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1. Introduction     

The development of high-performance controllers for various complex problems has been a 
major research activity among the control engineering practitioners in recent years. In this 
way, synthesis of control policies have been regarded as optimization problems of certain 
performance measures of the controlled systems. A very effective means of solving such 
optimum controller design problems is genetic algorithms (GAs) and other evolutionary 
algorithms (EAs) (Porter & Jones, 1992; Goldberg, 1989). The robustness and global 
characteristics of such evolutionary methods have been the main reasons for their extensive 
applications in off-line optimum control system design. Such applications involve the 
design procedure for obtaining controller parameters and/or controller structures. In 
addition, the combination of EAs or GAs with fuzzy or neural controllers has been reported 
in literature which, in turn, constitutionally formed intelligent control scheme (Porter et al., 
1994; Porter & Nariman-zadeh, 1995; Porter & Nariman-zadeh, 1997). The robustness and 
global characteristics of such evolutionary methods have been the main reasons for their 
extensive applications in off-line optimum control system design. Such applications involve 
the design procedure for obtaining controller parameters and/or controller structures. In 
addition to the most applications of EAs in the design of controllers for certain systems, 
there are also much research efforts in robust design of controllers for uncertain systems in 
which both structured or unstructured uncertainties may exist (Wolovich, 1994). Most of the 
robust design methods such as μ-analysis, H2 or H∞ design are based on different norm-
bounded uncertainty (Crespo, 2003). As each norm has its particular features addressing 
different types of performance objectives, it may not be possible to achieve all the robustness 
issues and loop performance goals simultaneously. In fact, the difficult mixed norm-control 
methodology such as H2/ H∞  has been proposed to alleviate some of the issue of meeting 
different robustness objectives (Baeyens & Khargonekar, 1994). However, these are based on 
the worst case scenario considering in the most possible pessimistic value of the 
performance for a particular member of the set of uncertain models (Savkin et al., 2000). 
Consequently, the performance characteristics of such norm-bounded uncertainties robust 
designs often degrades for the most likely cases of uncertain models as the likelihood of the O
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worst-case design is unknown in practice (Smith et al., 2005). Recently, there have been 
many efforts for designing robust control methods. In these methods for reducing the 
conservatism or accounting more for the most likely plants with respect to uncertainties, the 
probabilistic uncertainty, as a weighting factor, propagates through the uncertain parameter 
of plants. In fact, probabilistic uncertainty specifies set of plants as the actual dynamic 
system to each of which a probability density function (PDF) is assigned (Crespo & Kenny, 
2005). Therefore, such additional information regarding the likelihood of each plant allows a 
reliability-based design in which probability is incorporated in the robust design. In this 
method, robustness and performance are stochastic variables (Stengel & Ryan, 1989). 
Stochastic behavior of the system can be simulated by Monte- Carlo Simulation (Ray & 
Stengel, 1993). Robustness and performance can be considered as objective functions with 
respect to the controller parameters in optimization problem. GAs have also been recently 
deployed in an augmented scalar single objective optimization to minimize the probabilities 
of unsatisfactory stability and performance estimated by Monte Carlo simulation (Wang & 
Stengel, 2001), (Wang & Stengel, 2002). Since conflictions exist between robustness and 
performance metrics, choosing appropriate weighting factor in a cost function consisting of 
weighted quadratic sum of those non-commensurable objectives is inherently difficult and 
could be regarded as a subjective design concept. Moreover, trade-offs existed between 
some objectives cannot be derived and it would be, therefore, impossible to choose an 
appropriate optimum design reflecting the compromise of the designer’s choice concerning 
the absolute values of objective functions. Therefore, this problem can be formulated as a 
multi objective optimization problem (MOP) so that trade-offs between objectives can be 
derived consequently. 
In this chapter, a new simple algorithm in conjunction with the original Pareto ranking of 
non-dominated optimal solutions is first presented for MOPs in control systems design. In 
this Multi-objective Uniform-diversity Genetic Algorithm (MUGA), a є-elimination diversity 
approach is used such that all the clones and/or є-similar individuals based on normalized 
Euclidean norm of two vectors are recognized and simply eliminated from the current 
population. Such multi-objective Pareto genetic algorithm is then used in conjunction with 
Monte-Carlo simulation to obtain Pareto frontiers of various non-commensurable objective 
functions in the design of robust controllers for uncertain systems subject to probabilistic 
variations of model parameters. The methodology presented in this chapter simply allows 
the use of different non-commensurable objective functions both in frequency and time 
domains. The obtained results demonstrate that compromise can be readily accomplished 
using graphical representations of the achieved trade-offs among the conflicting objectives. 

2. Stochastic robust analysis 

In real control engineering practice, there exist a variety of typical sources of uncertainty 
which have to be compensated through robust control design approach. Those uncertainties 
include plant parameter variations due to environmental condition, incomplete knowledge 
of the parameters, age, un-modelled high frequency dynamics, and etc. Two categorical 
types of uncertainty, namely, structured uncertainty and unstructured uncertainty are 
generally used in classification. The structured uncertainty concerns about the model 
uncertainty due to unknown values of parameters in a known structure. In conventional 
optimum control system design, uncertainties are not addressed and the optimization 
process is accomplished deterministically. In fact, it has been shown that optimization 
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without considering uncertainty generally leads to non-optimal and potentially high risk 
solution (Lim et al., 2005). Therefore, it is very desirable to find robust design whose 
performance variation in the presence of uncertainties is not high. Generally, there exist two 
approaches addressing the stochastic robustness issue, namely, robust design optimization 
(RDO) and reliability-based design optimization (RBDO) (Papadrakakis et al., 2004). Both 
approaches represent non deterministic optimization formulations in which the probabilistic 
uncertainty is incorporated into the stochastic optimal design process. Therefore, the 
propagation of a priori knowledge regarding the uncertain parameters through the system 
provides some probabilistic metrics such as random variables (e.g., settling time, maximum 
overshoot, closed loop poles, …), and random processes (e.g., step response, Bode or 
Nyquist diagram, …) in a control system design (Smith et al., 2005). In RDO approach, the 
stochastic performance is required to be less sensitive to the random variation induced by 
uncertain parameters so that the performance degradation from ideal deterministic 
behaviour is minimized. In RBDO approach, some evaluated reliability metrics subjected to 
probabilistic constraints are satisfied so that the violation of design requirements is 
minimized. In this case, limit state functions are required to define the failure of the control 
system. Figure (1) depicts the concept of these two design approaches where f is to be 
minimized. Regardless the choice of any of these two approaches, random variables and 
random processes should be evaluated reflecting the effect of probabilistic nature of 
uncertain parameters in the performance of the control system. 
 

