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1. Introduction

Beauquier and Nivat [1] showed that aperiodicity cannot appear in a tiling by a polyomino
using translations only : any such tiling is at least half-periodic. This is not the case when
we associate a tile with one of its reflected (or rotated) images, which is a natural thing to do
since, in real world, the same molecule can appear in various rotational positions or have an
isomer.

Figure 1 shows a half-periodic tiling which is quite different from those with only one tile
and an aperiodic one in which the reflected image appears only once.

Figure 1. a half-periodic tiling and an aperiodic one

Moreover, the local structure of such tilings offers more possibilities : a tile can be surrounded
by an arbitrary numbers of other tiles as can be easily inferred from the example in figure 2.

Therefore, a general study of the tiles involved in such tilings appears to be difficult.
Moreover, it is worth noting that there is a lack of notations and methods to study the
decompositions of tiles and their possible surroundings.

In this paper, we provide simple word techniques to characterize some polygons that tile the
plane together with one of their reflective image. We have mainly concentrated on tilings
with symmetry pg [5]. Within periodic tilings involving glide reflections, this is the most
interesting group to consider since it is a subgroup of all symmetry groups involving glide
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Figure 2. an unusual surrounding

reflections. However, we hope that these techniques will also be useful in the future for
investigating more general problems in the spirit of [1].

2. Polygonal tiles

Studies similar to ours are usually placed within the framework of polyominoes. The
symmetry group pg can indeed be studied in this framework since it involves only one
direction of reflexion which can be made for instance horizontal by rotating the axes.
However, this is unnecessarily restrictive and we shall use polygons instead. The restriction
to polyominoes simplifies the description of tiles by contour words which can be expressed
with a simple four letters alphabet (up,down,left,right) whereas the contour word associated
with a polygon requires an infinite alphabet (the complex numbers). However, the use of
polygons does not make the proofs more complex and allows for more general results.

To be precise, we shall use a notion of “polygonal tile” which in a slight extension of the
notion of polygon. A polygonal tile is a sequence of points (vertices) that forms a simple
closed line. The edges of a polygonal tile are the segments that join two consecutive vertices.
Here, two consecutive edges can have the same direction and this distinguishes polygonal
lines from what are usually called polygons. A polygon corresponds to an uncountable
infinity of different polygonal lines.

When we consider possible tilings with a given polygonal line, we are only interested in
tilings in which vertices of the tilings, i.e. points shared by three tiles or more, correspond to
vertices of these tiles and when two tiles are adjacent, the vertices of one tile fit to vertices of
the other tile. This restriction is analogous to the restriction to transformations that preserve
the “grid” (points with integer coordinates) when one deals with polyominoes. It will enable
us to obtain factorizations of the contour words.

2.1. Definitions and notations

We shall represent polygonal tiles by words on the alphabet C of non null complex numbers.
Given a word u in C∗, we denote |u| its length, Σ(u) the complex sum of its letters, R(u) and
I(u) the real and imaginary parts of Σ(u).
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The contour word of a polygonal tile is completely defined when a starting point is chosen
among its vertices. Otherwise, it is only defined modulo a circular shift of its letters The
symbol ≡ will denote equality modulo circular shift and the symbol = will denote identity
of words.

Given a word u, we shall denote (−u) the word u in which each letter is replaced by its
opposite, u the word u in which each letter is replaced by its conjugate, and ũ the word u

where the order of letters has been reversed.

These three operations commute and are involutive. Therefore, the images of a word u to be
considered are exactly

u −u u ũ −u −ũ ũ −ũ

2.2. Polygonal tiles, isometries and orientation

The effect of isometries on contour words are the following:

• The translations leave the contour words invariants.

• The rotations by angles θ transform a contour word u into the word obtained by
multiplying each letter of u by the complex number with modulus 1 and argument θ

.

In particular, half-turns change u into (−u).

• The reflections according to a horizontal axis change u into u.

The other reflections are obtained by applying a rotation to u.
In particular, the reflexions according to a vertical axis change u into −u.

• The glide reflections have the same effect as the associated reflections.

