]. Thiamine
deficiency decreased the activity of TPPK [189] and was implicated in decreased hepatic levels
of TPP with normal levels of thiamine in STZ diabetic rats [190].Within mitochondria TPP is
slowly hydrolyzed to TMP by phosphatases which may leave the mitochondria via the same
transporter. High concentrations of thiamine monophosphate inhibit thiamine pyrophspho‐
kinase activity noncompetitively [191] and inhibit the entry of TPP into the mitochondria
competitively [189]. A small amount of TPP is further phosphorylated to thiamine triphosphate
(TTP) by thiamine pyrophosphate kinase and hydrolyzed to TPP by TPPphosphatase [192]
[168]. Plasma half life is relatively short (2days) [193] but its tissue half life is approximately
9-18 days [194]. Thiamine is stored largely in skeletal muscle and the highly perfused organs
such as heart, brain, liver and kidneys [163]. Subcellularly only 10% of total TPP is available
for binding to transketolase most of it is associated with the mitochondria [185].Thiamine and
its acid metabolites are are excreted primarily in the urine [195].

4. Pharmacodynamics of thiamine

Thiamine diphosphate binds to a evolutionarily highly conserved domain located in a deep
cleft in the active sites of the thiamine dependant enzymes resulting in the activity of these
enzymes [196]. The physiological function of thiamine is mainly fulfilled by TPP (TDP).
Structurally the basis of thiamine action and activation of all ThDP-dependent enzymes lies
in thiamine catalysis and deprotonation of the thiazolium ring and contribution of the
aminopyrimidine side chain in this effect [197-198] while the pyrimidine ring with its dual
proton donor and acceptor capability functioning as a proton transfer system. On the basis of
these chemical alterations TPP functions as coenzyme for mitochondrial enzymes pyruvate
dehydrogenase (PDH [199] and α ketoglutarate dehydrogenase [200] of the citric acid cycle.

4.1. Symtoms of severe thiamine deficiency

Thiamine derivatives and thiamine dependant enzymes are universally present in all cells of
the body thus a thiamine deficiency would seem to affect all organ systems especially the heart
and the nervous system due to their high oxidative metabolism as witnessed in its severest
form as beriberi (dry, wet or infantile) [195]. Symptoms occur rarely include tachycardia,
warmth, flushing, irritability, sweating, nausea, restlessness and allergic reactions. Pharma‐
cokinetic interactions at the level of drug metabolism include microsomal enzyme induction
by prolonged anticonvulsant pheytoin resulting in decreased plasma levels of thiamin in
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patients with seizure disorders such as epilepsy. The water soluble thiamine HCl form is safe
in humans in oral doses less than or equal to several hundred milligrams via oral route. A UK
EVM found that a small clinical trial in Alzheimers patients revealed no adverse effects of
thiamineHCl at daily oral intakes of 6000 to 8000mg for five to six months. A randomized
double blind placebo controlled trial was conducted in India for therapy of primary dysme‐
norrhea, a daily oral dose of 100mg thiamine was given to 556 females for 60-90 days and no
adverse effects were noted.In extremely rare cases of allergic sensitivity were noted solely in
patients using thiamine by the parenteral route and were probably due to the injection vehicle
and it not been reported to be carcinogenic or mutagenic. No known genetic microsomal
variations increase susceptibility to thiamine toxicity [214].

5. Thiamine and diabetes

Experimental evidence suggests that thiamine transport maybe abnormal in diabetes.In
experimental diabetes, these was diminished intestinal absorption of thiamine and TMP. Mild
deficiency of thiamine in diabetes may induce increased expression of THR1 as found in frank
thiamine deficiency. In streptozocin induced diabetic rats with supportive insulin therapy to
regulate hyperglycemia, 54% decreased plasma thiamine concentration was reported in
contrast to normal controls [190]. This was induced in the diabetic state despite high dietary
intake (9 fold) in excess of DRI for rats. The primary cause was marked increased renal
clearance of thiamine which was increased by 8 fold. In streptozotocin-induced diabetic rats,
there was decreased transketolase expression and activity in renal glomeruli, liver, skeletal
muscle and RBCs after 12 weeks of diabetes was found associated with progressive increase
in the renal clearance of thiamine and increased albuminuria with duration of diabetes,
suggesting that abnormal renal handling of thiamine may occur early in the process of
impairment of renal function in diabetes [190]. In experimental diabetes, similar low plasma
thiamine concentration was associated with low TK activity and expression in renal glomer‐
uli.Reduced activity of PDH was also noticed due to thiamine depletion. Similar impairment
of thiamine-related metabolism may occur in the diabetic retina and peripheral nerves pre-
disposing these tissues to the adverse effects of hyperglycaemia.