 

Fig. 1. Concepts of RDO and RBDO optimization 

With the aid of ever increasing computational power, there have been a great amount of 
research activities in the field of robust analysis and design devoted to the use of Monte 
Carlo simulation (Crespo, 2003; Crespo & Kenny, 2005; Stengel, 1986; Stengel & Ryan, 1993; 
Papadrakakis et al., 2004; Kang, 2005). In fact, Monte Carlo simulation (MCS) has also been 
used to verify the results of other methods in RDO or RBDO problems when sufficient 
number of sampling is adopted (Wang & Stengel, 2001). Monte Carlo simulation (MCS) is a 
direct and simple numerical method but can be computationally expensive. In this method, 
random samples are generated assuming pre-defined probabilistic distributions for 
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uncertain parameters. The system is then simulated with each of these randomly generated 
samples and the percentage of cases produced in failure region defined by a limit state 
function approximately reflects the probability of failure. 
Let X be a random variable, then the prevailing model for uncertainties in stochastic 

randomness is the probability density function (PDF), ( )xfX  or equivalently by the 

cumulative distribution function (CDF), ( )xFX , where the subscript X refers to the random 

variable. This can be given by 

 ( ) ( ) ( )Pr
x

X X
F x X x f x dx

−∞
= ≤ = ∫  (1) 

where Pr(.) is the probability that an event (X≤x) will occur. Some statistical moments such 
as the first and the second moment, generally known as mean value (also referred to as 

expected value) denoted by E(X) and variance denoted by ( )X2σ , respectively, are the most 

important ones. They can also be computed by 

 ( ) ( ) ( )X X
E X xdF x f x dx

∞ ∞

−∞ −∞
= =∫ ∫  (2) 

and 

 
( ) ( )( ) ( )∫

∞

∞−
−= dxxfXExX X

2σ
 (3) 

In the case of discrete sampling, these equations can be readily represented as 
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where ix  is the ith sample and N is the total number of samples. 

In the reliability-based design, it is required to define reliability-based metrics via some 
inequality constraints (in time or frequency domain). Therefore, in the presence of uncertain 
parameters of plant (p) whose PDF or CDF can be given by fp(p) or Fp(p), respectively, the 
reliability requirements can be given as 

 ( )( )Pr p 0 1,2,...,i

f i
P g i kε= ≤ ≤ =  (6) 

In equation (6), i
fP  denotes the probability of failure (i.e., ( ) 0≤pig ) of the ith reliability 

measure and k is the number of inequality constraints (i.e., limit state functions) and  is the 
highest value of desired admissible probability of failure. It is clear that the desirable value 

of each i
fP  is zero. Therefore, taking into consideration the stochastic distribution of 
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uncertain parameters ( p ) as ( )ppf , equation (6) can now be evaluated for each probability 

function as 

( )( ) ( )
( )
∫
≤

=≤=
0

0Pr

p

p ppp

ig

i
i
f dfgP  

(7) 

This integral is, in fact, very complicated particularly for systems with complex g(p) (Wang 
& Stengel, 2002) and Monte Carlo simulation is alternatively used to approximate equation 
(7). In this case, a binary indicator function Ig(p) is defined such that it has the value of 1 in 
the case of failure (g(p)≤0) and the value of zero otherwise,  
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( )
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≤
>

=
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00
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(8) 

Consequently, for each limit state function, g(p), the integral of equation (7) can be rewritten as 

( ) ( ) ( ) ( )( ) ( )∫
∞

∞−

= ppkpp pp dfCGIP gf ,

 

(9) 

where G(p) is the uncertain plant model and C(k) is the controller to be designed in the case 
of control system design problems. Based on Monte Carlo simulation (Ray & Stengel, 1993; 
Wang & Stengel, 2001; Wang & Stengel, 2002; Kalos, 1986), the probability using sampling 
technique can be estimated using 

( ) ( ) ( ) ( )( )∑
=

=
N

i

gf CGI
N

P
i

1

,
1

kpp p  (10)

where Gi is the ith plant that is simulated by Monte Carlo Simulation. In other words, the 
probability of failure is equal to the number of samples in the failure region divided by the 
total number of samples. Evidently, such estimation of Pf approaches to the actual value in 

the limit as ∞→N  (Wang & Stengel, 2002). However, there have been many research 

activities on sampling techniques to reduce the number of samples keeping a high level of 
accuracy. Alternatively, the quasi-MCS has now been increasingly accepted as a better 
sampling technique which is also known as Hammersley Sequence Sampling (HSS) (Smith 
et al., 2005; Crespo & Kenny, 2005). In this paper, HSS has been used to generate samples for 
probability estimation of failures. In a RBDO problem, the probability of representing the 
reliability-based metrics given by equation (10) is minimized using an optimization method. 
In a multi-objective optimization of a RBDO problem presented in this paper, however, 
there are different conflicting reliability-based metrics that should be minimized 
simultaneously. 
In the multi-objective RBDO of control system problems, such reliability-based metrics 
(objective functions) can be selected as closed-loop system stability, step response in time 
domain or Bode magnitude in frequency domain, etc. In the probabilistic approach, it is, 
therefore, desired to minimize both the probability of instability and probability of failure to 
a desired time or frequency response, respectively, subjected to assumed probability 
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distribution of uncertain parameters. In a RDO approach that is used in this work, the lower 
bound of degree of stability that is the distance from critical point -1 to the nearest point on 
the open lop Nyquist diagram, is maximized. The goal of this approach is to maximize the 
mean of the random variable (degree of stability) and to minimize its variance. This is in 
accordance with the fact that in the robust design the mean should be maximized and its 
variability should be minimized simultaneously (Kang, 2005). Figure (2) depicts the concept 

of this RDO approach where ( )xfX  is a PDF of random variable, X.  It is clear from figure (2) 

that if the lower bound of X is maximized, a robust optimum design can be obtained. 
Recently, a weighted-sum multi-objective approach has been applied to aggregate these 
objectives into a scalar single-objective optimization problem (Wang & Stengel, 2002; Kang, 
2005). 
 