Let us also mention that a change of orientation change u into −ũ. As a consequence, a
contour factor v is centro-symmetric if and only if v = ṽ (v is a palindrome).

2.3. Periodic tiles

All periodic tilings symmetry groups have as a subgroup p1, the group generated by two
independent translations. The tiles that can produce tilings with symmetry p1 are called in
[1] pseudo-hexagons and their contour in our notations have the form

uvw(−ũ)(−ṽ)(−w̃) (1)

We shall use this characterization as a basis to deduce characterizations for other symmetry
groups. We shall start with symmetry group p2 for which we shall give a proof that the
Conway criterion [4, 8] is a characterization. Then, we shall proceed to symmetry group pg.

Beauquier and Nivat have shown that the form (1) does not only characterize the tiles that
tile the plane with symmetry p1 but more generally the tiles that tile the plane by translations
only. Similarly, it might well be the case that the Conway criterion characterizes the tiles that
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tile the plane by translations only together with their image by half-turn and that the criterion
we give in section 4.2 characterizes the tiles that tile the plane by translations only together
with their image by reflection. However we have not been able to obtain such a result. This
remains, to our knowledge, a conjecture.

2.4. Translation adjacency

A polygonal tile can be made adjacent to a translated image of itself only if its contour has
both a factor x and a factor (−x̃). These two factors are necessarily disjoint because otherwise
we have x = yz and (−x̃) = zu, which implies (−z̃)(−ỹ) = zu and finally (−z̃) = z. Such a
word cannot be a factor of a contour word since this implies Σ(z) = 0.

Therefore, a tile that can be made adjacent to a translated image of itself has the
shape xy(−x̃)z and the translation associated with the superposition of the factors x and
(−x̃), which we shall denote by Tx, is defined by the complex number Σ(y) = −Σ(z).
Such a decomposition xy(−x̃)z of a contour word will be called a T-decomposition. A
T-decomposition will be said exact when x is maximal for translation Tx i.e. when the two
following conditions are satisfied:

• y cannot be factorized into y = y1y′(−ỹ1) with |y1| 6= 0

• z cannot be factorized into z = z1z′(−z̃1) with |z1| 6= 0

A T-decomposition xy(−x̃)z is therefore exact if and only if the contact of the corresponding
tile with its image by translation Tx is exactly (−x̃).

2.5. Half-turn adjacency

A tile that can be made adjacent to its image by a half-turn must have both a factor x and
a factor x̃. These factors could be disjoint, overlapping or identical. We shall show that the
only case we have to consider is the case where x is a palindromic factor equal to x̃. Such a
palindromic factor will be said exact if it is not the center of a bigger palindrome.

To clarify the discussion, let us denote by ht the corresponding half-turn, by A the starting
point of factor x, by B its end point, and by A’ and B’ the images of A and B by halft-turn ht.

The case where x and x̃ are identical correspond to A′ = B and B′ = A. It is not possible to
have A′ = A and B′ = B because a half-turn has only one fixpoint.

The case where the factors x and x̃ are disjoint correspond to a situation where the order
between the four considered points are either A, B, A′, B′ or A, B, B′, A′. However the former
case is impossible because, since half-turns are involutive, we have ht(A′) = A and ht(B′) =
B. Therefore the image of AB′ is A′B a factor strictly contained in AB′ which is impossible
since half-turns are isometries and preserve the lengthes. We are left with the latter case
where the order is A, B, B′, A′. Let us denote by w the factor BB′. Since the image by ht of
BB′ is B′B, if ht is a tiling transformation, then w must be a palindrome and AA′ = xwx̃ is a
bigger palindrome that includes both x and x̃ and is its own image under ht.

Now, in the last case where factors x and x̃ are overlapping, we can eliminate the case where
AB is included in A′B′ or A′B′ included in AB using the length argument and we are left
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with the cases A, A′, B, B′ and A, B′, B, A′. Here again, the former can be eliminated by the
length argument. In the latter, the factor x is decomposed into x = uw where w corresponds
to BB′ and must therefore be a palindrome and again x and x̃ are part of a bigger palindromic
factor uwũ which is its own image under ht.

