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1. Introduction 

Realtime identification and dynamic control of mechanical manipulators is important in 
robotics especially in the presence of varying loading conditions and exogenous 
disturbances as it can affect the dynamic model of the system. Model free control promises 
to handle such problems and provides solution in an elegant framework. Model free control 
has been an active area of research for controlling plants which are difficult to model and 
time varying in nature. 
The proposed framework takes the objective in operational space. Benefit of specifying 
objective in operational space along with direct adaptive control is self evident. In this 
framework, subspace algorithm is used for model identification.  is used for robust 
control of manipulator dynamics. Because of the seamless integration of identification and 
control modules, explicit values of dynamic parameters is not calculated. The model free 
control system is capable of explicitly incorporating uncertainties using μ-synthesis. 
Uncertainty models can be calculated from experimental data using model unfalsification. 
The proposed control system employs a black box approach for dynamics of mechanical 
systems. The chapter also presents results from a simulation of a planar robot using 

MATLAB® and Simulink® from MathWorks Inc. 

1.1 Notations 
The rigid body model adopted in this chapter is given by 

 (1) 

where M(q) is the inertia tensor matrix, C(q, $q ) is the Coriolis and centripetal forces, G(q) is 

gravity, and ξ (q, $q ) denotes unmodeled non-linearities. Joint variables, their velocities, and 

positions are donated by q, $q , $$q ∈ . In case of revolute joint, q is the angle while in 

prismatic joint, q represents the distance. The torques generated by actuators are represented 

by u ∈ . It is assumed that the mechanical manipulator is fully actuated, non-redundant 
and the Jacobian is known. If the position of endeffector is given by forward kinematics 
equation i.e. x = fkinematics(q). It can be differentiated by ∂q to obtain 

 (2) 

O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m

Source: Robotics, Automation and Control, Book edited by: Pavla Pecherková, Miroslav Flídr and Jindřich Duník,  
ISBN 978-953-7619-18-3, pp. 494, October 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Robotics, Automation and Control 

 

458 

1.2 Problem statement 
The problem under discussion can be stated as 

 

This problem is the amalgamation of inverse dynamics in which M(q), C(q, $q ), and G(q, $q ) 

are known i.e. u = f(q, $q , $$q ), dynamic parameter identification in which M(q), C(q, $q ), and 

G(q, $q ) are calculated, and robust control to cater unmodeled non-linearities and 

disturbances in the system. 

2. Control of articulated manipulators 

Control of articulated manipulators can be divided into two main categories: 

• Joint space control 

• Operational space control 
Joint space control is consisted of two subproblems. First, manipulator inverse kinematics is 
performed and then joint space control scheme is devised to allow the end effector to follow 
a reference input. The main computational burden in this scheme is incurred by the inverse 
kinematics procedure, which is normally performed by using different optimization 
techniques; particularly in redundant systems where there can be infinite solutions for a 
given task (Kim et al. (2003)). Many implementations of joint space control can be found in 
the literature (Laib (2000); Kelly (1997); Arimoto (1995); Kelly (1993); Wen et al. (1992); 
Tomei (1991); Takegaki & Arimoto (1981); Zhang et al. (2000)). 
In many applications, the desired path of end effector is specified in the operational space 
(e.g. Cartesian frame). Operational space control, on the other hand, has also been used for 
constrained manipulator motions (Sapio & Khatib (2005)). These constraints can be because 
of gravity, or kinematically imposed. It can be seen in Figure 2 that inverse kinematics is 
embedded in the closed-loop control law but not explicitly performed as shown in Figure 1 
(Sciavicco & Siciliano (2000)). Operational space control and task space control allude to the 
same concept (Xie (2003)). 
 
 

 

Figure 1. Joint space control 

The proposed architecture controls the manipulator in joint space. The reason behind is the 
very fact that inverse kinematics is highly non-linear in nature. It is assumed the analytical 
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Jacobian JA is available, the manipulator is fully actuated and non-redundant. Numerical 
solutions to inverse kinematics are more complex and are manipulator specific (Khalil & 
Dombre (2004)). Numerical based inverse kinematics is out-of-scope of this chapter. 
 

