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Compact Antennas — An overview
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1. Introduction

Antenna size reduction is restricted by fundamental physical limits [1-3], in terms of trade-off
between radiation performances and impedance bandwidth. Miniaturization of devices leads
to the reduction of antennas which becomes one of the most important challenges [4]. Limi‐
tations in terms of bandwidth and efficiency suggest an analysis with respect to fundamental
limits [5]. Although interests are often focused on the impedance bandwidth, many studies
deal with the radiation quality factor Q. Some papers [6] have been concluded that the
impedance bandwidth BW equals 1/Q. The minimum Q value reachable by an infinitesimal
electric dipole, or similarly by the azimuthally symmetric TM10 spherical mode, has been
investigated thoroughly.

Hansen and Best [7] have shown that the lower bound on Q, deriving from Chu’s analysis, is
depending on the expense of efficiency as shown by the equation:

Qlb =η( 1
(ka)3 +

1
ka )

where a is the minimum radius of the sphere enclosing the antenna and k is the wave number
(k=2π/λ).

The Figure 1 shows that it is very difficult to have a wide bandwidth (low Q-factor), while
reaching a good efficiency for miniature antennas (k.a around 0.2). Thus, the miniaturization
of antennas implies them to suffer of both limited efficiency and low bandwidth.

Since many years the scientific literature addresses some approaches concerning miniaturiza‐
tion techniques. The goal is to decrease the electrical size of the radiating element. This chapter
will draw up a survey of compact antennas in practical settings and the most common
miniaturization techniques listed below:
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



• Folded configurations [8-10]

• Surface etching techniques [11-14]

• Shorting walls or pins [15-16]

• The use of high dielectric constant materials or magneto-dielectric materials [17-22].

• Loading the radiating element with active components [23-26].

• Creation of hybrid modes with particular boundary conditions in dielectric resonator
antennas. It allows choosing their resonance frequencies (for multiband or wide impedance
bandwidth) [27].

We will start this chapter by detailing wire antennas. Indeed, after explaining the classical
dipole antenna, we will show how to miniaturize this kind of antennas based on shape design
such as bending, folding and meandering. The second part will detail planar antennas. We
will see the impact of materials properties under the patch antenna hat, i.e. dielectric or
magneto-dielectric materials. Then, planar miniature antennas will be shown, e.g. Planar
Inverted F Antenna (PIFA) and monopolar wirepatch antenna. The third part will exhibit
Dielectric Resonator Antennas and how to use this kind of antennas for low frequency band
application while having compact sizes. Finally, the last part will summary all the antennas
presented in this chapter, while showing their main settings.
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Figure 1. Quality factor according to the antenna dimensions and efficiencies
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2. Wire antennas — Miniaturization techniques

2.1. Classical wire antenna: The dipole antenna

The dipole antenna has been developed by Heinrich Rudolph Hertz around 1886 and still
remains the most widely used antenna (Figure 2). It owns two identical (same length) and
symmetrical metal wires, and its feeding device is connected at the center of the dipole, i.e.
connected to the two adjacent wires ends. The dipole working results of a standing wave
phenomenon depending on its length. The antenna fundamental mode occurs when the whole
antenna is a half-wavelength long.

 

 (a) (b) 

Figure 2. Dipole antenna shape (a) and its 3D radiation shape (b)

The radiated field of the dipole antenna working on its fundamental mode has a linear
polarization. As shown in Figure 2, its radiation pattern is maximum at right angles to the
dipole and drops off to zero on the dipole's axis. Its maximum directivity equals 2.15dBi. The
impedance bandwidth of this kind of antenna is quite wide since it is between 10% and 20%
(it depends on the wire’s radius) [28].

2.2. The monopole antenna

By adding a perpendicular ground plane at the center of the dipole antenna, its length can be
divided by two: that is the monopole antenna. Theoretically, this ground plane is considered
as an infinite Perfect Electric Conductor (PEC) plane. In this case, the current in the reflected
image [29-30] has the same direction and phase as the current in the dipole antenna. Thus the
quarter-wavelength monopole and its image together form a half-wavelength dipole that
radiates only in the upper half of space (see Figure 3).
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Figure 3. Monopole antenna shape (a) and its 3D radiation shape (b)

Therefore it presents a 3 dB gain higher than the dipole antenna. The radiation resistance is
proportional to (h / λ)2, this latter is therefore decreasing the square of the antenna height h.