2.6. Reflection adjacency

We are mainly interested here in symmetry pg which has only one direction of (glide)
reflexion. Also, if we study tilings by a tile and one of its images by reflection, we are also
in a situation where one reflection direction is privileged. Therefore, it will be convenient
to consider that this unique reflection direction is horizontal. This will enable us to express
reflections or glide reflections by applying the complex conjugation operation to its contour
word.

A tile that can be made adjacent to its image by reflection or glide reflection must therefore
possess both a factor x and a factor x. These factors can be identical, overlapping or disjoint.
When they are identical, x contains only real numbers: it is made of a sequence of horizontal
segments. This cannot occur in symmetry pg because glide reflexions have no fixpoints.

When the two factors x and x overlap, let us denote by u their common factor. We have
x = wu and x = uw′ and thus uw′ = wu. If we are in symmetry pg, the transformation
that transforms x into x is a glide reflection gr which can be decomposed into an horizontal
reflection r and an horizontal translation t. The effect of the glide reflection gr on factor x
is completely described by the complex number Σ(w) which has an imaginary part which
correspond to the effect of the reflection r and a real part which corresponds to the effect
of the translation t. The complex number Σ(ww), which is a real number, corresponds to
applying twice the horizontal translation t.

Let us assume |w| < |u|. This implies u = wu′ and x = wwu′ . This implies that x overlaps
with its image obtained by applying twice the glide reflection gr or equivalently twice the
translation t. But this is impossible in symmetry pg because this translation belongs to the
symmetry group (as the composition of the glide reflection with itself) and in a periodic
tiling, an element of a a tile contour cannot overlap with its image by translation. The only
possibility is therefore |w| ≥ |u|. In that case, x factorizes into x = uvu and x is equal to uvu.
The tile contour has then a factor uvuvu.

Finally, the two factors x and x can be disjoint. The tile contour has shape xyxz where y may
be empty. We can note that the overlapping case is a special case of this last one, where u
and u play the parts of x and x.

3. Tiles for symmetry p2

3.1. Presentation of symmetry group p2

The symmetry group p2 can be generated by three half-turns or by one half-turn and two
translations. The latter is more convenient since it leads to a presentation which allows for a
characterization of normal forms by a canonical rewriting system.
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If we denote the generators by T (the half-turn) and X, Y (the translations), the equations
are:

XY = YX , T2 = I , TXT = X−1 , TYT = Y−1

We give below the associated canonical rewriting system [6] together with an example:

T−1
→ T TY−1

→ YT

TX−1
→ XT X−1Y → YX−1

T2
→ 1 XY → YX

X−1Y−1
→ Y−1 X−1 XY−1

→ Y−1 X
TX → X−1T TY → Y−1T

1 2 

3 4 

The normal forms are of two sorts: YpXq (translations) and YpXqT (half-turns)

It thus appears that a tile is adequate for a (isohedral) tiling with symmetry p2 if and only if
this tile joined to its image by the half-turn T forms an adequate tile for symmetry group p1.
This observation explains in a simple way why the Conway criterion is a necessary condition
in section 3.3.

3.2. The Conway criterion

A polygonal tile satisfies the Conway criterion if and only if it has the shape uvw(−ũ)xy
where v, w, x and y are palindromes. It is easy to see that if we choose any of its
palindromic factors and join it with its half-turn image according to this factor, we obtain
a pseudo-hexagon.

Take for instance factor y. We obtain

uvw(−ũ)x(−u)(−v)(−w)ũ(−x)

or, with a left shift

vw(−ũ)x(−u)(−v)(−w)ũ(−x)u

Taking z = (−ũ)x(−u), we have −z = ũ(−x)u and the polygon contour appears as:

vwz(−v)(−w)(−z)

where v, w et z are palindromes.

This is a specific form of pseudo-hexagon which is invariant by half-turn.
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3.3. Conway criterion characterizes p2

Reciprocally, let us state the condition for a tile to produce a pseudo-hexagon when joined
with its image by half-turn.