 

Fig. 2. Concept of RDO approach 

However, the trade-offs among the objectives are not revealed unless a Pareto approach of 

the multi-objective optimization is applied. In the next section, a multi-objective Pareto 

genetic algorithm with a new diversity preserving mechanism recently reported by some of 

authors (Nariman-Zadeh et al., 2005; Atashkari et al., 2005) is briefly discussed for a 

combined robust and reliability-based design optimization of a control system. 

3. Multi-objective Pareto optimization 

Multi-objective optimization which is also called multi-criteria optimization or vector 

optimization has been defined as finding a vector of decision variables satisfying constraints 

to give optimal values to all objective functions (Atashkari et al., 2005; Coello Coello & 

Christiansen, 2000; Coello Coello et al., 2002; Pareto, 1896). In general, it can be 

mathematically defined as follows; find the vector [ ]T
nxxxX **

2
*
1

* ,...,,=  to optimize 

 
[ ]T

k XfXfXfXF )(),...,(),()( 21=
 (11) 
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subject to m inequality constraints 

 
( ) miXgi A10 =≤

 (12) 
and p equality constraints 

 
( ) pjXhj A10 =≤

 (13) 

where, nX ℜ∈*  is the vector of decision or design variables, and kXF ℜ∈)(  is the vector of 

objective functions. Without loss of generality, it is assumed that all objective functions are 
to be minimized. Such multi-objective minimization based on the Pareto approach can be 
conducted using some definitions. 

Pareto dominance 

A vector [ ] k
kuuu ℜ∈= ,...,, 21U dominates to vector [ ] k

kvvv ℜ∈= ,...,, 21V (denoted by 

VU ≺ ) if and only if }{ }{ jjii vukjvuki <∈∃∧≤∈∀ :,...,2,1,,...,2,1 . It means that there is at 

least one uj which is smaller than vj whilst the rest u’s are either smaller or equal to 

corresponding v’s. 

Pareto optimality 

A point Ω∈*X  (Ω is a feasible region in nℜ ) is said to be Pareto optimal (minimal) with 

respect to all Ω∈X  if and only if )()( * XFXF ≺ . Alternatively, it can be readily restated as 

}{ ki ,...,2,1∈∀ , },{ *XX −Ω∈∀ )()( * XfXf ii ≤ ∧ }{ kj ,...,2,1∈∃  : )()( * XfXf jj < . It means that 

the solution X* is said to be Pareto optimal (minimal) if no other solution can be found to 
dominate X* using the definition of Pareto dominance. 

Pareto Set 

For a given MOP, a Pareto set Ƥ٭ is a set in the decision variable space consisting of all the 

Pareto optimal vectors, Ƥ٭ |{ Ω∈= X ∄ )}()(: XFXFX ≺′Ω∈′  . In other words, there is no 

other X’ in  that dominates any ∈X  Ƥ٭ 

Pareto front 

For a given MOP, the Pareto front ƤŦ٭ is a set of vectors of objective functions which are 

obtained using the vectors of decision variables in the Pareto set Ƥ٭, that is,                        

ƤŦ٭ ∈== XXkfXfXfXF :))(....,),(2),(1()({ Ƥ٭}. Therefore, the Pareto front ƤŦ٭ is a set of 

the vectors of objective functions mapped from Ƥ٭.  
Evolutionary algorithms have been widely used for multi-objective optimization because of 
their natural properties suited for these types of problems. This is mostly because of their 
parallel or population-based search approach. Therefore, most difficulties and deficiencies 
within the classical methods in solving multi-objective optimization problems are 
eliminated. For example, there is no need for either several runs to find the Pareto front or 
quantification of the importance of each objective using numerical weights. It is very 
important in evolutionary algorithms that the genetic diversity within the population be 
preserved sufficiently (Osyezka, 1985). This main issue in MOPs has been addressed by 
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much related research work (Nariman-zadeh et al., 2005; Atashkari et al., 2005; Coello 
Coello & Christiansen, 2000; Coello Coello et al., 2002; Pareto, 1896; Osyezka, 1985; Toffolo & 
Benini, 2002; Deb et al., 2002; Coello Coello & Becerra, 2003; Nariman-zadeh et al., 2005). 
Consequently, the premature convergence of MOEAs is prevented and the solutions are 
directed and distributed along the true Pareto front if such genetic diversity is well 
provided. The Pareto-based approach of NSGA-II (Osyezka, 1985) has been recently used in 
a wide range of engineering MOPs because of its simple yet efficient non-dominance 
ranking procedure in yielding different levels of Pareto frontiers. However, the crowding 
approach in such a state-of-the-art MOEA (Coello Coello & Becerra, 2003) works efficiently 
for two-objective optimization problems as a diversity-preserving operator which is not the 
case for problems with more than two objective functions. The reason is that the sorting 
procedure of individuals based on each objective in this algorithm will cause different 
enclosing hyper-boxes. It must be noted that, in a two-objective Pareto optimization, if the 
solutions of a Pareto front are sorted in a decreasing order of importance to one objective, 
these solutions are then automatically ordered in an increasing order of importance to the 
second objective. Thus, the hyper-boxes surrounding an individual solution remain 
unchanged in the objective-wise sorting procedure of the crowding distance of NSGA-II in 
the two-objective Pareto optimization problem. However, in multi-objective Pareto 
optimization problem with more than two objectives, such sorting procedure of individuals 
based on each objective in this algorithm will cause different enclosing hyper boxes. Thus, 
the overall crowding distance of an individual computed in this way may not exactly reflect 
the true measure of diversity or crowding property for the multi-objective Pareto 
optimization problems with more than two objectives. 
In our work, a new method is presented to modify NSGA-II so that it can be safely used for 

any number of objective functions (particularly for more than two objectives) in MOPs. Such 

a modified MOEA is then used for multi-objective robust desing of linear controllers for 

systems with parametric uncertainties. 

 
4. Multi-objective Uniform-diversity Genetic Algorithm (MUGA)  

 

The multi-objective uniform-diversity genetic algorithm (MUGA) uses non-dominated 

sorting mechanism together with a ε-elimination diversity preserving algorithm to get 

Pareto optimal solutions of MOPs more precisely and uniformly (Jamali et.al., 2008.)  

4.1 The non-dominated sorting method 
The basic idea of sorting of non-dominated solutions originally proposed by Goldberg 

(Goldberg, 1989) used in different evolutionary multi-objective optimization algorithms 

such as in NSGA-II by Deb (Deb et al., 2002) has been adopted here. The algorithm simply 

compares each individual in the population with others to determine its non-dominancy. 