The first mobile phones were using this kind of antennas to receive the Global System for
Mobile Communications (GSM) (see Figure 4).

Figure 4. Monopole antenna integrated inside a mobile phone

In practice, the finite ground plane disturbs the radiation pattern and the maximum directivity
is decreasing. The monopole antenna bandwidth is quite the same as the dipole, i.e. up to 20%.

2.3. Inverted L and F antennas (ILA and IFA)

To reduce the monopole antenna global dimensions, we can bend the wire to be parallel to the
ground: that is the Inverted L Antenna (ILA) [31]. Its design is depicted Figure 5, there is both
a vertical and a horizontal parts. Since its electrical length is the same than the monopole, its
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resonance frequency is also the same. The radiation resistance is proportional to (h / λ)2, with
h the length of the vertical part (see Figure 5). Actually, the horizontal part occurs as a capacitive
charge and this makes the antenna difficult to match on 50Ω. Therefore, the antenna bandwidth
is very low and does not exceed 1% [31-33].

Figure 5. Inverted L Antenna (ILA) shape

Adding a ground wire on the horizontal part facilitates the ILA matching. This new antenna
design is called Inverted F Antenna (IFA) (Figure 6). This wire is equivalent to a self-inductance
in parallel with the capacitance of the horizontal wire. That involves a parallel resonance at
low frequencies.

Figure 6. Inverted F Antenna (IFA) shape
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To fit the input impedance around 50Ω, we can adjust wire’s parameters (radius, distance with
the feeding point,…). However, typical impedance bandwidths are around 2% or 3% [34-35].

2.4. The helical antenna

This kind of antenna allows reducing the physical length of an antenna (Figure 7). Basically,
its fundamental mode is due to a quarter wavelength resonance. However, its bending
structure can involve some capacitive and/or inductive resonances. This antenna has been
widely used in mobile phone devices.

Figure 7. Helical antenna

Global dimensions of this kind of antennas are around λ0/10 for its height with a λ0/40 diameter.
Its typical impedance bandwidth is up to 8%. Thus this antenna is covering the entire GSM
band [36-37].

3. Planar antennas – Miniaturization techniques

3.1. Classical planar antenna: the patch antenna

The patch antenna was introduced by John Q. Howell in 1972 [38]. This kind of antenna
presents a metallic top hat mounted on a dielectric substrate. Its lower face is the ground plane
and its feeding can be a coaxial probe (Figure 8), a microstrip line or a coplanar waveguide.

The two metal sheets together form a resonant part of a microstrip transmission line with a
length equals to a half of wavelength. Thus, its higher dimension is equal to λg / 2, with λg  the
the guided wavelength. A simple patch antenna radiates a linearly polarized wave and its
radiation can be regarded as a result of the current flowing on the patch and the ground plane.
Thus its maximum gain is relative to the vertical axis of the patch and can reach 7 or 8 dB. The
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impedance bandwidth is between 1% and 4% and depends on both the dielectric permittivity
and the thickness of the substrate.

3.2. Miniaturization techniques of planar antennas

3.2.1. Use of materials

Using a material allow the reduction of the guided wavelength and thus the physical length
of an antenna. Indeed, the patch antenna length is directly proportional to the refractive index
of the dielectric substrate n = εr .μr . Using a dielectric material is the most common method to
reduce the antenna size [39-40]. In this sub-section, we will show on one hand the antenna size
reduction for a planar antenna printed on a dielectric substrate and on the other hand on a
magneto-dielectric material substrate.

• Using a dielectric material

We consider the patch antenna presented Figure 8 with a 4cm-length and a 3mm-thickness.
To show the impact of a dielectric substrate we consider two different cases:

• Substrate with low dielectric permittivity εr =1.

• Substrate with higher dielectric permittivity εr =9.

The Table 1 summarizes main results for patch antennas with strictly same dimensions.

Resonance frequency Matching frequency Impedance bandwidth

Patch antenna with εr = 1 3.7 GHz 3.8 GHz 4.1 %

Patch antenna with εr = 9 1.3 GHz 1.32 GHz 0.98 %

Table 1. Comparison between two antenna patches with same dimensions printed on different substrates

Figure 8. Patch antenna

Compact Antennas — An overview
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As we can see in this table, the resonance frequency is divided by three with the increase of
the dielectric permittivity value. Indeed, the miniaturization factor is close to the refractive
index εr .μr = 9=3. However, the antenna miniaturization involves the reduction of its
performances as its impedance bandwidth is divided by four.