First, as mentioned in section 2.5, the tile’s contour must have a palindromic factor and
therefore have shape xy where y is a palindrome. When the tile is joined to its image
by the half-turn, the resulting tile has contour x(−x) and this contour must be that of a
pseudo-hexagon. Therefore, there must exist words u, v and w such that:

x(−x) ≡ uvw(−ũ)(−ṽ)(−w̃)

The word x(−x) must thus be identical to a shift of uvw(−ũ)(−ṽ)(−w̃).

If x(−x) = uvw(−ũ)(−ṽ)(−w̃), then x = uvw and −x = (−ũ)(−ṽ)(−w̃), which is
equivalent to x = (ũ)(ṽ)(w̃). We thus have uvw = (ũ)(ṽ)(w̃) which implies u = ũ, v = ṽ
and w = w̃. The words u, v et w are palindromes and the primitive tile xy is equal to uvwy
where u, v, w and y are palindromes. We are in a special case where the tile is made of four
centro-symmetric factors.

If x(−x) ≡ uvw(−ũ)(−ṽ)(−w̃) but x(−x) 6= uvw(−ũ)(−ṽ)(−w̃), by shifting if necessary the
names u, v, w, ũ, ṽ, w̃, we can assume without lost of generality that u can be decomposed
into u = u1u′u2 in such a way that |u1| = |u2| and either

x(−x) = u′u2vw(−ũ2)(−ũ′)(−ũ1)(−ṽ)(−w̃)u1

or

x(−x) = u2vw(−ũ2)(−ũ′)(−ũ1)(−ṽ)(−w̃)u1u′

The second case differs from the first by the orientation only. Therefore, it is sufficient to deal
with the first case.

We have x = u′u2vw(−ũ2) and −x = (−ũ′)(−ũ1)(−ṽ)(−w̃)u1, which is equivalent to x =

ũ′ũ1ṽw̃(−u1), and thus u′u2vw(−ũ2) = ũ′ũ1ṽw̃(−u1).

This implies u′ = ũ′, u2 = ũ1, v = ṽ et w = w̃.

The primitive tile’s contour can thus be written u′u2vw(−ũ2)y or by shifting it to the left
u2vw(−ũ2)yu′ where v, w, y and u′ are palindromes which corresponds exactly to the
Conway criterion.

4. Tiles for symmetry pg

4.1. Presentation of symmetry group pg

The symmetry group pg can be generated with two glide reflexions with parallel mirrors
and equal associated translations. The presentation has just one equation G1

2 = G2
2 where

G1 and G2 are the two glide reflections.
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It can also be generated by a single glide reflection G and a translation X perpendicular to
the mirror of G. The presentation still has just one equation which is XGX = G. This second
presentation is more interesting. We give below the associated canonical rewriting system
[6] together with an example:

GX → X−1G
GX−1

→ XG
G−1X → X−1G−1

G−1X−1
→ XG−1

G GX’   GX  

G’  G’ X’     G’ X    

X X’  

The normal forms are XpG2q (translations) and XpG2q+1 (glide reflections). Taking Y = G2

(Y is a translation parallel to the mirror of G), the normal forms can be described as XpYq

(translations) and XpYqG (glide reflections).

This permits to see that a tile is adequate for symmetry pg if and only if this tile joined to its
image by the glide reflexion G forms an adequate tile for symmetry group p1.

4.2. Criterion for pg tiles

We are going to show that a tile is adequate for symmetry pg if and only if it has one of the
shapes

u v w v u (−w̃) (2)

u u w v v (−w̃) (3)

In both cases, one of the factors may be empty.

Let us first show that we obtain a pseudo-hexagon when we make such a tile adjacent to its
reflective image using factor u or v. We shall give the proof for the first form: the second one
is similar.