Once the first front has been found, all its non-dominated individuals are removed from the 

main population and the procedure is repeated for the subsequent fronts until the entire 

population is sorted and non-dominately divided into different fronts.  

A sorting procedure to constitute a front could be simply accomplished by comparing all the 

individuals of the population and including the non-dominated individuals in the front. 

Such procedure can be simply represented as following steps: 
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 1-Get the population (pop) 
 2-Include the first individual {ind(1)} in the front P* as P*(1), let P*_size=1; 

3-Compare other individuals {ind (j), j=2, Pop_size)} of the pop with { P*(K), K=1,  P*_size} 
of the P*; 

  If ind(j)<P*(K) replace the P*(K) with ind(j) 
  If P*(K)<ind(K), j=j+1, continue comparison; 
  Else include ind(j) in P*, P*_size= P*_size+1, j=j+1, continue comparison; 
 4-End of front P*; 
 

It can be easily seen that the number of non-dominated solutions in P* grows until no further 
one is found. At this stage, all the non-dominated individuals so far  found in P* are removed 
from the main population and the whole procedure of finding another front may be 
accomplished again. This procedure is repeated until the whole population is divided into 
different ranked fronts. It should be noted that the first rank front of the final generation 
constitute the final Pareto optimal solution of the multi-objective optimization problem.  

4.2 The ε-elimination diversity preserving approach 
In the ε-elimination diversity approach that is used to replaced the crowding distance 
assignment approach in NSGA-II (Deb et al., 2002), all the clones and ε-similar individuals 
are recognized and simply eliminated from the current population. Therefore, based on a 
value of ε as the elimination threshold, all the individuals in a front within this limit of a 
particular individual are eliminated. It should be noted that such ε-similarity must exist both 
in the space of objectives and in the space of the associated design variables. This will ensure 
that very different individuals in the space of design variables having ε-similarity in the 
space of objectives will not be eliminated from the population. The pseudo-code of the ε-
elimination approach is depicted in figure (3). Evidently, the clones and ε-similar 
 

 
Fig. 3. The ε-elimination diversity preserving pseudo-code 

ε-elim= ε-elimination(pop) // pop includes design variables and 
objective function 

i=1; j=1; 
get K (K=1 for the first front); 
While i,j <pop_size 

 e(i,j)= ║X(i,:),X(j,:) ║/║X(i,:) ║; X(i),X(j) ∈  P*k Ụ PF*k  //finding mean value of ε 
within pop.  

end 
ε=mean(e); 
i=1; 
until i+1<pop_size; 
j=i+1 
 until j<pop_size 
 if e(i,j)<ε 
 then {pop}={pop}/ {pop(j)} //remove the ε-similar individual 
 j=j+1 

end 
i=i+1 
end 
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individuals are replaced from the population by the same number of new randomly 
generated individuals. Meanwhile, this will additionally help to explore the search space of 
the given MOP more effectively. It is clear that such replacement does not appear when a 
front rather than the entire population is truncated for ε-similar individual. 

4.3 The main algorithm of MUGA 
It is now possible to present the main algorithm of MUGA which uses both non-dominated 
sorting procedure and ε-elimination diversity preserving approach and is given in figure (4). 
 

 
Fig. 4. The pseudo-code of the main algorithm of MUGA 

It first initiates a population randomly. Using genetic operators, another same size 
population is then created. Based on the ε-elimination algorithm, the whole population is 
then reduced by removing ε-similar individuals. At this stage, the population is re-filled by 
randomly generated individuals which helps to explore the search space more effectively. 
The whole population is then sorted using non-dominated sorting procedure. The obtained 
fronts are then used to constitute the main population. It must be noted that the front which 
must be truncated to match the size of the population is also evaluated by ε-elimination 
procedure to identify the ε-similar individuals. Such procedure is only performed to match 

Get N         //population size 
t=1 ;    //set generation number 
Random_N(Pt);  //generate the first population (P1) randomly 
Qt=Recomb(Pt)  //generate population Qt from Pt by genetic operators 
Rt=Pt Ụ Qt  //union of both parent and offspring population 
Rt′=ε-elimination (Rt) //remove ε-similar individuals in Rt 
Rt′′= Rt′ Ụ  Random_(Rt_size-R′t_size) (Pt′) //add random individuals to fill Rt to 2N 
 
Do non-dominate sorting procedure (Rt′′)     //Rt′′=P*1Ụ P*2Ụ…ỤP*k   where k is total        

number of fronts 
i=1 

Pt+1=Θ 
While not Pt+1_size>N  //includes fronts into new population 
  Pt+1= Pt+1Ụ P*i 
  i=i+1 
end 
N′=N- Pt+1_size 
While not (0.9 N′< Pt+1_size<1.1 N′) //remove the ε-similar individuals within 

the tolerance of  ±10 percent 
       Ғ′=ε-elimination (P*i-1) 
           If Ғ′_size< N′ 

e=1.1*e 
else 
e=0.9 * e //adjust the value of threshold  to get the right population 

size of the last front 
end 

end 
t=t+1    //Start next generation 
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the size of population within ±10 present deviation to prevent excessive computational 
effort to population size adjustment. Finally, unless the number of individuals in the first 
rank front is changing in certain number of generations, randomly created individuals are 
inserted in the main population occasionally (e.g. every 20 generations of having non-
varying first rank front). 

5. Process model and controller evaluation method 

In this section, the process models and the robust PI/PID controller design methodologies 

are presented using some conflicting objective functions defined in both time and frequency 

domains. 

5.1 The process model 

Many industrial systems can be adequately presented by a first-order lag with time delay 
(Toscana, 2005) as 

( )
Ts

ke
sG

s

+
=

−

1

τ
 (14)

In the case of stochastic robust design, parameters of the plant given by equation (14) vary 

according to a priori known probabilistic distribution functions around a nominal set of 

parameters. In this work, beta distributions with the coefficients of 2 and 2 with the limits of 

%50±  of the nominal values of plant parameters, 1=== Tk τ  have been selected, 

respectively. Stochastic step response of the 10 samples that are simulated by Monte Carlo 

simulation is shown in figure (5). It is clear from figure (5) that the response of the uncertain 

system has a large variability and the performance of the system deteriorates significantly 

with parameters variation. Consequently, the controller design must be accomplished 

robustly. 
 