 

Figure 2.  Operational space control 

3. Model free control 

There are four methods to use experimental data as shown in Table 3 (Woodley (2001)). 
Mainly, choice depends on application. For realtime systems which are fairly easy to model, 
indirect control is a better choice. The system then adapts itself and updates its model 
parameters according to the conditions gathered from the measured data. Normally an 
online model-based design is referred as indirect control. If a system is hard to model from 
first principles (e.g. Newton’s laws of motion) or there are time varying nonlinearities then a 
direct adaptive control would suit the application. Examples of plants which are difficult to 
model are arc furnaces (Wilson (1997)) and helicopter rotors (Lohar (2000)). Biped robots on 
the other hand can be modeled but they exhibit time varying nonlinearities (Wolkotte 
(2003); Kim et al. (2004); Caballero et al. (2004)). 
 

 

Table 1. Four different techniques of control design from experimental data 

3.1 General predictive control 
Model free comes under the category of “general predictive control” (GPC). Model free 
implementations range from fuzzy and neural control (Boyd & Little (2000); Cheng (2004)) 
to crisp control techniques (Favoreel et al. (1999a); Woodley et al. (2001a)). However, crisp 
control is regarded as reliable and explicitly defines performance objective when compared 
with fuzzy control techniques (Athans (1999)). 
In direct adaptive control techniques, an explicit model formation is not needed; this is why 
it is referred to as model free control. Plant input and output values are observed in 
realtime, and a controller is designed for the estimated plant model. Model free is actually a 
misnomer, as the data from the plant’s input and output also represent some kind of plant 
information. In a model free control implementation, the system identification and the 
controller synthesis techniques are seamlessly integrated to reduce the computational 
burden, which makes it more suitable for realtime applications. Predictive control has been 
applied with  optimal predictors and 2 cost functions (Grimble (1998)),  optimal 
predictors and  control costs (Zhao & Bentsman (1999)), and mixed 2/  minimax 
predictors (Tse et al. (1993)). Subspace predictors have also been used for direct control with 
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quadratic (Favoreel et al. (1998, 1999b,a)) and  cost functions (Woodley et al. (2001b); 
Woodley (2001); Woodley et al. (2001a)). Other implementations include adaptive inverse 
control (Widrow & Walach (1994)), LMS1 (Widrow & Stearns (1985)), FxLMS2 and its 
alternatives (Sayyar-Rodsari et al. (1998)), identification and control based on the ( ) loop 
shaping (Date & Lanzon (2004)), and Lyapunov-based framework (Haddad et al. (2003); 
Hayakawa et al. (2004)). 

 is famous amongst control engineers because of its ability to control MIMO3 systems 
built on strong mathematical foundations. 

3.2 System identification 

System identification is used to build dynamical models from measured input-outpu data of 
a plant. There are many system identification techniques. The list starts with the classical 
prediction error (PE) and its variants; the auto regression with exogenous input (ARX), 
output error (OE), auto regression moving average with exogenous input (ARMAX), and 
Box Jenkins (BJ) (Norton (1986); Ljung (1999)). Subspace identification methods (SIM) have 
many advantages over classical system identification techniques (Overschee & Moor (1996)). 
Notables are; 

• From plant’s input and output data, a predictor is found. This bears similarity to the 
Kalman filter states, and transforms the analysis into a simple least square problem. As 
such, the whole architecture could be streamlined and in a user-friendly fashion. 

• When implemented in direct adaptive control, the plant model does not require 
simplification. Simplification or model reduction can omit useful information. Instead, 
in subspace identification methods all the plant information is stored in a compact form 
of a subspace predictor. 

• The output of subspace identification methods can be in the state space form which 
makes it easy to implement on a computer but its architecture has been exploited in 
different model free implementations as well (Woodley 2001b, Favoreel 1999a). 

Wernholt used SIM to solve system identification problem for an ABB IRB 6600 robot 
(Wernholt (2004)). Hsu et al. used N4SID in style translation for human motion (Hsu et al. 
(2005)). These are some of the examples that show how SIMs are being used. 

3.2.1 Reported problems in subspace identification methods 
There are a few problems in subspace identification methods. Many of these problems have 
been discussed in recent literature and partial remedies have been suggested (Chou & 
Verhaegen (1997); Lin et al. (2004); Wang & Qin (2004); Chiuso & Picci (2005)). Some of these 
problems are: 

• Biased estimate for closed loop data. 