Since the factors u and v play similar parts, we shall use the reflection according to factor u.
The reflected tile has contour u v w v u (−w̃) in the reverse orientation or if we give the right
orientation

(−ũ) w (−ũ) (−ṽ) (−w̃) (−ṽ)
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Gluing together the primitive tile and its reflected image using factors u and (−ũ), we obtain
a polygon with contour

u v w v w (−ũ) (−ṽ) (−w̃) (−ṽ) (−w̃)

Taking x = w v w which implies −x̃ = (−w̃) (−ṽ) (−w̃), this contour can be written

u v x (−ũ) (−ṽ) (−x̃)

which is a pseudo-hexagon. The translation X corresponds to the complex number Σ(uv)
and the translation Y to the complex number Σ(vx) = Σ(vw v w)

4.3. The criterion characterizes pg tiles

Let us assume that some tile with contour m1 glued to its reflected image produce a
pseudo-hexagon. The conditions for a tile to fit its reflected image have been stated in section
2.6.

In all cases suitable for pg, we have

m1 = x y x z (4)

and the obtained polygon has contour

m2 = x y (−z̃) (−x̃) (−ỹ) z (5)

We can also use one more information that comes from the structure of group pg. When we
compose any glide reflection belonging to the symmetry group pg with itself, we obtain a
translation that belongs to the symmetry group. Therefore, if in the contour m1, the factor
x is the image of the factor x in some glide reflection , in the contour m2, the factor (−x̃)
is image of the factor x in the corresponding translation. Note that it is written (−x̃) and
not x because it is read in the reverse order in the contour of m2. However, even if x is an
exact factor for the glide reflection, it is not necessarily the case that it is an exact factor for
the corresponding translation: we can only assume that x is part of the exact factor for the
translation. This distinction will lead to the two possible forms for pg tiles.

If we assume that x is an exact factor for the translation then x appears in the pseudo-hexagon
decomposition of m2. Therefore, m2 can be written as

m2 = x u v (−x̃) (−ũ) (−ṽ) (6)
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and therefore, we must have

u v = y (−z̃) (7)

and

(−ũ) (−ṽ) = (−ỹ) z (8)

and in the special case where z is empty (the case where y is empty is similar), we get

u v = y (9)

and

(−ũ) (−ṽ) = (−ỹ) (10)

We shall first deal with this special case. The equation (10) can be rephrased into

y = v u (11)

and we have

u v = v u (12)

This equation has two types of solutions (see lemma 5.1):

• The general solution:
u = (ww)pw et v = w(ww)q

At this point, we have to use the fact that one of the translations which associate (−ũ) to u

or (−ṽ) to v is a vertical translation. This fact implies R(u) = R(v) = R(x) and therefore
p = q and u = v.
The tile has shape m1 = xx(−ũ)(−ũ) or, stating y = (−ũ), m1 = x x y y (see figure 3).

x x 

y 
y 

Figure 3. Special case of the first form
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• The solution on reals:
u = ap et v = aq.
For the same reason, we must have p = q. This is only a subcase of the previous one.

Now we go back to equations (7) and (8). Here again, we shall use the fact that one of
the translations corresponding to u and v is a vertical one. Let us assume that the vertical
translation is associated with u. Let us also assume that R(x) ≥ 0 which implies R(x) =
R(x) ≥ 0. This is just to ensure that all the vertical projections as they are defined below do
exist. The case R(x) ≤ 0 is similar with x and z having inverted roles.

Let us denote by 1, 2, 3, 4, 5, 6 the vertices that bound the factors x, y, (−z̃), (−x̃), (−ỹ) and
z. Let us also denote 2′, 3′ the images of 2, 3 in the vertical translation and 5′, 6′ the images
of 5 et 6 in its inverse (see figure 4).

- w 1 

- w 2 

w 1 

w 2 

x 

y 

x - x 
- y 

y 

z 

- y 

- z 

u v 

- u - v 

1 

2 
3 

4 

5 
6 

2’  
3’  

5’  
6’  

Figure 4. General case 1

The factor u has extremities 2 and 5′ and the factor v has extremities 5′ et 4. Let us denote
by w1 the factor with extremities 3 and 6′ and w2 the factor with extremities 5′ and 4. The
factor with extremities 3′ and 2′ is equal to (−ỹ) and therefore we have

(−z̃) = w1 y w2 (13)

We also have

z = (−w̃1) (−ỹ) (−w̃2) (14)
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since the factors [3, 6′], [6′, 5]′ et [5′, 4] are images by translation of factors [3′, 6], [6, 5] et [1, 2′].