 

Fig. 5. Stochastic step response of the uncertain plant 
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5.2 The robust design of PI/PID controllers 

Simple structure PI/PID Controllers are widely used for many industrial processes 
represented by the transfer function of equation (14). The transfer functions, C(s), of the 
standard PI/PID Controllers of the feedback control system shown in figure (6) are 

( )
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⎪
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⎧

++=

+=

sK
s

K
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d
i

p

i
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Fig. 6. Closed loop SISO system with plant G(s) and controller C(s) 

The design vector of the PI and PID controllers are kPI = [Kp , Ki] and kPID = [Kp , Ki , Kd], 
respectively. They have to be optimally determined based on the mixed robust and 
reliability-based multi-objective Pareto approach for the uncertain first-order system using 
some stochastic evaluation metrics that are introduced as follows. 
Two robust performance metrics have been proposed in this work, performance metrics in 
time domain and performance metrics in frequency domain. In this section, design vector of 
PI controller is obtained based on time domain performance metrics and design vector of 
PID controller is obtained based on frequency domain performance metrics. 
The most important goal of robust controller design is the robust stability which implies that 

all the closed-loop poles of the system remain in the stable left half-plane ( ( ) 0<ℜ is ) in the 

presence of any uncertainty in the nominal plant’s transfer function. Thus, in the case of 
stochastic robust design, the limit state function to define the probability of failure of robust 
stability will be represented by 

 
( ) ( ) ( ) ( ){ } Nisssg i

n
ii

ins ,,2,1,,,max 21 A… =ℜℜℜ−=p
 (16) 

where, gins(p) is the limit state function of the instability, ( )isℜ  is the real part of the closed-

loop poles of the ith uncertain plants, and n is the order of the closed-loop plant. 
The probability of failure of stochastic stability can now be computed using by equation (10) 

( ) ( )( )∑
=

=
N

i

igins CGI
N ins

1

,
1

Pr kp  (17)

in association with equation (16) employing the quasi Monte Carlo Sampling or HSS for N 
samples. For obtaining the acceptable stability, such probability of instability should be 
minimized. 
In addition to the minimizing the probability of instability, maximizing the stability margin 
in the frequency domain is another important measure of good performance of a robust 
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controller for uncertain systems. The inclusion of the stability margin (to be maximized) in 
the vector of the cost functions ensures that stable PI/PID controllers having the most 
stability margin are obtained. Such robust stability margin, also referred to as degree of 

stability 1−
∞S , can be simply computed using the sensitivity transfer function 

)(1

1

)()(1

1
)(

sLsGsC
sS

+
=

+
=  (18)

for a unity feedback control system shown in figure (6). In frequency domain, the return 

difference ( ) ( )ωω jLjL +=−− 11  simply represents the length of a vector drawn from 

critical point -1 to open-loop transfer function in the Nyquist diagram. Consequently, the 
inverse of ∞-norm of sensitivity transfer function given by equation (18) 

( )ω
ω

jLSS +== −
∞

−
∞ 1min

11  (19)

represents the minimum distance of the Nyquist diagram to point -1. In the case of 
stochastic robust design, the degree of stability for each stochastic system is a random 
variable. Therefore, in a RDO problem considered in this study the lower bound of 
interested random variable (degree of stability) is maximized using an optimization method.  
It should be noted that the degree of stability given by equation (19) also directly represents 
the additive disturbance rejection property as follows 

)()()()(
)(1

)(
)( sDsSsGsD

sL

sG
sY =

+
=  (20)

where, D(s) is the load disturbance transfer function. It is evident from equation (20) that 

maximizing the minimum value of ( )ωjL+1  based on equation (19) will cause a better 

disturbance rejection according to equation (20). Therefore, systems with high degree of 
stability represent a good ability to reject the load disturbance (Toscana, 2005). 
A good step response behavior of the system is one of the performance metrics in controller 
design procedure that illustrates how system acts in transient and steady state periods. 
Another method to obtain these properties of the step response is Bode magnitude of the 
close-loop or complementary transfer function. In the stochastic robust design both step 
response and Bode magnitude are random process. 
In the reliability- based design approach, it is desired to minimize the probability of a failure 
of a random process as a function of w (w represents time or frequency) due to the uncertain 
probabilistic parameters. In this approach, let h(p,w) is the random response (step response 
or Bode magnitude) of an uncertain plant due to uncertain parameters p, and let define 

( )wh and ( )wh  as upper and lower failure boundary, respectively. Therefore, if the random 

process is held within these bounds, the uncertain system has a robust performance. 
In this work, step response metrics are used to design PI controller and Bode magnitude 
metrics are used to design PID controllers. 
The lower and upper failure boundaries to define the corresponding limit state 
function, ( ) 0≤prespg , in time domain is given using the Heaviside function 

                                                  
( ) ( ) ( )7H25.03H8.0H1.0 −+−+−= ttth

                                    (21a) 

                                                            ( ) ( )7H15.0H2.1 −−= tth                                                  (21b) 
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for a period of t∈[0, tf], tf = 15. If r and r  are defined as 

tiii kihhr ,...,2,1,1 =<=
 

0=
i

r
  otherwise 

(22a)

tiii kihhr ,...,2,1,1 =>=
 

0=ir   otherwise 
(22b) 

where h is the time response of the plant and kt is the number of sample time, the limit state 
function indicator can then be computed as 

( ) ( )∑ =
+== t
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i ii
t

g rr
k

I
1

1
p  (23)

which is used in equation (10) to obtain the probability of failure to the desires time 
response boundaries. 
The complementary transfer function T(s) can be used to obtain closed-loop system response 
which is the transfer function of the reference input R(s) to the output Y(s) and is given as 

( ) ( ) ( )
( )sL

sL
sSsT

+
=−=

1
1  (24)

The quantity ( )ωjT represents the magnitude of the closed-loop frequency response. It is 

well known that the performance of the closed-loop system response is related to ( )ωjT . In 

order to select appropriate boundaries for such frequency response behavior, the 
relationship between peak value of the closed-loop magnitude response (Nise, 

2004), ( )ωω jTMp max= , and the damping ratio, ζ  , for a second order system with 

nominal parameters is considered here as a reference. Such relations are given by 

212

1

ζζ −
=pM  (25)

at a frequency of ωp given by 

221 ζωω −= np  (26)