• Assumption of noise-free input. 
The first problem can be solved by filtering the predicted data through a frequency 
weighted matrix. The second one is solved by using a robust control methodology, which 
would cater for disturbances and noise in the system. 

                                                 
1 least mean square 
2 filtered-x least mean squares 
3 multiple-input multiple-ouput 
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3.3 Model unfalsification 
For a true robust model free control, the system should be able to calculate an uncertainty 
model from the input and output data of plant. This can be done through model 
unfalsification. First an uncertainty model is unfalsified against the plant input and output 
data and then the uncertainty model (Ʀ) is incorporated in the controller design. Model 
unfalsification does not get much appeal in practice because of its high computational burden 
(Woodley (2001)). There are many implementations available for model unfalsificaiton 
(Kosut & Anderson (1997); Agnoloni & Mosca (2003); Tsao et al. (2003); Wodoley et al. 
(1999); Safonov (2003); Tsao & Safonov (2001); Woodley et al. (1998); Cabral & Safonov 
(2004)). Wang et al. suggested a direct adaptive controller based on model unfalsification 
with the assumption that there would be a controller in the given set that would satisfy the 
control requirements for a particular plant (Wang et al. (2004)). The identification of 
uncertainty models using model unfalsification is out of scope of this chapter. 
 

 

Figure 3. Model free subspace based   control. The plant transfer function P is unknown 
and the controller transfer function K is configured in realtime. 

4. Model-free subspace based dynamic control of mechanical manipulators 

The desired trajectory of end-effector is given by [x, $x , $$x ]T . If the initial position of end-

effector xo and joint variables qo is known, then using equation (2), q, $q and $$q can be written 

as 

 (3) 

 (4) 

 (5) 

In case J is not a square matrix, pseudo-inverse of J i.e. J† is used. Once the reference 
trajectory is in the joint space, model free control system which has been inspired by the 
work of Woodley et al. can be applied (Woodley et al. (2001b)). The cost function for this 
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framework minimizes the error in joint space ⎡ ⎤⎣ ⎦$ $$# # # T

q,q,q , control effort u, and $q  for the 

maximum value of the input qr. Here #q = q − qr and qr is the reference trajectory in joint 

space. The reason behind minimizing $q  is that the system becomes unstable near 

singularities and it becomes important that near singularities system doesn’t try to achieve 
extremely high velocities, which could make the system unstable. 
The cost function to minimized can now be written as 

 
(6) 

where γ is the performance objective, and zw1 , zw1 , zw1 are weighted feedbacks of ⎡ ⎤⎣ ⎦$ $$# # # T

q,q,q  , 

u, and $q , respectively. For simplicity, lets suppose y1 = ⎡ ⎤⎣ ⎦$ $$# # # T

q,q,q , y2 = $q , e = #q , and r = qr. 

The weights are applied in frequency domain. The time domain equivalent of these 
weighted feedback signals can be written as 

 

(7) 

where H1 and H2 are lower triangular Toeplitz matrices developed from impulse responses 
(Markov parameters) of the discrete weighting filters, W1 and W2. These weights are 
normally assigned by the designer. 

 

(8) 

 

(9) 

then 

 
ƥ1 and ƥ2 are the extended observability matrices formed from the impulse responses of the 
weighting filters W1 and W2. 

 

(10)
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(11)

For simplicity, assume that y = ⎡ ⎤⎣ ⎦$ $$# # # T

q,q,q and y2 = y{3}4. 

For system identification, suppose a plant’s input and output values at discrete times are 
given, respectively, by 

 
where ui ∈ m

 and yi ∈ l, where m and l are number of plant input and output signals 
respectively. The Hankel matrices for the past and future inputs are written as 

 

 

Similarly, the Hankel matrices for the past and future outputs can be written as Yp ∈ il×j 

and Yf ∈ il×j
 respectively. Hankel matrix for past outputs and inputs, Wp, could be defined 

as follows 

 
The linear least squares predictor of Yf with given Wp and Uf can be written as Frobenius 
norm minimization as follows 

 

where the subspace orthogonal projections, Lw and Lu, are calculated as 

 

(12)

                                                 
4 every third element in the array 

www.intechopen.com



 Robotics, Automation and Control 

 

464 

where † denotes pseudo-inverse. This solution assumes that the problem is overconstrained 
i.e., there are more independent equations than unknowns. If the problem is under-
constrained, the pseudo-inverse cannot be computed. Future outputs can now be predicted 
from the past inputs, outputs, and future inputs. 