This last equality can also be written

(−z̃) = w2 y w1 (15)

and we have

w1 y w2 = w2 y w1 (16)

which is an instance of equation

x y z = z y x

Fortunately, we shall not have to solve this equation in full generality because we can use
the fact that R(w1) = R(w2) i.e. in the above equation R(x) = R(z). We shall show that in
this case x = z. If this is not the case then either x = zu for some u or z = xv for some v.
These two cases being symmetrical, we shall deal with the first one only. Since x and z have
equal real projections, R(u) = 0 (u is a pure imaginary number). On the other hand, we have
zuyz = zyzu which implies I(zuyz) = I(zyzu) which is equivalent to I(u) = I(u). But this
is possible only if I(u) = 0 which, since we already know that R(u) = 0, implies Σ(u) = 0
i.e. u would be a closed (looping) factor which cannot exist in a contour word except for the
entire contour word. So, we do have x = z.

So, this shows that in our tile, w1 = w2 and the contour word can finally be written, setting
w = (−w̃2),

w x y x w (−ỹ)

which is of the required shape (form (2).

Notice that if we do not use the fact that one of the translations is vertical, then the real
projections of w1 and w2 need not be equal. In that case, we have to consider also solutions
such as:

• w1 = (ww)pw , (−ỹ) = (ww)n , w2 = w(ww)q

• w1 = (ww)p , (−ỹ) = (ww)nw , w2 = (ww)q
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Figure 5. Two tilings with non-pg symmetry

These solutions with p 6= q correspond to tiles that produce tilings with other symmetries
than pg or no symmetry at all as those on figure 5 which are only half-periodic or on figure
1 where aperiodicity appears.

Now, we go back to the case where the factor x of m2 in equation 5 is not an exact factor of
the horizontal translation. This means that x is included inside some translation factor axb
where ab is non-empty. We assume that the glide reflection maps x to x and x is an exact
factor for this glide reflection. If we apply again the glide reflection to x, we obtain the image
of x in the horizontal translation which has to belong to the part of m2 which is not in m1

because, otherwise, m1 would overlap with its image in the horizontal translation.

Let us show that if a and b are both non-empty, they cannot both belong to the contour of
m1. If a is non-empty, its image in the glide reflection does not belong to the contour of m1

because otherwise, x would not be an exact factor. But then, for the same reason, the image
of a under the horizontal translation cannot belong to the contour of m2 outside m1, so it has
to belong to m1. The situation is the same for b. Consequently, if we consider the images of
x, a, b are such that the fist one should be outside m1 and the two others inside m1. But then
we would have to assume that the image of x in the horizontal translation is all the part of
m2 that is outside m1 and m1 would have to be equal to xx and a and b would both be empty.

So, one of the factors a or b, if they are non-empty have to be outside the contour of m1 and
therefore belong to the part of m2 that is outside m1. Let us say, it is b. This implies that, in
the contour of m1, the two factors x and x are adjacent and b has to be the image of a in the
glide reflection as shown on figure 6.

m1 = a x x (−ã)z (17)

and

m2 = a x (−ã) (−z̃) a (−x̃) (−ã) z (18)

We know that the factor a x (−ã) is exact for the horizontal translation. So, we can make
explicit the fact that m2 is a pseudo-hexagon by factorizing (−z̃) into (−z̃) = uv with z =
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a 

x 

- a 

- z 

a 

- x 

- a 

z 

u v 

- v - u 

Figure 6. General case 2

(−ũ)(−ṽ). The two definitions of z lead us to the equation

u v = v u (19)

and we use the fact that one of the translations associated to factors u and v is vertical to
deduce that R(u) = R(v). Therefore u = v and we can conclude that

m1 = a x x (−ã)(−ũ)(−ũ) (20)

which corresponds to the form 3.

This completes our proof. It is clear from the examples of figure 5 that the main result
presented here is only a small step toward the characterization of polygons that tile the plane
together with one of their reflected images because our proofs are highly dependent on the
specificities of symmetry pg.. A plausible conjecture is that a polygon has this property if
and only if, suitably oriented, its contour has a factorization of form 2 or 3. But the contour
word techniques that we have used here will certainly require further development in order
to tackle with such a conjecture.