Since ζ and ωn are related to maximum overshoot and settling time of step response, respectively, 

for a good transient and steady-state response it is required that +≥ ζζ  and +≥ nn ωω . The 

selected values of +ζ  and +
nω  in this work are 0.7. In order to achieve a good closed-loop 

performance, the complementary transfer function T(s) given by equation (24) is used in 
frequency domain using lower and upper failure boundaries to define the corresponding 

limit state function ( ) 0≤prespg . If ( )ωjTh ≡ which is a random process having sets of CDFs 

varying with frequency (Crespo & Kenny, 2005, Crespo, 2003)], both the upper failure 

boundary defined by ( )ωh and the lower failure boundary ( )ωh  are used to compute the 

probability of failure to a good frequency response. Based on the previous discussion, the 
boundaries are defined as 
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( ) [ ]12 10,101 −−∈= ωωh  (27a)

( ) [ ]210,5.0
7.0

∈= ω
ω

ωh  (27b) 

If r  and r  are defined as 

ωkihhr iii ,...,2,1,1 =<=  

0=
i

r   otherwise 
(28a)

ωkihhr iii ,...,2,1,1 =>=
 

0=ir   otherwise 
(28b) 

where h is the frequency response of the plant and kω is the number of sample frequency, the 
limit state function indicator can then be computed as  

( ) ( )∑ =
+== ω

ω

k

i iig rr
k

I
resp 1

1
p  (29)

which is used in equation (10) to obtain the probability of failure to the desired frequency 
response boundaries of the complementary transfer function. 

6. Results 

The objectives Prins, Prresp and 1−
∞S  are now considered simultaneously in a Pareto 

optimization process to obtain some important trade-offs among the conflicting objectives. 
In a mixed robust and reliability-based design approach, the vector of objective functions to 
be optimized in a Pareto sense is given as follows 

 
],Pr,[Pr 1−

∞= SF respins

f

 (30) 

which are computed using equations (17), (23), (29), and (19), respectively, in the quasi-
Monte Carlo simulation process. The evolutionary process of the Pareto multi-objective 
optimization is accomplished using MUGA (Jamali, et.al., 2008) where a population size of 
45 has been chosen with crossover probability Pc and mutation probability Pm as 0.85 and 
0.09, respectively. The optimization process of the robust PI/PID controllers given by 
equation (15) is accomplished by 250 Monte Carlo evaluations using HSS distribution for 
each candidate control law during the evolutionary process. The vector of objective 
functions given by equation (30) is used to obtain non-dominated optimum PI/PID 
controllers to represent the trade-offs among the objective functions. 

6.1 Pareto optimum PI controllers  

A total number of 80 non-dominated optimum design points have been obtained and shown 
in figure (7) in the plane of probability of failure to the desired time response (Prresp) and the 
degree of stability (). The value of probability of instability (Prins) of all the non-dominated 
optimum points has been obtained zero which demonstrates that all optimum controllers 
are stable in the Monte Carlo simulation (Hajiloo et al., 2007). 
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Fig. 7. Pareto fronts of Prresp and degree of stability ( 1−
∞S )  

Since, the value of probability of instability (Prins) of all non-dominated optimum points has 
been found equal to zero, therefore, the result of the 3-objective optimization process 
corresponds to a 2-objective optimization process which is shown in figure (7). It can be 
observed from the Pareto front of figure (7) that improving one objective will cause another 
objective deteriorates accordingly. 

The best point obtained for Prresp is point A which corresponds to the worst value of 1−
∞S . 

These values for time response and degree of stability are 0.0338 and 0.3577, respectively. In 
other words, optimum design point A represents 3.38% probability of failure to the desired 
time response and its minimum distance to the critical point -1+0j in the Nyquist diagram is 
0.3577, representing its degree of stability for 250 Monte Carlo evaluations. Alternatively, 

the best value of obtained 1−
∞S is that of point C which corresponds to the worst value of 

Prresp and are 0.8 and 0.8923, respectively. Figure (8) shows the corresponding 1, 10, 30, 50, 
70, 90, 99 percentiles of time responses of both design points A and C which demonstrates 
the stochastic behavior of the corresponding PI controllers for 250 Monte Carlo simulations 
of the plant subjected to the assumed probabilistic uncertainties. An m percentiles curve 
presents a confidence limit of m percent probability that the time response behavior would 
be below that curve. 
By careful investigation of figure (7) an important trade-off can be observed from the Pareto 

front of objectives Prresp and 1−
∞S . It is clear that the gradient of the Pareto from in section A-

B increases noticeably in section B-C. Apparently, optimum design point B shows a 

significant improvement of degree of stability ( 1−
∞S ) in comparison with that of point A 

whilst its probability of failure to the desired time response does not degrades significantly 
in section A-B as much as it does in section B-C. Thus, optimum design point B representing 
a PI controller with Kp = 0.3 and Ki = 0.31 can be optimally chosen from a trade-off point of 

view for objectives Prresp and 1−
∞S . Figure (9) shows percentiles of stochastic time response 

behavior of point B which can be compared to those of optimum design points A and C 
shown in figure (8). 
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(a) 

 
(b) 

Fig.  8. Step response behaviors of optimum designs (a) point A (b) point C 

Table 1 summarizes the values of those objectives together with the corresponding values of 
PI controller gains for three optimum design points A, B, and C shown in figure (7). 
 

Design 
points 

Kp Ki Prins Prresp 
1−

∞S  

A 0.516 0.454 0 0.0338 0.3577 

B 0.3 0.31 0 0.1500 0.5624 

C 0.8 0.892 0 0.8 0.8923 

Table 1. Optimum values of objective functions and their gains for the PI controller obtained 
from 250 Monte Carlo simulations 

The robust stability margins of all optimum points have been shown in figure (10). In this 

figure, the cumulative distribution functions (CDF) have been shown for all design points. It 

is evident that the optimum design point C exhibits the best stability robustness, because 

lower bound of its degree of stability is greater than other design points and variance of the 

degree of stability of design point C is very small.  
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Fig. 9. Step response behaviors of optimum design B 