5.1. Effect of thiamine therapy in diabetes: On glycemic control in experimental and animal
model

Thiamine therapy was found to decrease hyperglycemia in cirrhosis, insulin resistance of
muscle and inadequate insulin secretion by β cells. In thiamine responsive megaloblastic
anaemia too hyperglycemia is linked to impaired insulin secretion due to mutated high affinity
thiamine transporter. Therapeutic intervention by thiamine in both cases is likely to involve
improved β cell metabolism and insulin secretion. This effect was not noticed in permanent
insulin deficiency of the STZ diabetic rat model where most of the pancreatic β cells are
damaged or destroyed and resultantly no improvement in glycemic control is observed. It is
not yet known if thiamine or benfotiamine improve glycemic control in type 2 diabetic animal
model.
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5.2. Mild thiamine deficiency in diabetics and improved post therapy thiamine status in
clinical studies

Mild thiamine deficiency has been observed in diabetics in different international stud‐
ies.There is paucity of data on thiamine and thiamine dependant enzyme status in clinical
diabetes mellitus. In Japan a study of 46 diabetic patients (7 type 1, 39 type 2) with moderate
glycemic control (glycated hemoglobinA1c 9%) found lower diabetic RBC TK activity in 79%
of patients and a concomitant decrease in thiamine level in 76% of diabetics. Oral thiamine
supplementation 3-80mg/day increased thiamine levels (20 patients) and TK activity (15
patients). In a larger Israel study of 100 type 2 diabetic patients (glycated HbAic 9.2%), TK
activity was lower than the minimum normal range in 18% of diabetics. A smaller Italian study
of 10 type 1 diabetic children with normal renal function found plasma thiamine concentration
to be decreased by 34% with respect to normal healthy controls and was normalized in a
placebo controlled intervention with lipophilic thiamine derivative benzoxymethyl thiamine
(50mg/day).

5.3. Intervention of high dose thiamine therapy in biochemical dysfunction in diabetes and
the prevention of microvascular dysfunction, neuropathy, dyslipidemia complications

Microvascular disease (nephropathy, retinopathy and neuropathy) a common debilitating
manifestation of chronic diabetes mellitus, has no effective therapy. Hyperglycaemia in
diabetic subjects is an essential element for development of both microvascular and macro‐
vascular complications risk factor DCCT 2003. High doses of thiamine and its derivative S-
benzoylthiamine monophosphate (Benfotiamine) are proposed as a new therapy to counteract
biochemical dysfunction leading to the development of microvascular complications [114].
High dose thiamine and Benfotiamine may counter the development of microvascular
complications by activation of the reductive pentosephosphate pathway. Interestingly by
activation of the hexosamine pathway the glucose-mediated induction of lipogenic enzymes,
glycerophosphate dehydrogenase (GPDH), fatty acid synthase (FAS) and acetyl-CoA carbox‐
ylase, was stimulated in liver and adipocytes(Fig 8). In turn, this diverts metabolic flux away
from the hexosamine pathway, decreased lipogenesis and correct diabetic dyslipidaemia as
shown below (Fig 8).

Drugs such as cerivastatin decreased total and LDL cholesterol, triglycerides, microalbumi‐
nuria and increased HDL cholesterol in type 2 diabetic patients. However, normal levels of
these metabolite were not achieved. Interestingly pharmacologically combined therapy of vit
B1, B6 and B12 did not augur well in diabetics having diabetic nephropathy and substantial
adverse outcomes associated with high dose vitamin B6, B9 and B12 co-supplementation in
patients with advanced diabetic nephropathy was brought to light Recently concluded
Diabetic Intervention with Vitamins to Improve Nephropathy (DIVINE) study produced an
unexpected accelerated decline in renal function. The reasons could have been multipronged
ranging from toxic accumulation of folate and B12 in patients of diabetic nephropathy with
low GFR or competitive inhibition of TMP and TPP transport at the level of RFC1 transporter
by high dose folate at key sites such as the kidney and vascular cells thus adversely affecting
sharing of thiamine between tissues rich in thiamine and those deficient in it [183].
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6. Summary