5. Technical lemmas

Solutions of the equation x ≡ x

This section studies the solutions of the equation x ≡ x. This equation where the symbol
≡ denotes equality modulo circular shift corresponds to two equations using equality on
words.

1. x = x

In that case, each letter of x must be its own conjugate. The word x is made uniquely of
reals.
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2. x = u v for two non empty words u et v and u v = v u.
This case is treated by lemma 5.1.

To study such equations, the alphabet of complex numbers divides naturally between reals
that are their own conjugate and non reals which have a conjugate distinct from themselves.
The lemmas presented below are very similar to those presented in [7] for ordinary equations
on words but are slightly more complex due to the partition of the alphabet. The equations
will have two kinds of solutions: solutions on R∗ which are the solutions of the considered
equations where we drop out the conjugation operations and the general solutions.

Lemme 5.1. The solutions of equation u v = v u are

u = wm , v = wn

where w ∈ R∗ and

u = (ww)mw , v = w(ww)n

where w ∈ C∗ .

To prove this lemma, we shall have to prove also the following one:

Lemme 5.2. The solutions of equation u v = v u are

u = wm , v = wn

where w ∈ R∗ and

u = (ww)mw , v = (ww)n

The proofs of these two lemmas can be done simultaneously by induction on |uv|. We shall
assume |uv| ≥ 2. The base case will correspond to |uv| = 2 and |uv| = 3.

• If |uv| = 2, u and v are letters and u = v in the three cases. This leads to solutions
u = u = v = v on reals and u = v on non real complex numbers for lemma 5.1. For
lemma 5.2, there is no solution on non real complex numbers.

• If |uv| = 3, we have either u = ab et v = c or u = a, v = bc where a, b,c are letters. For
lemma 5.1 , the two hypotheses lead to a = a = b = b = c = c and we have only the
solutions u = a, v = aa et u = aa, v = a where a is a real letter.
For lemma 5.2 , the hypothesis u = ab et v = c lead also to a = a = b = b = c = c and we
have only the two real solutions. On the contrary, the hypothesis u = a, v = bc leads to
a = b = c and we have the solution u = a, v = aa.

• In the inductive case , let us assume that the two lemmas are true when |uv| ≤ n and
consider two words u et v

such that |uv| = n + 1.

• Lemme 5.1: u v = v u. We compare the lengthes of u et v.
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* If |u| = |v|, then u = v.

* If |u| > |v|, take u = vu1. We then also have u = u1v hence u = u1v and
thus u1v = vu1 or u1v = vu1. By induction hypothesis, the solutions of this
equation are u1 = wm , v = wn where w ∈ R which gives u = wm+n, v = wn

and u1 = (ww)m, v = w (ww)n. In that case u = vu1 = (ww)m+nw and
v = w (ww)n.

* If |u| < |v|, taking v = uv1, we also have v = v1u hence uv1 = v1u. By induction
hypothesis, the solutions of this equation are u = wm , v1 = wn where w ∈ R
which gives u = wm, v = wm+n and u = (ww)mw , v1 = (ww)n, which gives
v = (ww)m+nw.

• Lemme 5.2: u v = v u. We compare again the lengthes.

* If |u| = |v|, then u = v = v. (real solutions)

* If |u| > |v|, take u = vu1. We also have u = u1v hence u1v = vu1. By induction
hypothesis, the solutions of this equation are u1 = wm , v = wn where w ∈ R
which gives u = wm+n, v = wn and u1 = (ww)mw , v = (ww)n, which gives
u = (ww)m+nw and v = (ww)n.

* If |u| < |v|, take v = uv1. Here again we have v = v1u, which implies uv1 = v1u.
By induction hypothesis, the solutions of this equation are u = wm , v1 = wn

where w ∈ R which gives u = wm, v = wm+n and u = (ww)mw, v1 = w(ww)n,
which gives v = (ww)m+n+1.

The author thanks Luc Boasson, Maurice Nivat and Laurent Vuillon for their help and support in
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