 
Fig. 10. CDFs for robust stability margins of different optimum designs 

6.2 Pareto optimum PID controllers 
A total number of 31 non-dominated optimum design points have been obtained and shown 
in figure(11) in the plane of probability of frequency response failure (Prresp) and the degree 

of stability ( 1−
∞S ). The value of probability of instability (Prins) of all the non-dominated 

optimum points has been obtained zero which demonstrates that all obtained optimum 
controllers are stable in the Monte Carlo simulation. Therefore, the results of the 3-objective 
optimization process correspond to those of a 2-objective optimization process excluding the 
probability of instability. It can be observed from the Pareto front of figure (11) that improving 
one objective will cause another objective deteriorates accordingly. The best point obtained for 

Prresp is point A which corresponds to the worst value of 1−
∞S . These values for the probability 

of frequency response failure and the degree of stability are 0.089 and 0.4815, respectively. In 
other words, optimum design point A represents 8.9% probability of frequency response 
failure and its minimum distance to the critical point -1+0j in the Nyquist diagram is 0.4815, 
representing its degree of stability in 250 Monte Carlo evaluations. Alternatively, the best 

value of obtained 1−
∞S  is that of point C which corresponds to the worst value of Prresp which 

are 0.1381 and 0.9798, respectively. In other words, optimum design point C represents 
13.81% probability of frequency response failure while its minimum distance to the critical 
point -1+0j in the Nyquist diagram is 0.9788 representing its improved degree of stability. 
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Fig. 11. Pareto fronts of Prresp and degree of stability ( 1−
∞S ) 

Figure (12) shows the corresponding 1, 10, 30, 50, 70, 90, 99 percentiles of step response of a 
non-dominated optimum design points B which demonstrate the stochastic behavior of the 
corresponding PID controllers in 250 Monte Carlo simulations of the plant subjected to the 
assumed probabilistic uncertainties in the plant. Figure (13) shows the Nyquist diagram for 
the design point B. 

 

Fig. 12. Probabilistic step response behaviors of optimum design B 

 

Fig. 13. Nyquist diagram of optimum design B 
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The robust stability margins of all optimum points have been also shown in figure (14). In 
this figure, the cumulative distribution functions (CDF) have been shown for all design 
points. 

 

Fig. 14. CDFs for robust stability margins of different optimum designs 

Table 2 summarizes the values of those objectives together with the corresponding values of 
PID controller gains for three optimum design points A, B, and C shown in figure (11). 
 

Design 
points 

Kp Ki Kd Prins Prresp 
1−

∞S  

A 0.2132 0.4035 0.0572 0 0.0899 0.4815 

B 0.2210 0.3879 0.2185 0 0.1299 0.6084 

C 0.0130 0.0129 0.0119 0 0.1381 0.9798 

Table 2. Optimum values of objective functions and their gains for the PID controller 
obtained from 250 Monte Carlo simulations 

7. Conclusion 

A multi-objective genetic algorithm with a recently developed diversity preserving 
mechanism was used to optimally design PI/PID controllers from a reliability-based point 
of view in a probabilistic approach. The objective functions which often conflict with each 
other were appropriately defined using some probabilistic metrics in time and frequency 
domain. The multi-objective optimization of robust PID controllers led to the discovering 
some important trade-offs among those objective functions. The framework of such hybrid 
application of multi-objective GAs and Monte Carlo Simulation of this work for the Pareto 
optimization of both robust and reliability-based approach using some non-commensurable 
stochastic objective functions is very promising and can be generally used in the optimum 
design of real-world complex control systems with probabilistic uncertainties 

8. References 
Atashkari, K.; Nariman-zadeh, N.; Jamali A.& Pilechi A. (2005).Thermodynamic Pareto 

optimization of turbojet using multi-objective genetic algorithm, International 
Journal of Thermal Science, Vol. 44, No. 11, 1061-1071, Elsevier 

Baeyens, E. & Khargonekar, P. (1994). Some examples in mixed ∞HH /2  Control, Proceeding 

of American Control Conference, pp. 1608-1612, USA 

www.intechopen.com



Pareto Optimum Design of Robust Controllers for Systems with Parametric Uncertainties 

 

225 

Coello Coello, C. A. & Becerra, R. L. (2003). Evolutionary Multi-objective Optimization using 
a Cultural Algorithm, IEEE Swarm Intelligence Systems., pp. 6-13, USA 

Coello Coello, C. A., & Christiansen, A. D. (2000). Multiobjective optimization of trusses 
using genetic algorithms, Computers & Structures, Vol. 75, 647-660 

Coello Coello, C. A.; Van Veldhuizen, D. A. & Lamont, G. B. (2002). Evolutionary 
Algorithms for Solving Multi-objective problems, Kluwer Academic Publishers, New 
York 

Crespo, L.G. & Kenny, S.P. (2005). Robust Control Deign for systems with probabilistic 
Uncertainty, NASA report, March 2005, TP-2005-213531 

Crespo, L.G. (2003). Optimal performance, robustness and reliability base designs of systems 
with structured uncertainty, Proceeding of American Control Conference, pp. 4219-
4224, USA, Denver, Colorado,  

Deb, K.; Agrawal, S.; Pratap, A. & Meyarivan, T. (2002). A fast and elitist multi-objective 
genetic algorithm: NSGA-II, IEEE Transaction on Evolutionary Computation, Vol. 6, 
No. 2, 182-197 

Diwekar, U.M. & Kalagnaman, J.R. (1997). Efficient sampling technique for optimization 
under uncertainty, American Institute of Chemical Engineering Journal, Vol. 43, No.2, 
440-447 

Fleming, P.J. & Purshous, R.C. (2002). Evolutionary algorithms in control systems 
engineering; a survey, Control Engineering Practice, 1223-1241 

Ge, M.; Chiu, M. & Wang, Q. (2002). Robust PID controller design via LMI approach, Journal 
of Process Control, Vol. 12, 3-13 

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, 
Addison-Wesley 

Hajiloo, A.; Nariman-zadeh, N.; Jamali, A.; Bagheri, A. & Alasti, A. (2007). Pareto Optimum 
Design of Robust PI Controllers for Systems with Parametric Uncertainty. 
International Review of Mechanical Engineering (IREME), November 2007 Vol. 1, No. 
6, 628-640, ISSN 1970-8734 

Herreros, A.; Baeyens E. & Persan, J.R. (2002). MRCD: a genetic algorithm for multi objective 
robust control design, Engineering Application of Artificial Intelligence, Vol. 15, 285-
301 

 Jamali, A., Nariman-zadeh, N., Atashkari,K., (2008). Multi-objective Uniform-diversity 
Genetic Algorithm (MUGA), in Advances in Evolutionary Algorithms, Kordic, V., 
(Ed.), I-Tech Education and Publishing, ISBN 978-3-902613-32-5, Vienna, Austria (in 
press) 