Another solution is to use a magneto-dielectric material.

• Using a magneto-dielectric material

Hansen and Burke [41] have expressed the zero-order impedance bandwidth of a patch
antenna printed on a t-thick magneto-dielectric material by the following equation:

( )
0

96 . 2 4 17 .m e m
e l

= +tBW (1)

Thus, compared to high dielectric permittivity, high permeability materials allow to reduce
the size of a patch antenna without decreasing its relative impedance bandwidth. In [42],
Niamien et al. investigates magneto-dielectric materials losses and provides expressions of
antenna impedance bandwidth and efficiency according to both dielectric and magnetic losses
for a patch antenna. They showed that both the radiation efficiency and the impedance
bandwidth increase with the permeability.

Considering the previous patch antenna (with a 4cm-length and 3mm-thick) by changing the
dielectric material by a magneto-dielectric material, we obtain the Table 2 results.

Resonance frequency Matching frequency Impedance bandwidth

Patch antenna with εr = 9 and μr = 1 1.3 GHz 1.32 GHz 0.98 %

Patch antenna with εr = 4 and μr = 2.25 1.35 GHz 1.38 GHz 1.87 %

Patch antenna with εr = 3 and μr = 3 1.37 GHz 1.41 GHz 2.82 %

Patch antenna with εr = 2.25 and μr = 4 1.38 GHz 1.45 GHz 3.29 %

Patch antenna with εr = 1 and μr = 9 1.31 GHz 1.65 GHz 4.66 %

Table 2. Comparison between antenna patches with same dimensions printed on different substrates

This table compares patch antenna results with a same refractive index n = εr .μr =3. It should
be noticed that all the materials are considered without any loss.

Therefore the comparison between the dielectric and magneto-dielectric materials shows that
using the latter in a patch antenna allows increasing its impedance bandwidth. A patch antenna
printed on a magneto-dielectric material presents the same miniaturization factor and allows
the increase of its impedance bandwidth.

Progress in Compact Antennas8



3.2.2. Modification of the antenna shape

• Notches integration

The integration of notches on the antenna top hat is often used. It allows to artificially increase
the electrical length of the radiating element by extending the current “path” on this element
(Figure 9).



 

(a) (b) 



λ λ

Figure 9. Integration of notches on antenna’s top hat (a) Surface current lines (b)

The radiating element dimensions can be reduced up to 50% comparing with a classical patch
antenna.

• Meander antenna

As for the helical antenna, the meander antenna allows decreasing the physical length of a
planar antenna. The advantage is that this antenna is planar and thus easy to integrate inside
a mobile phone. We can present on the Figure 10 a widely used meander antenna for the GSM
reception on mobile phones. It is printed on a 0.8mm-thick FR4 substrate and is matched on
1%-bandwidth around 900 MHz with λ0/3 x λ0/5 dimensions.

Figure 10. Meander antenna integrated within a mobile phone for the GSM reception
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3.2.3. Short cut insertion

• Planar Inverted F Antenna

As for the dipole and the monopole, it is possible to integrate a metallic plate inside the patch
antenna in order to divide its main dimension by two. Indeed, on the fundamental mode of
the patch, we can integrate a short cut where the electric filed is null. To manage to match the
antenna the metallic plate dimensions have to be optimised (Figure 11).

Figure 11. Planar Inverted F Antenna (PIFA)

In [43], a Planar Inverted Antenna with λ0/6 x λ0/8 x λ0/35 dimensions at 2.45GHz is matching
over a 6.5% impedance bandwidth.

• Monopolar wire patch antenna

The design of a classical wire patch antenna is presented in Figure 12. It is composed by two
metallizations etched on each face of a dielectric substrate. The lower metallic plate acts as
ground and the upper metallic plate constitutes the antenna top hat. This kind of antenna is
fed by a coaxial probe which is connected to the top hat through the ground plane and the
dielectric substrate. The ground wire acts as a short-circuit to the capacitance of the antenna
constituted by the top hat above the ground plane and allows achieving a new low-frequency
parallel resonance. The resonance frequency is smaller than the classical antenna fundamental
cavity mode [44]. It is primarily set by the size of the top hat, the height of the antenna, the
permittivity of the substrate and the ground wire diameter.