Thus final summarization of these studies indicates that high dose thiamine repletion may
decrease the risk of micro and macrovascular disease and counter incipient nephropathy in
diabetes. The effect of thiamine occurred independent of control of hyperglycaemia, blood
pressure and statin/fibrate therapy, suggesting that high dose thiamine therapy may produce
improvements in the prevention of dyslipidaemia and diabetic nephropathy in addition to
those produced by current therapy for control of hyperglycaemia, blood pressure, cholesterol
and lipids. Since dyslipidemia and microalbuminuria are reversible in type 2 diabetic patients,
it is possible that high dose thiamine therapy might improve renal function and metabolic
control through reduction in biochemical dysfunction and improvement in thiamine depend‐
ant enzyme activities in diabetic patients with existing dyslipidaemia and microalbuminuria.
However, it appears that there may be noticeable variations in these parameters on the basis

Figure 8. Metabolic Mechanism for Supression of Hepatic Lipogenesis in Diabetes by Thiamine.Adapted from PJ Thor‐
nalley 2006
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of geographical, racial and pharmacogenetic factors. So the need of the hour was an indepth
study as a double blind placebo controlled clinical trial to study the effect of high dose thiamine
therapy on biochemical profile and activities of thiamine dependant enzymes in type 2 diabetic
patients in our multiracial population in Pakistan.

7. Therapeutic implications

Based on the data above, the first ever randomized, double blinded, placebo controlled clinical
intervention trial registered with the World Health Organization involving high dose B1
therapy was conducted by Dr.Saadia ShahzadAlam of the Pharmacology Deptt (Co-Principal
Investigator 1) of Federal Postgraduate Medical Institute Lahore for a period of 5 months to
study the effect of high dose thiamine therapy on biochemical profile and activities of thiamine
dependant enzymes on type 2 diabetics in the Pakistani population. This trial was also
pioneering internationally on the subject of diabetic nephropathy and the effect of thiamine
supplementation on it. 40 type 2 micoalbuminuric diabetic patients at the Diabetes Clinic of
Shaikh Zayed Hospital Lahore were administered 300mg/day (100mg tablets Administration
of 300mg B1 TDS) / placebo for 3 months followed by a 2 month washout period. The results
of this trial were quite interesting and have been published internationally, plasma thiamine
levels of both thiamine and placebo groups were significantly depleted as compared to normal
controls. There were significant baseline derangements of incipient diabetic nephropathy
(microalbuminuria), glycemic control parameters FBS and glycated hemoglobin, lipid profile
including total cholesterol, HDL, LDL, triglycerides and VLDL in type 2 microalbuminuric
diabetics as compared to healthy individuals. Following 3 months 300 mg/day thiamine
administration there was significant improvement of urinary albumin excretion, and preser‐
vation of glomerular filtration rate suggested that these occurred due to thiamine replenish‐
ment and decreased glycated hemoglobin and LDL cholesterol levels were observed in the
washout period as a delayed effect. Additionally following thiamine therapy significant
reduction in plasma levels of sVCAM-1, noticeable and an inverse linkage between thiamine
therapy and vWF was apparent in this group as compared to placebo, suggested noticeable
benefit with reduction in the risk factors of type 2 diabetes. Significant changes in other serum
and urinary biomarkers profile were also observed in type 2 diabetics following thiamine
therapy in a simultaneously carried out proteomic study. Three thiamine dependant enzymes
PDE3, PDE1β, AKGDHE1 and Transketolase were determined to be dysfunctional at baseline
in type 2 microalbuminuric diabetic patients in comparison to normal healthy controls, and
improved in both activity and gene expression with high dose thiamine therapy While
importantly no hepatic or renal adverse effects were encountered prior, during therapy or as
a residual effect, post washout thus fortifying the previously established human safety track
record of thiamine. [200]. We hope that these findings would contribute to knowledge regarding
the role of thiamine therapy at 300mg/day dosage on biochemical profile and molecular aspects
of those vital thiamine dependant enzymes and help in providing improved, safe and more
effective treatment for type 2 diabetic patients with incipient nephropathy, dyslipidemia with
expected decrease risk of heart disease and kidney failure.
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