Kalos, M.H. & Whitlock, P.A. (1986). Monte Carlo Methods, Wiley, New York 
Kang, Z. (2005). Robust design of structures under uncertainties, PhD. Thesis, University of 

Stuttgart 
Kristiansson, B. & Lennartson, B. (2006). Evaluation and simple tuning of PID controllers 

with high-frequency robustness, Journal of Process Control, Vol. 16, 91-102 
Lim, D.; Ong, Y.s. & Lee, B.S. (2005).Inverse multi-objective robust evolutionary design 

optimization in the presence of uncertainty, GECCO’ 05, Washington, USA, pp.55-
62 

Nariman-Zadeh, N.; Atashkari, K.; Jamali, A.; Pilechi, A. & Yao, X. (2005). Inverse modeling 
of multi-objective thermodynamically optimized turbojet engine using GMDH-type 
neural networks and evolutionary algorithms, Engineering Optimization, Vol. 37, No. 
26, 2005, 437-462 

Nariman-zadeh, N.; Darvizeh, A.; Jamali, A. & Moeini, A. (2005). Evolutionary Design of 
Generalized Polynomial Neural Networks for Modeling and Prediction of 

www.intechopen.com



 Robotics, Automation and Control 

 

226 

Explosive Forming Process, Journal of Material Processing and Technology, Vol. 164-
165, 1561-1571, Elsevier 

Nariman-zadeh, N.; Jamali, A. & Hajiloo, A. (2007). Frequency-based reliability Pareto 
optimum design of proportional-integral-derivative controllers for systems with 
probabilistic uncertainty. Journal of Systems and Control Engineering (IMECHE), 
November 2007 Vol. 22, No. 18,1061-1066, ISSN 0959-6518 

Nise, N.S. (2004). Control System Engineering, John Wiley & Sons, Inc., ISBN 0-471-44577-0, 
USA 

Osyezka, A. (1985). Multicriteria optimization for engineering design, Design Optimization, 
Academic Press, 193-227, New York 

Papadrakakis, M.; Lagaros, N. D.  & Plevris, V. (2004). Structural optimization considering 
the probabilistic system response, Theoretical Applied Mechanics, Vol. 31, No. 3-4, 
361-393, Belgrade 

Pareto, V. (1986). Cours d’economic ploitique, Lausanne, Switzerland, Rouge 
Porter, B. & Jones, A.H. (1992). Genetic tuning of digital PID controllers, Electronic Letters, 

Vol. 28, No. 9, 843-844 
Porter, B. & Nariman-Zadeh, N. (1995). Genetic design of computed-torque fuzzy logic 

controllers for robotic manipulators, Proceedings of International Conference on 
Intelligent Control, Montgomery, California, USA 

Porter, B. & Nariman-Zadeh, N. (1997). Evolutionary design of fuzzy-logic controllers for 
manufacturing systems, Annals of the CIRP, Vol. 46, No. 1 

Porter, B.; Sangolola A. & Nariman-Zadeh, N. (1994). Genetic design of computed torque 
controllers for robotic manipulators, Proceedings of International Conference on System 
and Control IASTED, Lugano, Switzerland 

Ray, L. & Stengel, R. F. (1993). A Monte Carlo Approach to the Analysis of Control System 
Robustness, Automatica, Vol. 29, No.1,229-236 

Savkin, A.; Peterson, I.R. & Ugronovskii, V.A. (2000). Robust Control Design Using H-
infinity methods, pp.1-29, Springer-Verlag, London 

Smith, B.A.; Kenny S.P & Crespo, L.G. (2005). Probabilistic Parameter Uncertainty Analysis 
of Single nput Single Output Control Systems, NASA report, March 2005TM-2005-
213280 

Sree, R.P.; Sriniras, M.N. & Chidambaram, N. (2004).A simple method of tuning PID 
controller for stable and unstable FOPTD systems, Computes and Chemical 
Engineering, Vol. 28, 2201-2218 

Stengel, R.F. & Ryan, L.E. (1989). Stochastic robustness of linear control systems, Proceeding 
of Information science and systems Conference, pp. 556-561 

Stengel, R.F. (1986). Stochastic Optimal Control: theory and application, New York, Wiley 
Toffolo, A. & Benini, E. (2003). Genetic Diversity as an Objective in Multi-objective 

evolutionary Algorithms, Evolutionary Computation, Vol. 11, No. 2, 151-167, MIT 
Press 

Toscana, R. (2005). A simple robust PI/PID controller design via numerical optimization 
approach, Journal of Process Control, Vol. 15, 81-88 

Wang, Q. & Stengel, R.F. (2001).Searching for Robust Minimal-order Compensators, Journal 
of Dynamic Systems, Measurement, and Control, Vol. 123, June 2001,223-236 

Wang, Q. & Stengel, R.F. (2002).Robust control of nonlinear systems with parametric 
uncertainty, Automatica, Vol. 38, 1591–1599 

Wolovich, W.A. (1994).Automatic Control Systems, Saunders College Publishing, Harcourt 
Brace College Pub., Orlando, USA 

www.intechopen.com



Robotics Automation and Control

Edited by Pavla Pecherkova, Miroslav Flidr and Jindrich Dunik

ISBN 978-953-7619-18-3

Hard cover, 494 pages

Publisher InTech

Published online 01, October, 2008

Published in print edition October, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book was conceived as a gathering place of new ideas from academia, industry, research and practice in

the fields of robotics, automation and control. The aim of the book was to point out interactions among various

fields of interests in spite of diversity and narrow specializations which prevail in the current research. The

common denominator of all included chapters appears to be a synergy of various specializations. This synergy

yields deeper understanding of the treated problems. Each new approach applied to a particular problem can

enrich and inspire improvements of already established approaches to the problem.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Amir Hajiloo, Nader Nariman-zadeh and Ali Moeini (2008). Pareto Optimum Design of Robust Controllers for

Systems with Parametric Uncertainties, Robotics Automation and Control, Pavla Pecherkova, Miroslav Flidr

and Jindrich Dunik (Ed.), ISBN: 978-953-7619-18-3, InTech, Available from:

http://www.intechopen.com/books/robotics_automation_and_control/pareto_optimum_design_of_robust_contr

ollers_for_systems_with_parametric_uncertainties



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