The main antenna parameters to adjust the antenna impedance matching to 50Ω are:

• The ground wire radius. The smaller the radius is, the higher the maximum of the input
impedance real part is.

Progress in Compact Antennas10



• The radius of the feeding probe. The higher the radius is, the lower the input impedance
imaginary part is.

• The ground wire – feeding probe separation. The Q-factor is increasing when the length
between the ground wire and the feeding probe core is increasing.

Figure 12. Monopolar wire patch antenna

As presented in [45-46], the use of a closed slot into the antenna top hat involves a significant
reduction of the resonant frequency (Figure 13). Indeed, the introduction of a slot in the hat of
the antenna changes the equivalent capacitance of the antenna short-circuited hat by increasing
its value.
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Figure 13. Monopolar wire patch antenna with a notch (a) and corresponding |S11| parameters
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The longer the electrical length of the slot is, the lower the resonant frequency is. We can
compare the |S11| parameters of the wire patch antenna presented in Figure 13 with and
without the notch [47]. As expected, adding a notch inside the wire patch antenna top hat
allows decreasing the working frequency but also the impedance bandwidth.

4. Dielectric resonator antennas (DRAs) – Miniaturization techniques

The design of a DRA in any geometry must satisfy various specifications including: the reso‐
nant frequency, the impedance bandwidth, the field distribution inside the resonator and al‐
so the radiated field. The intent of this part is to provide an overview of main findings of
investigations on simple-shaped DRAs. Then, it will deal with the different miniaturization
techniques of DRAs.

4.1. DRAs characteristics

A non-exhaustive list of main simple-shaped DRAs characteristics is described below:

• The main dimension of a DRA is proportional to λ0 / εr .μr  where λ0 is the free-space
wavelength at the resonant frequency, εr  and μr  are respectively the dielectric and the
magnetic constant of the material. In a dielectric material case, μr =1 and the main dimension

of a DRA is proportional to λ0 / εr .

• The radiation efficiency of the DRA is highly depending on the material losses. In case of a
low-loss dielectric material, DRAs allow to achieve better efficiency than other kind of
antennas because of minimal conductor losses associated with a DRA.

• For a given dielectric constant, both resonant frequency and radiated Q-factor are defined
according to the resonator dimensions. That allows having a great flexibility and some
degrees of freedom to design such an antenna.

• Another degree of freedom is the large spectrum of available dielectric materials. That
allows doing the best trade-off between dimensions and impedance bandwidth according
to the intended application.

• A number of modes can be excited within the DRA, many of them provide dipolar-like
radiation characteristics.

• The most common targeted frequencies presented by the research literatures are ranging
from 1GHz to 40 GHz.

• For a given DRA geometry, the radiation patterns can be made to change by exciting
different resonant modes.

Progress in Compact Antennas12



A large number of DRA excitations are currently used, e.g. microstrip line, coaxial probe
excitation, coplanar waveguide… The next subsection will deal with the most commonly used
excitations.

4.2. DRAs miniaturization techniques

This subsection examines techniques to design compact DRAs. Targeted applications are
mobile handsets or wireless tablet. There are several techniques to make DRAs more compact.
By adding metal plates, inserting a high permittivity layer (multisegment DRA) or removing
portions of the DRA, a significant size reduction can be achieved.

• Addition of a metallic plate on a DRA face

The rectangular DRA shape has been studied in the first part. The perfect metallic wall implies
that electric fields are normal to this conductor, while magnetic fields are tangential. E and H
fields presented Figure 14 assume that a metallic plate can be inserted in the middle of the
DRA according to the y-component. The principle is detailed and explained by the Figure 14.
It also shows the E and H fields of the TE111 mode.

H field
E field

Groundplane

Metallization

z
y

w w/2

h

Figure 14. Integration of a metallic plate

By applying the image theory, it is possible to insert a metal plate in the y=w/2 plane. The Table
3 extracted from [48] shows the influence of the metallic plate insertion on resonant frequency
and impedance bandwidth.