 

(13)

In order to calculate Lw and Lu, matrix decomposition methods are used. Using QR method, 
if 

 
then 

 
(14)

Pseudo-inverse is normally calculated through singular value decomposition (SVD) but 
Woodley et al. presented another method which employs the Cholesky factorization instead 
of SVD (Woodley et al. (2001b)). This is computationally faster and requires less memory. 
Using the strictly causal estimate of y1 and y2 from equation (13), we get 

 (15)

 (16)

Here ŷ 1 is the estimated value of the end effector position in the Cartesian coordinates and 

ŷ 2 is the estimated value of the joint angular velocities. From equations (7) to (16), we get 

 

(17)

where 

 

(18)
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Substituting equation (7) into (6) and (17) produces the objective 

 
(19)

where W is given as follows; 

 

Differentiating (19) with respect to [r u]T and equating to zero
 
produces

 
the following; 

= 0 (20)

The linear system in (20) can be re-arranged as follows; 

                    
(21)

 

Differentiating once again with respect to [r u]T suggests the following; 

 

(22)

Schur decomposition offers the following definition; 

 
(23)

Since Q1 = T

1
Q and Q1 is positive definite, it could be concluded that A3 > 0 which satisfies the 

saddle condition (Woodley (2001)). As A3 ∈ im×im and r ∈ im, the condition for worst case 

input reference signal can be stipulated by the following inequality; 

 (24)

Matching the definitions in (23) and (24) to the mathematical aspects of the model-free 

control introduced above, the following could be stated; 
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(25)

which can be written as; 

 
(26)

To calculate the optimum controller outputs, multiply (21) with [0 I]. 

       
(27)

                            

4.0.1 Uncertainties 
For a robust system, it is important that uncertainties are accounted for. Most uncertainties 
in a plant are hard to model. Figures (4) and (5) show the general layout of plant models 
with uncertainties in multiplicative and additive configurations, respectively. Woodley 

calculated γmin for different configurations of uncertainties in model-free control designs 

(Woodley (2001)). But the real challenge is to find the uncertainty block Ʀ through 
techniques like model unfalsification. A true robust system calculates Ʀ in realtime. 
 

 

Figure 4. Plant with multiplicative uncertainties for robust  control design 
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5. Simulation 

For a complete identification 13n parameters are to be identified (Khalil and Dombre (2004)). 

In model free framework, these parameters are not available explicitly. The prediction 

horizon should be two to three times the expected order of the system. From this rough 

estimate, prediction horizon as 30 is selected for a two joint planar manipulator. On one of 

the coordinate, a square signal and on the other one, a sinusoidal signal is given. The 

response of the end effector along with the performance objective γ is given in the figure (6). 

One of the benefit of using subspace identification is the property of Hankel matrix that 

allows to concatenate the data from a previous session. 

 

 

Figure 5. Plant with additive uncertainties for robust  control design 

6. Conclusion 

The proposed framework provides solution to inverse dynamics, parameter identification 

and robust control of mechanical manipulators in an elegant way. The fastest way to 

calculate pseudo-inverse is through Cholesky/SVD factorization (Golub & Loan (1996)). 

Its complexity is O(ij + i3), where i is the prediction horizon and j is number of prediction 

problems in a Hankel matrix. The computational burden becomes significant when a 

robot has large number of links and it has 6 degrees of freedom i.e. 13ln, where l is a 

arbitrary natural number from 1 to 5 as a safety factor in prediction and n is the number of 

joints of manipulator. Calculations required to predict a predictor for a six joint robot with 

six degrees of freedom with safety margin of 2 is 3796416. This number is not so big for 

modern computers but increasing the number of joints will increase the complexity 

exponentially. 
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Reference signals vs. plant outputs 

 

γ as a function of time 

 
t →(sec) 

Time offset: 0 
 

Figure 6. Response of a planar robot with two rotary joints. In this particular experiment, Wp 

is initialized with null matrix. The performance is given by γ, which converges to a constant 

value when the input is consistent. 
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