εr w (cm) d (cm) h (cm) Metallization f0(GHz) Bandwidth

12 2.75 2.75 2.95 No 1.98 10%

12 2.75 2.75 2.95 Yes 1.24 5.6%

Table 3. Influence of the metallic plate insertion on both resonant frequency and impedance bandwidth

Compact Antennas — An overview
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Thus, the metal plate insertion allows dividing by two the DRA size, while reducing the
resonant frequency. However, as pointed by the Table 3, the metallic plate insertion involves
also the decrease of the impedance bandwidth.

• Multisegment DRA

Another way to decrease the DRA size is to insert different substrate layers as illustrated Figure
15.

Figure 15. Multisegment DRA

It allows achieving strong coupling when the first insertion has a relatively high dielectric
permittivity. This technique is detailed in [48] and [49]. The Table 4 summarizes a parametrical
study done in [49] for one layer inserted (Figure 15) with w=7.875 mm, d=2 mm, h=3.175 and
εr=10. It is mounted on a 0.762 mm height substrate of permittivity εs=3. The TE111 mode of the
DRA is excited with a 50Ω microstrip line.

t (mm) εi Measured f0(GHz) Bandwidth

0 - 15.2 21%

0.25 20 14.7 18%

0.635 20 14.5 18%

1 20 13.9 16%

0.25 40 14.7 20%

0.635 40 13.7 13%

1 40 12.9 5%

0.25 100 14.7 16%

0.635 100 13.1 7%

1 100 10.8 5%

Table 4. A parametrical study done in [31] for one layer inserted

Thus, a thin layer insertion allows improving the coupling of modes inside the DRA while
decreasing the resonant frequency thanks to the decrease of the effective dielectric permittivity
of the DRA. As the previous technique, the downside is the decrease of the impedance
bandwidth.
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5. Summary of compact antennas performances

In this part, as a first conclusion we can summary the main performances of the previous
presented antennas.

Substrate Dimensions
Impedance

bandwidth
Radiation

Directivity

(dBi)

Total

efficiency

Dipole Air λ0/2 10% à 20% 2.1 99%

Monopole Air λ0/4 10% à 20% 5.1 99%

ILA Air λ0/20 x λ0/4 1% 7 98%

IFA Air λ0/20 x λ0/4 2% 4 98%

Helical Air λ0/10 x λ0/40 7% 6 98%

Compact Antennas — An overview
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Substrate Dimensions
Impedance

bandwidth
Radiation

Directivity

(dBi)

Total

efficiency

Patch Air λ0/2 x λ0/2 x λ0/27 4.1% 8.8 98%

Patch
εr=9

(tanδ=5.10-4)
λ0/6 x λ0/6 x λ0/76 0.98% 7 89%

Patch

εr=2.25 - μr=4

(tanδε=5.10-4

tanδμ=5.10-4)

λ0/6 x λ0/6 x λ0/76 3.29% 7.2 92%

Patch

εr=1 μr=9

(tanδε=5.10-4

tanδμ=5.10-4)

λ0/6 x λ0/6 x λ0/76 4.66% 7.5 95%

Patch with

notches
Air λ0/4 x λ0/5 x λ0/68 1.2% 6.4 95%

PIFA Air λ0/6 x λ0/8 x λ0/35 6.5% 6.9 97%

Wirepatch

antenna
Air λ0/8 x λ0/8 x λ0/17 3% 4 97%
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Substrate Dimensions
Impedance

bandwidth
Radiation

Directivity

(dBi)

Total

efficiency

DRA (2

layers)

εlayer1=100

εlayer2=10

(tanδε=5.10-4)

λ0/4 x λ0/14 x λ0/7 5% 6.4 95%

6. Conclusion

To conclude, an overview of classical antennas with their miniaturization techniques has been
presented and detailed in this chapter while mentioning a lot of literature references. Classical
wire antennas as monopoles present good impedance bandwidth, but they remain too large
to be integrated inside last generations of mobile devices. Planar antennas have the advantage
to be generally low profiles and thus easier to be integrate. However, patch antennas or planar
inverted F antennas have maximum gains relative to the vertical axis. Thus, wire patch antenna
presents a good alternative since it radiates as a dipole antenna and is significantly smaller.
Concerning the dielectric resonator antennas, they can be miniature and can resonate and be
matched on different frequency by creating some partial boundary condition [50].
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